
AN AGE-DEPENDENT POPULATION EQUATION WITH
DIFFUSION AND DELAYED BIRTH PROCESS

G. FRAGNELLI

Received 2 June 2004 and in revised form 15 June 2005

We propose a new age-dependent population equation which takes into account not only
a delay in the birth process, but also other events that may take place during the time
between conception and birth. Using semigroup theory, we discuss the well posedness
and the asymptotic behavior of the solution.

1. Introduction

In this paper, we study an age-dependent population equation where the birth process
contains a delay. More precisely, we consider the equation

ut(t,a,x)=−ua(t,a,x)−µ(a)u(t,a,x) +∆xu(t,a,x), t ≥ 0, x ∈Ω, a≥ 0,

u(s,a,x)= u0(s,a,x), s∈ (−τ,0], x ∈Ω, a≥ 0,

u(0,a,x)= f (a,x), x ∈Ω, a≥ 0,

u(t,0,x)=
∫∞

0

∫ 0

−τ
β(σ ,a)ũ(t+ σ ,a,x)dσ da, t ≥ 0, x ∈Ω,

u(t,a,x)= 0
(

or
∂

∂ν
u(t,a,x)= 0

)
, t > 0, a≥ 0, x ∈ ∂Ω,

(1.1)

where u(t,a,x) represents the density of the population of age a > 0 at time t and position
x ∈Ω, Ω is a bounded open subset of Rn, µ≥ 0 is the death rate, β ≥ 0 is the birth rate,
and u0 and f are given functions. The delay operator Φ∈�(L1((−τ,0], L1(R+,X)), X),
defined as

ΦF :=
∫∞

0

∫ 0

−τ
β(σ ,a)F(σ ,a)dσ da, (1.2)

is called the birth process. Here X is a general Banach space. Moreover, the modified
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history function ũ is defined as

ũt(s) := ũ(t+ s,a) :=
Ṽ(s, t+ s)u(t+ s,a) for t+ s > 0,

Ṽ(s, t+ s)F(t+ s,a) otherwise,
(1.3)

where s∈ (−τ,0], τ > 0 is the maximal delay, F is a fixed function in the functional space
� := L1((−τ,0],L1(R+,X)), and the evolution family (Ṽ(σ,s))σ≤s is the trivial extension
(see Definition 2.5) of a given evolution family (V(σ,s))−τ<σ≤s≤0, which describes the time
lag between conception and birth.

In [22], Piazzera considered a model close to (1.1), but with u independent of x, that
is, u(t,a,x) := u(t,a). In particular, in [22], the birth process is given by

t �−→Φut, (1.4)

where the history function ut, t ≥ 0, is defined as

(−τ,0]� s �−→ ut(s,a) :=
u(t+ s,a), t+ s≥ 0,

F(t+ s,a), t+ s < 0,
(1.5)

and the delay operator Φ : L1((−τ,0]×R+)→R is defined formally as in (1.2), assuming
that the birth rate β belongs to L∞(R+). In [14], the same model of [22] in analyzed, but
in [14], the birth process is given by

u(t,0)=
∫∞

0
β(a)u(t,a)da, t ≥ 0. (1.6)

For further references, see the monographs [15, 26].
The real starting point for the present paper is the following model studied in [21]:

ut(t,a,x)=−ua(t,a,x)−µ(a)u(t,a,x) +∆xu(t,a,x), t ≥ 0, x ∈Ω, a≥ 0,

u(0,a,x)= f (a,x), x ∈Ω, a≥ 0,

u(t,0,x)=
∫∞

0
β(σ ,a)u(t,a,x)da, t ≥ 0, x ∈Ω,

u(t,a,x)= 0 or
(
∂

∂ν
u(t,a,x)= 0

)
, t > 0, a≥ 0, x ∈ ∂Ω,

(1.7)

where the birth process is given by

t �−→
∫∞

0
β(σ ,a)u(t,a,x)da, t ≥ 0, x ∈Ω. (1.8)

As we can see, (1.7) does not take into account the fact that a lot of things may happen
in the period between conception and birth, for example pregnant individuals can die or
can move during the period of gestation and therefore can bear in a place different from
that they were fecundated (see, e.g., [13] or [10]). Thus, in the birth process, we have not
only to consider the density of the population dependent on the time t, on the age a, and
on the space x, but we also have to modify it in some way. To be more precise, we have to
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consider a modified history function. In particular, to include the previous phenomena
in the previous model, we have to suppose that the operators which govern the evolution
in the past are given by

∆x −µ(σ), σ ∈ [0,τ). (1.9)

The backward evolution family (V(σ,s))−τ<σ≤s≤0 solving the nonautonomous Cauchy
problem associated to these operators is

V(σ,s) := e−
∫−σ
−s µ(ρ)dρe(s−σ)∆x , (1.10)

for σ≤ s∈ (−τ,0] (see below).
This is the reason why we substitute the birth process considered in [21] with

t �−→
∫∞

0

∫ 0

−τ
β(σ ,a)ũ(t+ σ ,a,x)dσ da, t ≥ 0, (1.11)

where ũ(t+ σ ,a) is defined as in (1.3). It is important to observe that the term

∫∞
0

∫ 0

−τ
β(σ ,a)ũ(t+ σ ,a,x)dσ da (1.12)

can be rewritten, using the definition of the backward evolution family (V(σ,s))−τ<σ≤s≤0,
as

∫∞
0

∫ 0

−τ
e∆xσΠ(−σ)β(σ ,a)u(t+ σ ,a,x)dσ da. (1.13)

Here

Π(a) := e−
∫ a

0 µ(s)ds, a≥ 0, (1.14)

denotes the probability of survival up to age a. Thanks to the existence of this term, the
model (1.1) proposed and studied in this paper is new and more realistic than the models
presented, for example, in [21, 22].

The paper is organized as follows. In Section 2, we study the evolution in the past. In
Section 3, we show how our problem fits into a semigroup framework, and we study the
well posedness of the problem using operator matrices theory. In Section 4, we analyze
the asymptotic behavior of the solution of problem (1.1). In particular, we give a condi-
tion such that the solution of (1.1) decays exponentially. This is important if u represents
a virus. However, until now, we cannot say anything about the asymptotic behavior of the
solution if the previous condition is not satisfied. For this reason, it is interesting to con-
trol (1.1) in some way (see, e.g., [1, 2] or [4]). For this problem, we refer to a forthcoming
paper.
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2. Derivation of the equation and evolution in the past

Consider the following linear age-dependent population equation with delayed birth pro-
cess:

ut(t,a,x)=−ua(t,a,x)−µ(a)u(t,a,x) +∆xu(t,a,x), x ∈Ω, a≥ 0,

u(s,a,x)= u0(s,a,x), s∈ (−τ,0], x ∈Ω, a≥ 0,

u(t,0,x)=
∫∞

0

∫ 0

−τ
β(σ ,a)v(t,a,σ ,x)dσ da, t ≥ 0,

u(t,a,x)= 0 or
(
∂

∂ν
u(t,a,x)= 0

)
, t > 0, a≥ 0, x ∈ ∂Ω,

(2.1)

where Ω is a bounden, open subset of Rn, and v(t,a,σ ,x) is the density of the subpopu-
lation collecting pregnant individuals of age a, with time of gestation σ , that at time t are
at the position x. Therefore, assume that the density of the subpopulation v(t,a,σ ,x) is
governed by the following operators:

B(σ) := ∆x −µ(σ), (2.2)

that is,

vt(t,a,σ ,x)=−vσ(t,a,σ ,x)−µ(σ)v(t,a,σ ,x) +∆xv(t,a,σ ,x). (2.3)

On the nonnegative death and birth rates, we make the following assumptions:

µ∈ L∞loc(R+), β ∈ L∞((−τ,0]×R+
)
,

inf
a∈[0,∞)

µ(a)=: µ∞ > 0. (2.4)

Here ∆x is the Laplace operator on Ω and ∂/∂ν is the outward normal derivative. Thus,
we assume that Ω is arbitrary in the case of Dirichlet boundary conditions and that Ω
has the extension property otherwise. Here D(∆x) denotes the domain of the Laplacian
on X := L1(Ω). Moreover, set E := L1(R+, X), which is the natural state space for (1.1)
because the L1-norm of u gives the total population size. (We recall here that the Laplace
operator (∆x,D(∆x)) with Dirichlet (or Neumann) boundary conditions on an arbitrary
open subset Ω of Rn (which has the extension property in presence of Neumann bound-
ary conditions, see, e.g., [5]) generates an analytic strongly continuous semigroup (see,
e.g., [3]).)

As we saw in the introduction, the backward evolution family (V(σ,s))−τ<σ≤s≤0 solving
the nonautonomous Cauchy problem associated to the operators B(σ) is given by

V(σ,s) := e−
∫−σ
−s µ(ρ)dρe(s−σ)∆x , (2.5)

for all σ ≤ s ∈ (−τ,0] (see, e.g., [20] or [25]). This takes into account the fact that, in
general, pregnant individuals can move during the period of gestation, bearing in a place
different from that they were fecundated, and that, therefore, they can die.
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Proceeding as in [13], one can prove that∫∞
0

∫ 0

−τ
β(σ ,a)v(t,a,σ ,x)dσ da=

∫∞
0

∫ 0

−τ
β(σ ,a)ũ(t+ σ ,a,x)dσ da. (2.6)

Thus system (2.1) can be rewritten as (1.1).
Before continuing, we will recall some definitions (see, e.g., [19]) and results.

Definition 2.1. A family (V(σ,s))σ≤s≤0 of bounded, linear operators on a Banach space X
is called an (exponentially bounded, backward ) evolution family if

(i) V(σ,r)V(r,s)=V(σ,s), V(σ,σ)= Id for all σ≤ r ≤ s≤ 0,
(ii) the mapping (σ,s) �→V(σ,s) is strongly continuous,

(iii) ‖V(σ,s)‖ ≤Mωeω(s−σ) for some Mω ≥ 1, ω ∈R and all σ≤ s≤ 0.

Definition 2.2. Let � := (V(σ,s))σ≤s≤0 be a backward evolution semigroup. Define the
growth bound of � as

ω0(�) := inf
{
ω ∈R : ∃Mω ≥ 1 with

∥∥V(σ,s)
∥∥≤Mωe

ω(s−σ), ∀σ≤ s≤ 0
}
. (2.7)

In particular, for the evolution family defined in (2.5), the next property holds.

Proposition 2.3. The growth bound of the backward evolution family defined in (2.5) is
negative. In particular,

ω0(�)= ω0
(
T(·))−µτ < 0, (2.8)

where (T(t))t≥0 is the semigroup generated by the Laplace operator ∆x and µτ :=
infρ∈[0,τ)µ(ρ).

Now, consider the backward nonautonomous Cauchy problem

u̇(σ)=−B(σ)u(σ), −τ < σ≤ s≤ 0,

u(s)= f ∈ E,
(NCP)

on a general Banach space � for a family (B(σ),D(B(σ)))σ∈(−τ,0] of (unbounded) linear
operators.

Definition 2.4. The problem (NCP) is said to be well posed with regularity subspaces
(Ys)s∈(−τ,0] if the following conditions hold.

(i) Existence. For all s∈ (−τ,0], the subspace

Ys := {
f ∈ E : there exists a classical solution for (NCP)

}⊂D(B(s)
)

(2.9)

is dense in E.
(ii) Uniqueness. For every f ∈ Ys, the solution us(·, f ) of (NCP) is unique.

(iii) Continuous dependence. The solutions depend continuously on s and f , that is, if
sn→ s∈ (−τ,0], fn→ f ∈ Ys with fn ∈ Ysn , then∥∥ûsn(σ, fn)− ûs(σ, f )

∥∥−→ 0 (2.10)
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uniformly for σ in compact subsets of (−τ,0], where

ûs(σ, f ) :=
us(σ, f ) if s≥ σ,

f if s < σ.
(2.11)

If, in addition, there exist constants ω ∈R and Mω ≥ 1 such that∥∥us(σ, f )
∥∥≤Mωe

ω(s−σ)‖ f ‖ (2.12)

for all f ∈ Ys and t ≥ s, then (NCP) is called well posed with exponentially bounded solu-
tions.

As in [20, Proposition 2.5], we can show that for each well-posed (NCP), there exists
a unique backward evolution family (V(σ,s))−τ<σ≤s≤0 solving (NCP), that is, the function
σ �→ u(σ) :=V(σ,s) f is a classical solution of (NCP) for s∈ (−τ,0] and f ∈ Ys.

In this paper, we will use evolution semigroup techniques for which we refer to [8,
Section VI.9]. To this purpose, we first extend (V(σ,s))−τ<σ≤s≤0 to an evolution family
(Ṽ(σ,s))σ≤s on R (see, e.g., [11]).

Definition 2.5. (1) The evolution family (V(σ,s))−τ<σ≤s≤0 on E is extended to an evolution
family (Ṽ(σ,s))σ≤s by setting

Ṽ(σ,s) :=



V(σ,s) for − τ < σ≤ s≤ 0,

V(σ,0) for − τ < σ≤ 0≤ s,
V(0,s) for σ <−τ < s≤ 0,

V(0,0)= Id otherwise.

(2.13)

(2) On the space �̃ := L1(R,E), define the corresponding evolution semigroup (S̃(t))t≥0

by

(
S̃(t)F̃

)
(s) := Ṽ(s,s+ t)F̃(s+ t)=



V(s,s+ t)F̃(s+ t) for − τ < s≤ s+ t ≤ 0,

V(s,0)F̃(s+ t) for − τ < s≤ 0≤ s+ t,

V(0,s+ t)F̃(s+ t) for s <−τ < s+ t ≤ 0,

F̃(s+ t) otherwise,
(2.14)

for all F̃ ∈ �̃, s∈R, t ≥ 0.

It is easy to prove that the semigroup (S̃(t))t≥0 is strongly continuous on �̃ (see [8,
Lemma VI.9.10]). We denote its generator by (G̃,D(G̃)). Note that the precise description
of the domain D(G̃) is difficult.

Moreover, since (G̃,D(G̃)) is a local operator (see [23, Theorem 2.4]), we can restrict
it to the space � := L1((−τ,0],E) by the following definition.
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Definition 2.6. Take

D(G) := {
F̃|(−τ,0] : F̃ ∈D(G̃)

}
(2.15)

and define

GF := (G̃F̃)|(−τ,0] for F = F̃|(−τ,0] ∈D(G̃). (2.16)

The operator G is not a generator on �. However, if we identify � with the subspace

{F ∈ �̃ : F(s) = 0 ∀s ∈ (−∞,−τ]∪ [0,+∞)}, then � remains invariant under (S̃(t))t≥0.
As a consequence, we obtain the following lemma.

Lemma 2.7. The semigroup (S0(t))t≥0 induced by (S̃(t))t≥0 on � is

(
S0(t)F

)
(s)=

V(s,s+ t)F(t+ s) for − τ < s+ t ≤ 0,

0 otherwise,
(2.17)

for any F ∈�.

The following lemma characterizes the generator of this semigroup.

Lemma 2.8 (see [12]). The generator (G0,D(G0)) of (S0(t))t≥0 is given by

D(G0)= {
F ∈D(G̃)∩� : F(0)= 0

}
, G0F =GF. (2.18)

We thus end up with operators (G0,D(G0)) ⊂ (G,D(G)) ⊂ (G̃,D(G̃)), where only the
first and the third are generators.

Remark 2.9. Observe that G0 =G|KerL , where L :D(G)→ E is such that LF = F(0).

Moreover, as in [9], one can prove that, for all λ∈ C,

Ker(λ−G)=

〈
ελ
〉

for�λ > ω0(�),

{0} otherwise,
(2.19)

where the bounded linear operators ελ : E→� are defined as

(
ελ f

)
(s) := eλsV(s,0) f , −τ ≤ s≤ 0, f ∈ E. (2.20)

Therefore, following, for example, [16, Theorem 2.3], one can prove that the spectral
mapping theorem holds for (S0(t))t≥0.



3280 Diffusion and delayed birth in an age population equation

Theorem 2.10. Let (G0,D(G0)) be the generator of (S0(t))t≥0 on �. Then the spectrum
of (S0(t))t≥0, σ(S0(t)), is a disk centered at the origin and the spectrum σ(G0) of G0 is a
half-plane. Moreover, (S0(t))t≥0 satisfies the spectral mapping theorem

σ
(
S0(t)

) \ {0} = etσ(G0), t ≥ 0. (2.21)

In particular, s(G0)= ω0(S0(·))= ω0(�). Here s(G0) is the spectral bound of G0, defined as

s
(
G0

)
:= sup

{�λ : λ∈ σ(G0
)}
. (2.22)

Thus

if λ∈ C is such that�λ > ω0(�), then λ∈ ρ(G0
)
, (2.23)

where ρ(G0) is the resolvent set of G0, that is,

ρ
(
G0

)
:= {

λ∈ C : s.t.
(
λ−G0

)
is invertible

}
. (2.24)

3. Well posedness

This section is devoted to studying the well posedness of (1.1), that is, to proving the
existence of a solution of (1.1). To do this, the main idea is to use semigroup theory. In
particular, we will rewrite the model as an abstract Cauchy problem of the type

�̇(t)=��(t), t ≥ 0,

�(0)=�0,
(3.1)

and then we will apply the following result due to G. Greiner.
Let X , ∂X be two Banach spaces and � : (D(�),| · |)→ X and L : (D(�),| · |)→ ∂X

two continuous linear operators such that (D(�),| · |) is complete and ImL= ∂X . More-
over, let �Φ be the operator defined as follows:

�Φx :=�x, D
(
�Φ

)
:= {

x ∈D(�) : Lx =Φx
}

, (3.2)

for a bounded operator Φ : X → ∂X . Then the next theorem holds.

Theorem 3.1 (see [14]). If �0 := �|KerL generates a strongly continuous semigroup
(T0(t))t≥0 on X and there exist constants γ > 0 and λ0 ∈ R such that for every λ > λ0 the
following condition is satisfied: ∥∥Lλ∥∥≤ (λγ)−1, (3.3)

then �Φ is a generator. Here Lλ := (L|Ker(λ−�) )
−1, where λ∈ ρ(�0).

Hence, the first step is to rewrite (1.1) as an abstract Cauchy problem. To this aim,
we will prove, first of all, the equivalence of (1.1) with an appropriate boundary delay
problem.
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3.1. First step: (1.1) as an abstract boundary delay problem. In this subsection, we want
to rewrite (1.1) as an abstract boundary delay problem. At first we consider the following
subspace �0 of E defined as �0 :=D0∩D∆x , where

D0 :=
{
f ∈ E : f (·,x) is continuous and a.e. differentiable on R+,

f (0,x)= 0 for almost all x ∈Ω,
∂ f

∂a
+µ f ∈ E

}
,

D∆x := {
f ∈ E : f (a,·)∈D(∆x),∀a≥ 0, ∆x f ∈ E

}
.

(3.4)

As in [21], we consider the family of linear operator A on X given by

(A f )(a) :=−µ(a) f (a) +∆x f (a), (3.5)

and, as in [22], the map P : D(A)→ X , defined as P f := f (0) and called the boundary
operator. The following proposition holds.

Proposition 3.2. If u ∈�0, (1.1) is equivalent to the following abstract boundary delay
problem:

u̇(t)= Au(t),

Pu(t)=Φũt,

ũ0 = u0,

u(0)= f ,

(3.6)

where f ∈ E and u0 ∈ �. Moreover, the function u : [0,+∞) → E is defined as u(t) :=
u(t,·,x) and ũt : (−τ,0]→ E and Φ are defined as in (1.3) and (1.2), respectively.

Proof. Let (A0,D(A0)) be the operator defined as A0 f :=A f with D(A0) := { f ∈D(Ã)∩
E : f (0) = 0} ((Ã,D(Ã)) is the natural extension of (A,D(A)), see, e.g., Section 2). It is
easy to prove that A0 := A|KerP and, as in [14], that it generates the following evolution
semigroup on E:

T0(t) f (a)=
U(a,a− t) f (a− t), a≥ t,

0, a < t,
(3.7)

where (U(t,s))t≥s≥0 is the forward evolution family

U(t,s)= e−
∫ t
s µ(σ)dσe(t−s)∆x (3.8)

for t ≥ s≥ 0. As in [21, Lemma 5.1], one can prove that �0 is a core of A0 and

(
A0 f

)
(a)=− ∂

∂a
f (a)−µ(a) f (a) +∆x f (a), (3.9)

for every f ∈�0 and a.e. a≥ 0 (recall that a core D of a generator (A,D(A)) is a subspace
of D(A) which is dense in the graph norm ‖x‖A := ‖x‖+‖Ax‖, x ∈D(A)).

Thus the thesis follows immediately, observing that Pu(t)= u(t,0)=Φũt. �
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3.2. Second step: (3.6) as an abstract Cauchy problem. Here we rewrite (3.6) as an ab-
stract Cauchy problem. To this aim, we define on the product space � :=�×E the oper-
ator matrix

�m :=
(
G 0
0 A

)
, (3.10)

with maximal domainD(�m) :=D(G)×D(A) and define also the operator � :D(�m)→
∂� := E×X as the matrix

� :=
(
L 0
0 P

)
. (3.11)

Since L and P are surjective, then the following proposition is immediate.

Proposition 3.3. The operator � is surjective.

Finally, define the delay operator matrix Ψ : �→ ∂� as

Ψ :=
(

0 IdE
Φ 0

)
, (3.12)

and the operator � as

� :=�m|Ker(�−Ψ)
. (3.13)

The following definition is quite natural.

Definition 3.4. A continuous function u : (−τ,+∞)→ X is called a classical solution of

(3.6) with initial value
(
u0

f

)
∈D(�) if it is continuously differentiable on [0,+∞), u(t)∈

D(A), ũt ∈D(G) for all t ≥ 0, and if it satisfies (3.6).

The next proposition holds.

Proposition 3.5. If the function � : t ∈ [0,+∞) �→�(t) defined as

�(t) :=
(
ũt
u(t)

)
(3.14)

is a solution of

�̇(t)=��(t), t ≥ 0,

�(0)=
(
ũ0

u(0)

)
,

(3.15)

then u(t) :=Π2(�(t)) solves (3.6).

Proof of Proposition 3.5. The proof is an easy consequence of the fact that the operator �
can be rewritten as

� :=
(
G 0
0 A

)
, (3.16)
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with domain

D(�) :=
{(

u0

f

)
∈D(�m

)
: �

(
u0

f

)
=Ψ

(
u0

f

)}
=
{(

u0

f

)
∈D(G)×D(A) : Lu0 = f , P f =Φu0

}
=
{(

u0

f

)
∈D(G)×D(A) : u0(0)= f , f (0)=Φu0

}
.

(3.17)

�

Using Propositions 3.2 and 3.5, the following proposition is immediate.

Proposition 3.6. If (�,D(�)) generates a strongly continuous semigroup (	(t))t≥0, then
u(t) := Π2(�(t)) = Π2(	(t)�(0)) solves (3.6). As a consequence, if u ∈�0, then u is the
unique solution of (1.1).

3.3. Well posedness. In this subsection, we want to prove that the operator (�,D(�))
is a generator of a strongly continuous semigroup in order to apply Proposition 3.6 and
to conclude that model (1.1) has a solution. The main idea is to apply Theorem 3.1. The
next result holds.

Theorem 3.7. The operator (�,D(�)) generates a strongly continuous semigroup
(	(t))t≥0.

Proof

Step 1. First of all, define the operator �0 :=�m|Ker�
, that is,

�0 :=
(
G0 0
0 A0

)
,

D(�0)=
{(

u0

f

)
∈D(�m) : �

(
u0

f

)
= 0

}

=
{(

u0

f

)
∈D(G)×D(A) : u0(0)= 0, f (0)= 0

}

=D(G0
)×D(A0

)
.

(3.18)

It is easy to prove that (�0,D(�0)) generates a strongly continuous semigroup
(	0(t))t≥0 on � given by

	0(t)=
(
S0(t) 0

0 T0(t)

)
(3.19)

(see [17, Proposition 3.1]).

Step 2. As in Proposition 2.3, one can prove that the growth bound of the evolution
family � := (U(t,s))t≥s≥0 is negative. In particular, it is given by

ω0(�)= ω0
(
T(·))−µ∞ < 0, (3.20)
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where (T(t))t≥0 is the heat semigroup. Note that if we consider the same conditions for
the Laplacian in the present and in the past, that is, the Laplacian with Dirichlet or Neu-
mann conditions, then

ω0(�)≤ ω0(�), (3.21)

since µτ ≥ µ∞. Moreover, as in Section 2, we have that

if λ∈ C is such that�λ > ω0(�), then λ∈ ρ(A0
)
, (3.22)

where ρ(A0) is the resolvent set of A0, and

ω0(�)= ω0
(
T0(·))= s(A0

)
. (3.23)

An immediate consequence is the following:{
λ∈ C : s.t.�λ >max

{
ω0(�), ω0(�)

}}⊆ ρ(G0
)∩ ρ(A0

)
. (3.24)

In particular, if ω0(�)≤ ω0(�), then (3.24) becomes

if λ∈ C is such that�λ > ω0(�), then λ∈ ρ(A0
)∩ ρ(G0

)
. (3.25)

Therefore, one can prove that

Ker
(
λ−A0

)=

〈
ψλ
〉

, �λ > ω0(�),

{0} otherwise,
(3.26)

where the bounded linear operators ψλ : X → E are defined as(
ψλy

)
(a) := e−

∫ a
0 (λ+µ(s))dsea∆x y = e−λaU(a,0)y. (3.27)

Step 3. Since Ψ is bounded and � is surjective, �|Ker(λ−�m) is an isomorphism of Ker(λ−
�m) onto ∂� for λ ∈ C with �λ > max{ω0(�),ω0(�)} (see, e.g., [14]). Thus, we can
define �λ : ∂�→ Ker(λ−�) as

�λ := (
�|Ker(λ−�m)

)−1 =
(
Lλ 0
0 Pλ

)
, (3.28)

where Lλ : E→ Ker(λ−G) is given by Lλ := (L|Ker(λ−G) )
−1 and Pλ : X → Ker(λ−A) is defined

by Pλ := (P|Ker(λ−A) )
−1. Now we want to compute �λ. To this aim, it is sufficient to find Lλ

and Pλ.
Let f ∈ Ker(λ−A). Then, by (3.26), there exists y ∈ X such that

f = ψλ⊗ y, (3.29)

where (
ψλ⊗ y

)
(σ)= e−λσU(σ ,0)y, σ ≥ 0. (3.30)
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Thus, P f = f (0)= (ψλ⊗ y)(0)= y and

Pλ = ψλ⊗ IdX . (3.31)

Analogously, let F ∈ Ker(λ−G). By (2.19), there exists f ∈ E such that

F = ελ⊗ f , (3.32)

where (
ελ⊗ f

)
(s)= eλsV(s,0) f , (3.33)

for s∈ (−τ,0]. Thus, LF = F(0)= (ελ⊗ f )(0)= f and

Lλ = ελ⊗ IdE . (3.34)

Then, if λ∈ C is such that�λ >max{ω0(�), ω0(�)}, it follows that

�λ =
(
ελ⊗ IdE 0

0 ψλ⊗ IdX

)
. (3.35)

Step 4. In order to apply Theorem 3.1, we have to find two constants γ > 0 and λ0 ∈ R
such that (3.3) holds. Thus we have to estimate the norm of �λ. To do this, it is sufficient
to estimate the norms of Lλ and Pλ.

Let λ ∈ R be such that λ > 0. Since ω0(�) and ω0(�) are strictly negative, then, by
definition of growth bound, taking ω := 0, there exist M0,1 ≥ 1 and M0,2 ≥ 1 such that
‖V(σ ,s)‖ ≤M0,1 and ‖U(t,τ)‖ ≤M0,2 for all σ ≤ s ≤ 0 ≤ τ ≤ t. Now, it is very easy to
prove that

∥∥Lλ∥∥� ≤
M0

λ
,

∥∥Pλ∥∥E ≤ M0

λ
,

(3.36)

where M0 :=max{M0,1,M0,2} ≥ 1. Hence, if λ ∈ R+, then the norm of �λ satisfies the
following estimate:

∥∥�λ

∥∥
� ≤

2M0

λ
. (3.37)

Step 5. Set γ := 1/2M0, where M0 is as before. Then γ is strictly positive. Moreover, by the
previous step, one has

‖�λ‖� ≤ 2M0

λ
= 1
λγ

, (3.38)

for λ > 0. Thus, by Theorem 3.1 applied with λ0 := 0, we have that (�,D(�)) generates a
strongly continuous semigroup (	(t))t≥0. �
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The next corollary is an immediate consequence of Proposition 3.6 and Theorem 3.7.

Corollary 3.8. System (3.6) has a unique classical solution u(t). As a consequence, if
u(t)∈�0, then u(t) is the unique solution of (1.1).

4. Asymptotic behavior

In this section we want to study the asymptotic behavior of the solution u of (1.1). Since it
is given through the semigroup (	(t))t≥0 generated by (�,D(�)) (see Proposition 3.6),
it is clear that the asymptotic behavior of u is related to the asymptotic behavior of
(	(t))t≥0. Thus we have to find conditions such that the semigroup (	(t))t≥0 decays ex-
ponentially, that is, the growth bound of (	(t))t≥0 is strictly negative. This is important
if, for example, u represents a virus.

The main idea here is to use spectral theory in combination with positivity. Indeed,
if the semigroup is positive on the space � := L1((−τ,0],L1(R+,L1(Ω)))×L1(R+,L1(Ω)),
which is an AL-space (see [24, Section II.8]), then the spectral bound s(�) coincides with
the growth bound ω0(	(·)) of the semigroup (	(t))t≥0.

Thus the next result is very important.

Proposition 4.1. The semigroup (	(t))t≥0 generated by the operator (�,D(�)) (see Theo-
rem 3.7) is positive.

Proof. If we prove that for all λ ∈ C such that �λ is big enough the resolvent of � in
λ is positive, then as a consequence of the characterization theorem (see [8, Theorem
VI.1.8]), we have the positivity of the semigroup generated by (�,D(�)).

To this aim, let λ∈ C be such that �λ is big enough. Then, the operator (1−LλPλΦ)
is invertible, that is,

1∈ ρ(LλPλΦ), (4.1)

where LλPλΦ ∈�(�). Moreover, its inverse (1− LλPλΦ)−1 is positive and it is given by
the Neumann series. In fact, since ‖LλPλΦ‖ ≤ 1 for�λ big enough (see the next lemma),
the spectral radius, r(LλPλΦ), of LλPλΦ is such that r(LλPλΦ)≤ 1 (see, e.g., [8, Corollary
IV.1.4]), and as a consequence 1− LλPλΦ is invertible. Moreover, its inverse is given by
the Neumann series. Therefore, since LλPλΦ is a positive operator (see the next lemma),
(1−LλPλΦ)−1 is positive at least for�λ big enough.

Moreover, using the compactness of LλPλΦ and PλΦLλ (see the next lemma) and the
fact that 1∈ ρ(LλPλΦ), the resolvent of � in λ is

R(λ,�)=
 (

1−LλPλΦ
)−1

R
(
λ,G0

) −(1−LλPλΦ
)−1

LλR
(
λ,A0

)
−(1−LλPλΦ

)−1
PλΦR

(
λ,G0

) (
1−LλPλΦ

)−1
R
(
λ,A0

)
 (4.2)

(see [18, Theorem 2.7] and [7, Theorem II.2.8]). Thus the thesis follows immediately. �

For the operators Lλ and Pλ, defined in the previous section, the following lemma
holds.
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Lemma 4.2. The operators Lλ and Pλ verify the following property:
(1) PλΦ has one-dimensional range,
(2) PλΦ is compact,
(3) PλΦLλ and LλPλΦ are positive compact operators,
(4) lim�λ→+∞‖LλPλΦ‖ = 0.

We do not give the proof of the previous lemma since it is immediate: it is just sufficient
to observe that (1)⇒ (2)⇒ (3). Moreover, (1) and (4) follow from the definition of the
two operators.

As we said before, since (	(t))t≥0 is a positive semigroup on the Banach Lattice � and
this is an AL-space, the following result is immediate from classical result.

Corollary 4.3. The growth bound of (	(t))t≥0, ω0(	(·)), and the spectral bound of �,
s(�), are such that

ω0
(
	(·))= s(�). (4.3)

Moreover, s(�)∈ σ(�).

By the previous corollary, it is clear that if we want to find conditions such that the
semigroup (	(t))t≥0 decays exponentially, it is sufficient to find conditions such that the
spectral bound of its generator � is strictly negative. Information on s(�) can be ob-
tained using the stability results of Engel on two-sided coupled operator (see, e.g., [6]).
Important in this sense is the next lemma.

Lemma 4.4 (see, e.g., [14]). Let λ ∈ C be such that �λ > max{ω0(�),ω0(�)}. Then, the
following statements are true:

(1)
(
u0

f

)
∈D(�)⇔ (Id−�λΨ)

(
u0

f

)
∈D(�0),

(2) (λ−�)
(
u0

f

)
= (λ−�0)(Id−�λΨ)

(
u0

f

)
, for

(
u0

f

)
∈D(�).

As an immediate consequence, we obtain the following result.

Theorem 4.5. The operator � can be rewritten in the following way:

�=�0
(

Id−�0Ψ
)= (

G0 0
0 A0

)(
Id −L0

−P0Φ Id

)
. (4.4)

Moreover,

s(�) < 0⇐⇒ r
(
L0P0Φ

)
< 1. (4.5)

Proof. The first part is an easy consequence of the previous lemma (it is sufficient to take
λ= 0 in (4.4)), while the second part is a consequence of [7, Theorem VI.3.4] and of the
fact that ω0(G0) and ω0(A0) are strictly negative. �

Finally, as a consequence of Corollary 4.3, one can obtain conditions such that the
solution of (1.1) decays exponentially.
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Theorem 4.6. If the birth rate β and the death rate µ are such that

‖β‖∞
∫∞

0
e−

∫ a
0 µ(σ)dσda <

1
τ

, (4.6)

then the solution of (1.1) decays exponentially.

Proof. For F ∈� and�λ≥ 0, we have

∥∥LλPλΦF∥∥L1((−τ,0],E) =
∫ 0

−τ

∥∥LλPλΦF(s)
∥∥
Eds

=
∫ 0

−τ

∫∞
0

∣∣(LλPλΦF)(s,a)
∣∣dsda

≤ ‖β‖∞‖F‖1

∫ 0

−τ

∫∞
0

∣∣V(s,0)U(a,0)
∣∣dads

≤ ‖β‖∞‖F‖1

∫ 0

−τ

∫∞
0
e−

∫−s
0 µ(ρ)dρe−

∫ a
0 µ(σ)dσdads

≤ ‖β‖∞‖F‖1

∫ 0

−τ
esµτ ds

∫∞
0
e−

∫ a
0 µ(σ)dσda

≤ τ‖β‖∞‖F‖1

∫∞
0
e−

∫ a
0 µ(σ)dσda.

(4.7)

Thus ∥∥LλPλΦ∥∥≤ τ‖β‖∞∫∞
0
e−

∫ a
0 µ(σ)dσda < 1 (4.8)

and r(LλPλΦ) < 1. Recall that Lλ, Pλ, Φ, �, and � are defined, respectively, in (3.31),
(3.34), (2.4), (3.8), and (2.5). In particular, for λ = 0, by Theorem 4.5, it follows that
s(�) < 0. Thus, by Corollary 4.3, one has that the solution of (1.1) decays exponentially.

�

Observe that (4.6) is the stability condition obtained by Piazzera in [22].
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