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The study of unsteady hydrodynamic free convective flow of a viscous incompressible
fluid past a vertical porous plate in the presence of a variable suction has been made.
Approximate solutions have been derived for the velocity and temperature fields, shear
stress, and rate of heat transfer using perturbation technique. It is observed that main
fluid velocity decreases with increase in Prandtl number, while it increases with increase
in suction parameter. The cross-velocity decreases near the plate and increases away from
the plate with increase in suction parameter. On the other hand, it increases near the plate
and decreases away from the plate with increase in frequency parameter. The amplitude
and the tangent of phase shift of the shear stress due to main flow decrease with increase
in either Prandtl number, Grashof number, or frequency parameter. It is seen that the
temperature decreases with increase in either suction parameter, Prandtl number, or fre-
quency parameter. It is also seen that the amplitude of the rate of heat transfer increases
and the tangent of phase shift of rate of heat transfer decreases with increase in Prandtl
number.

1. Introduction

The research area of laminar flow is continuously growing, and it is the subject of in-
tensive studies in recent years because of its application in engineering, particularly in
aeronautical engineering. One of the most important application of laminar flow is the
calculation of friction drag of bodies in a flow, for example, the drag of a plate at zero in-
cidence, the friction drag of ship, an airfoil. It is also important for heat transfer between
a body and the fluid around it. The effect of different arrangements and configurations
of the suction holes and slits on the drag has been studied by various scholars. Misra
et al. [4] have studied the effect of buoyancy forces on the three-dimensional flow and
heat transfer along a porous vertical plate. Misra et al. [3] also studied the flow of viscous
incompressible fluid along an infinite porous plate by applying the transverse sinusoidal
suction velocity distribution fluctuating with time. Later, Singh [2] extended this idea by
applying transverse sinusoidal suction velocity in the presence of viscous dissipative heat.

Copyright © 2005 Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences 2005:20 (2005) 3359–3372
DOI: 10.1155/IJMMS.2005.3359

http://dx.doi.org/10.1155/S0161171205504587


3360 Flow past a vertical porous plate

Singh [1] also discussed the effect of magnetic field on the three-dimensional flow past a
porous plate.

The aim of this note is to study the effect of buoyancy forces and time-dependent pe-
riodic suction on three-dimensional flow past a vertical porous plate. The velocity field,
shear stress, temperature distribution, and the rate of heat transfer have been derived. It
is observed that main fluid velocity decreases with increase in Prandtl number while it
increases with increase in suction parameter. The cross-velocity decreases near the plate
and increases away from the plate with increase in suction parameter. On the other hand,
it increases near the plate and decreases away from the plate with increase in frequency
parameter. The amplitude and the tangent of phase shift of the shear stress due to main
flow decrease with increase in either Prandtl number, Grashof number, or frequency pa-
rameter. It is seen that the temperature decreases with increase in either Prandtl number,
suction parameter, or frequency parameter. It is also seen that the amplitude of the rate
of heat transfer increases and the tangent of phase shift of rate of heat transfer decreases
with increase in Prandtl number.

2. Formulation of the problem

Consider the unsteady flow of viscous, incompressible fluid past along a semi-infinite
vertical porous plate. Here, the x�-axis is chosen along the vertical plate, that is, the di-
rection of the flow, y�-axis is perpendicular to the plate, and z�-axis is normal to the
x�y�-plane.

The plate is subjected to periodic suction velocity distribution of the form

v� =−V0

[
1 + εcos

(
πu∞z�

ν
− ct�

)]
, (2.1)

where ε(� 1) is the amplitude of the suction velocity. Denoting velocity components
u�, v�, w� in the directions x�-, y�-, z�-axes, respectively, the flow is governed by the
following equations:

∂v�

∂y�
+
∂w�

∂z�
= 0, (2.2)

∂u�

∂t�
+ v�

∂u�

∂y�
+w�

∂u�

∂z�
= ν
(
∂2u�

∂y�2
+
∂2u�

∂z�2

)
+ gβ

(
T −T∞

)
, (2.3)

∂v�

∂t�
+ v�

∂v�

∂y�
+w�

∂v�

∂z�
=−1

ρ

∂p�

∂y�
+ ν
(
∂2v�

∂y�2
+
∂2v�

∂z�2

)
, (2.4)

∂w�

∂t�
+ v�

∂w�

∂y�
+w�

∂w�

∂z�
=−1

ρ

∂p�

∂z�
+ ν
(
∂2w�

∂y�2
+
∂2w�

∂z�2

)
, (2.5)

∂T

∂t�
+ v�

∂T

∂y�
+w�

∂T

∂z�
= K

ρCp

(
∂2T

∂y�2
+

∂2T

∂z�2

)
, (2.6)
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where ρ is the density, p� is the fluid pressure, g is the acceleration due to gravity, the
coefficient of thermal expansion is β, the coefficient of heat conduction is K , the specific
heat at constant pressure is Cp.

The boundary conditions of the problem are

u� = 0, v� =−V0

[
1 + εcos

(
πu∞z�

ν
− ct�

)]
, w� = 0, T = Tw at y� = 0,

u� = u∞, v� =−V0, w� = 0, p� = p∞, T = T∞ at y� =∞.
(2.7)

Introduce the nondimensional variables

y = u∞y�

ν
, z = u∞z�

∞ , t = ct�, p = p�

ρu2∞
,

u= u�

u∞
, v = v�

u∞
, w = w�

u∞
, θ =

(
T −T∞

)
Tw −T∞

.

(2.8)

Using (2.8), (2.2)–(2.6) become

∂v

∂y
+
∂w

∂z
= 0, (2.9)

ω
∂u

∂t
+ v

∂u

∂y
+w

∂u

∂z
= ∂2u

∂y2
+
∂2u

∂z2
+Grθ, (2.10)

ω
∂v

∂t
+ v

∂v

∂y
+w

∂v

∂z
=−∂p

∂y
+
(
∂2v

∂y2
+
∂2v

∂z2

)
, (2.11)

ω
∂w

∂t
+ v

∂w

∂y
+w

∂w

∂z
=−∂p

∂z
+
(
∂2w

∂y2
+
∂2w

∂z2

)
, (2.12)

ω
∂θ

∂t
+ v

∂θ

∂y
+w

∂θ

∂z
= 1

Pr

(
∂2θ

∂y2
+
∂2θ

∂z2

)
, (2.13)

where Gr= gβ(Tw −T∞)ν/u3∞ is the Grashof number, ω = cν/u2∞ is the frequency param-
eter, and Pr= ρνCp/K is the Prandtl number. T∞ is the temperature outside the boundary
layer, p∞ is pressure outside the boundary layer.

The boundary conditions (2.7) become

u= 0, w = 0, v =−S[1 + εcos(πz− t)
]
, θ = 1 at y = 0,

u= 1, w = 0, v =−S, θ = 0 at y −→∞,
(2.14)

where S=V0/u∞ is the suction parameter.
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3. Solution of the problem

To solve (2.9)–(2.13), we assume the solution of the following form:

u= u0 + εu1 + ε2u2 + ··· ,

v = v0 + εv1 + ε2v2 + ··· ,

w =w0 + εw1 + ε2w2 + ··· ,

p = p0 + εp1 + ε2p2 + ··· ,

θ = θ0 + εθ1 + ε2θ2 + ··· .

(3.1)

Substituting (3.1) in (2.9)–(2.13), comparing the term free from ε and the coefficient of
ε from both sides, and neglecting those of ε2, the term free from ε is

v′0 = 0, (3.2)

u′′0 − v0u
′
0 + Grθ0 = 0, (3.3)

θ′′0 − v0 Prθ′0 = 0, (3.4)

where the primes denote differentiation with respect to y.
The boundary conditions are

u0 = 0, v0 =−S, θ0 = 1 at y = 0,

u0 = 1, v0 =−S, θ0 = 0 at y −→∞.
(3.5)

The solutions of (3.2)–(3.4) under the boundary conditions (3.5) are

v0(y)=−S, θ0(y)= e−SPr y ,

u0(y)= (1− e−Sy
)− −Gr

S2 Pr(Pr−1.0)

(
e−SPr y − e−Sy

)
for Pr �= 1,

= 1− e−Sy +
Gr
S
ye−Sy for Pr= 1.0.

(3.6)

Equating the coefficient of ε from both sides, we get

∂v1

∂y
+
∂w1

∂z
= 0, (3.7)

ω
∂u1

∂t
+ v1

∂u0

∂y
− S

∂u1

∂y
= ∂2u1

∂y2
+
∂2u1

∂z2
+ Grθ1, (3.8)

ω
∂v1

∂t
− S

∂v1

∂y
=−∂p1

∂y
+
(
∂2v1

∂y2
+
∂2v1

∂z2

)
, (3.9)

ω
∂w1

∂t
− S

∂w1

∂y
=−∂p1

∂z
+
(
∂2w1

∂y2
+
∂2w1

∂z2

)
, (3.10)

ω
∂θ1

∂t
+ v1

∂θ0

∂y
− S

∂θ1

∂y
= 1

Pr

(
∂2θ1

∂y2
+
∂2θ1

∂z2

)
. (3.11)
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The boundary conditions become

u1 = 0, v1 =−Scos(πz− t), w1 = 0, θ1 = 0 at y = 0,

u1 = 0, v1 = 0, w1 = 0, θ1 = 0, p1 = 0 at y −→∞.
(3.12)

These are the linear partial differential equations describing the three-dimensional flow.
We assume the velocity components, pressure, and temperature in the following form:

u1(y,z, t)= u11(y)ei(πz−t),

v1(y,z, t)= v11(y)ei(πz−t),

w1(y,z, t)= i

π
v′11(y)ei(πz−t),

p1(y,z, t)= p11(y)ei(πz−t),

θ1(y,z, t)= θ11(y)ei(πz−t).

(3.13)

Substituting (3.13) in (3.7)–(3.11), we get the following set of differential equations:

v′′11 + Sv′11−
(
π2− iω

)
v11 = p′11, (3.14)

v′′′11 + Sv′′11−
(
π2− iω

)
v′11 = π2p11, (3.15)

θ′′11 + SPrθ′11−
(
π2− iPrω

)
θ11 = Prv11θ

′
0, (3.16)

u′′11 + Su′11−
(
π2− iω

)
u′11 = v11u

′
0−Grθ11. (3.17)

The boundary conditions become

u11 = 0, v11 =−S, w11 = 0, θ11 = 0 at y = 0,

u11 = 0, v11 = 0, w11 = 0, θ11 = 0 at y −→∞.
(3.18)

Solving (3.14)–(3.17), under the boundary conditions (3.18), we get

v1(y,z)= S(
π− r1

)[r1e
−πy −πe−r1 y

]
ei(πz−t),

w1(y,z)= iSr1(
π− r1

)[e−r1 y − e−πy
]
ei(πz−t),

p1(y,z)= Sr1

π
(
π− r1

) (Sπ− iω)e−πyei(πz−t),

θ1(y,z)= S2 Pr2(
π− r1

)
[
Ce−r2 y − r1

Pr(Sπ + iω)
e−(π+SPr)y

+
π

Sr1(1 + Pr) + iω(Pr−1.0)
e−(r1+SPr)y

]
ei(πz−t),
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u1(y,z)= S2(
π− r1

)[De−r1 y +K1e
−(π+S)y +K2e

−r2 y +K3e
−(r1+S)y

+K4e
−(π+SPr)y +K5e

−(r1+SPr)y
]
ei(πz−t) for Pr �= 1.0,

= S(
π− r1

)
[
−
(
C2 +C3 +C4 +C5 +

GrSBy(
S− 2r1

)
)
e−r1 y

+
(
C2 +C4− r1 Gr y

Sπ + iω

)
e−(π+S)y +

(
C3 +C5 +

πGr y
2Sr1

)
e−(r1+S)y

]

× ei(πz−t) for Pr= 1.0,

(3.19)

where

r1 =
S+
√
S2 + 4

(
π2− iω

)
2

, r2 =
SPr+

√
S2 Pr2 +4

(
π2− iωPr

)
2

,

C = r1

Pr(Sπ + iω)
− π

Sr1(Pr+1) + iω(Pr−1)
,

K1 = r1
(
1 +C1

)
(Sπ + iω)

, K2 = −GrPr2C

r2
2 − Sr2−π2 + iω

, K3 = −π
(
1 +C1

)
2Sr1

,

K4 =
{

GrPr2 r1

Pr(Sπ + iω)
− r1C1 Pr

}/{
S2 Pr(Pr−1) + Sπ(2Pr−1.0) + iω

}
,

K5 =
{
πC1 Pr− πGrPr2

Sr1(Pr+1) + iω(Pr−1)

}/{
SPr

(
2r1 + SPr−S)},

C1 = −Gr
S2 Pr(Pr−1.0)

, C2 =
{
r1

(
S+

Gr
S

)
+

GrSr1

Sπ + iω

}
1

Sπ + iω
,

C3 =−
{
π
(
S+

Gr
S

)
+

Grπ
2r1

}
1

2Sr1
, C4 = −Grr1(2π + S)

(Sπ + iω)2
, C5 = πGr

(
S+ 2r1

)
4S2r2

1
.

(3.20)

4. Result and discussion

We have presented the nondimensional main flow velocity u and cross-velocity w against
y for different values of Pr, S, and ω and for Gr = 5.0, z = 0.2, t = 0.2. The main flow
velocity profiles are shown graphically in Figures 4.1 and 4.2. We observed that the main
flow decreases with increase in Prandtl number while it increases with increase in suction
parameter. Also we obtained u for different values of ω which is given in Table 4.1. From
the table, it is seen that u increases with increase in ω, but the effect is negligible. From
Figure 4.3, it is seen that the cross-flow decreases near the plate and increases away from
the plate with increase in suction parameter. Figure 4.4 shows that the magnitude of the
cross-flow increases near the plate and decreases away from the plate with increase in
frequency parameter ω.

The main velocity u for different values of ω is shown in the table.
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Figure 4.1. Main flow velocity u for Gr= 5.0, S= 1.0, ω= 10, z = 0.2, t = 0.2, ε = 0.2.
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Figure 4.2. Main flow velocity u for Gr= 5.0, Pr= 7.0, ω= 10, z = 0.2, t = 0.2, ε = 0.2.

The important characteristic of the problem is shear stress. The shear stress due to
main flow direction at the plate y = 0 is

τx =
(
∂u

∂y

)
y=0
= u′0(0) + εu′1(0)= u′0(0) + εu′11(0)ei(πz−t). (4.1)
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Table 4.1. Main velocity u for Gr= 5.0, Pr= 7.0, S= 1.0, and z = 0.2.

y u

ω= 5 ω= 8 ω= 10 ω= 15 ω= 20

0.00 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

1.00 0.67414890 0.67491380 0.67526410 0.67564240 0.67575110

2.00 0.88072730 0.88076850 0.88077700 0.88077790 0.880777640

3.00 0.95613920 0.95614020 0.95614010 0.95614000 0.95614000

4.00 0.98386490 0.98386490 0.98386490 0.98386490 0.98386490

5.00 0.99406430 0.99406430 0.99406430 0.99406430 0.99405430

6.00 0.99781640 0.99781640 0.99781640 0.99781640 0.99781640

7.00 0.99919670 0.99919670 0.99919670 0.99919670 0.99919670

8.00 0.99970450 0.99970450 0.99970450 0.99970450 0.99970450

9.00 0.99989130 0.99989130 0.99989130 0.99989130 0.99989130

10.00 0.99996010 0.99996010 0.99996010 0.99996010 0.99996010

0.2
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−0.2

−0.4

−0.6

−0.8
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−1.2
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−1.8

10
w

0 0.5 1 1.5 2 2.5 3

y

S = 0.1
S = 0.3
S = 0.5

S = 0.7
S = 0.9
S = 1

Figure 4.3. Cross-velocity 10×w for Gr= 5.0, ω= 10, z = 0.2, t = 0.2, ε = 0.2.

We express the shear stress component in terms of magnitude and tangent of phase shift:

τx = u′0(0) + ε
∣∣R1

∣∣cos
(
πz− t+φ1

)
for Pr �= 1.0,

τx = u′0(0) + ε
∣∣R′1

∣∣cos
(
πz− t+φ′1

)
for Pr= 1.0,

(4.2)
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ω = 5
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Figure 4.4. Cross-velocity −10×w for Gr= 5.0, S= 1.0, z = 0.2, t = 0.2, ε = 0.2.

where

R1 =
√
u2

1r +u2
1i, tanφ1 = u1i

u1r
, R2 =

√
u2

11r +u2
11i, tanφ2 = u11i

u11r
. (4.3)

The magnitude and the tangent of phase shift of the shear stress due to main flow are
shown graphically in Figures 4.5, 4.6, 4.7, and 4.8 against ω for different values of Prandtl
number and Grashoff number. It is seen that the magnitude and the tangent of phase shift
of the shear stress decrease with increase in either Prandtl number Pr, Grashof number
Gr, or frequency parameter ω.

The temperature θ for different values of ω is shown in the table.
The temperature distribution has been obtained and plotted for different values of Pr

and S in Figures 4.9 and 4.10 for ω = 10.0, Gr= 5.0, t = 0.2. It is found that the temper-
ature θ decreases with increase in either Prandtl number or suction parameter. Also we
have obtained the temperature distribution for different values of frequency parameter
which is given in Table 4.2. From the table, it is found that the temperature decreases
with increase in frequency parameter.

Also, we calculate the rate of heat transfer. The rate of heat transfer at the plate y = 0
is given by

(
∂θ11

∂y

)
y=0
= θ′0(0) + εθ′1(0)

= θ′0(0) + εθ′11(0)ei(πz−t)

= θ′0(0) + ε
∣∣R3

∣∣cos
(
πz− t+φ3

)
.

(4.4)
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Figure 4.5. Amplitude of the shear stress due to main flow for Gr= 5.0, S= 1.0, z = 0.2.
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Figure 4.6. Tangent of phase shift of shear stress due to main flow for Gr= 5.0, S= 1.0, z = 0.0.

We draw the graph of amplitude and tangent of phase shift of the rate of heat transfer
against frequency parameter ω for different values of Prandtl number Pr in Figures 4.11
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Figure 4.7. Amplitude of the shear stress due to main flow for S= 1.0.
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Figure 4.8. Tangent of phase shift of the shear stress due to main flow for S= 1.0.

and 4.12 and for Gr= 5.0, S= 1.0. From Figure 4.11, we see that the amplitude increases
with increase in Prandtl number but decreases with increase in frequency parameter ω.
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Figure 4.9. Temperature profile for Gr= 5.0, S= 1.0, ω = 10.0, z = 0.2, t = 0.2, ε = 0.2.
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Figure 4.10. Temperature profile for Gr= 5.0, Pr= 2.0, ω= 10.0, z = 0.2, t = 0.2, ε = 0.2.

Figure 4.12 shows that the magnitude of tangent of phase shift decreases with increase in
Prandtl number Pr but increases with increase in ω. It is seen that there is always a phase
lag.
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Table 4.2. Temperature distribution for Gr= 5.0, S= 1.0, Pr= 2.0.

y θ

ω= 5 ω= 8 ω = 10 ω = 15 ω = 20

0.00 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000

0.40 0.46545780 0.45846200 0.45615440 0.45372500 0.45261860

0.80 0.20575920 0.20351230 0.20298460 0.20245720 0.20221060

1.20 0.09137923 0.09091454 0.09083322 0.09075849 0.09073284

1.60 0.04085174 0.04077750 0.04077017 0.04076410 0.04076333

2.00 0.01832459 0.01831620 0.01831609 0.01831586 0.01831588

2.40 0.00823015 0.00822975 0.00822981 0.00822979 0.00822978

2.80 0.00369778 0.00369788 0.003697888 0.00369787 0.00369787

3.20 0.00166153 0.00166156 0.00166156 0.00166156 0.00166156

3.60 0.00074658 0.00074659 0.00074659 0.0074659 0.00074659

4.00 0.00033546 0.00033546 0.00033546 0.00033546 0.00033546
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0

|R
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Figure 4.11. Amplitude of the rate of heat transfer for Gr= 5.0, S= 1.0.
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Figure 4.12. Tangent of phase shift of the rate of heat transfer for Gr= 5.0, S= 1.0.
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