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The propagation of magneto-thermoelastic disturbances in an elastic half-space caused
by the application of a thermal shock on the stress-free bounding surface in contact with
vacuum is investigated. The theory of thermoelasticity III proposed by Green and Naghdi
is used to study the interaction between elastic, thermal, and magnetic fields. Small-time
approximations of solutions for displacement, temperature, stress, perturbed magnetic
fields both in the vacuum and in the half-space are derived. The solutions for displace-
ment, temperature, stress, perturbed magnetic field in the solid consist of a dilatational
wave front with attenuation depending on magneto-thermoelastic coupling and also con-
sists of a part diffusive in nature due to the damping term present in the heat transport
equation, while the perturbed field in vacuum represents a wave front without attenua-
tion traveling with Alfv’en acoustic wave speed. Displacement and temperatures are con-
tinuous at the elastic wave front, while both the stress and the perturbed magnetic field
in the half-space suffer finite jumps at this location. Numerical results for a copper-like
material are presented.

1. Introduction

Nowacki [11], Kaliski and Nowacki [7] considered magneto-thermoelastic waves in a
perfectly electrically conducting elastic half-space in contact with a vacuum due to ap-
plication of a thermal disturbance on the plane boundary. Both the half-space and the
vacuum are supposed to be permeated by an applied primary uniform magnetic field.
The study was made neglecting the influence of coupling between the thermal and elastic
fields. Later, Massalas and Dalamangas [9, 10] studied the same problem taking into ac-
count the coupling of strain and temperature fields. Further, the investigation carried out
in [9] was extended to TRDTE developed by Green and Lindsay [4], by Roychoudhuri
and Chatterjee [3, 16]. Moreover, the problem studied in [9] was also extended to ETE
developed by Lord and Shulman [8], by Roychoudhuri and Chatterjee [15], and by Roy-
choudhuri and Banerjee [14]. Further, Roychoudhuri and Debnath [17], Roychoudhuri
[12, 13] studied magneto-thermoelastic waves in a rotating solid in the context of ETE.
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Transient magneto-thermoelastic waves in a rotating half-space were also studied in the
context of ETE by Chand et al. [2].

Recently, Green and Naghdi [5, 6] developed a theory where the characteristics of ma-
terial response for thermal phenomena are based on three types of constitutive response
functions, labeled as types I, II, and III. The nature of these three types of constitutive
equations is such that when the respective theories are linearized, type I is the same as
the classical heat conduction equation (based on Fourier’s law), whereas the linearized
version of type II theory accommodates finite thermal wave speed and involves no dissi-
pation of thermal energy. Further, the type III theory involves a thermal damping term.
The mixed third-order derivative term appearing in the heat transport equation destroys
the wave structure. Accordingly, this equation predicts a non-wave-like heat conduction
different from the usual diffusion equation predicted by the conventional parabolic heat
equation. This theory admits an infinite speed of thermal propagation. This model admits
coupled damped thermoelastic waves. The purpose of the present study is to consider
magneto-thermoelastic waves in an elastic half-space in contact with a vacuum due to a
thermal shock applied on the stress-free plane boundary in the context of the thermoe-
lasticity theory III. The medium is supposed to be a perfect electrical conductor and both
media are permeated by a primary uniform magnetic field parallel to the plane boundary.
Short-time solutions for displacement, temperature, stress, perturbed fields in the half-
space and that in the vacuum are derived. The solutions for displacement, temperature,
stress, and perturbed field in the solid consist of an elastic wave front with attenuation
and a diffusive part due to the damping term present in the heat transport equation. The
perturbed magnetic field in vacuum represents a wave front without any attenuation trav-
eling with Alfv’en acoustic wave speed. Displacement and temperature in the half-space
are found to be continuous at the elastic wave front, while the stress and the perturbed
magnetic field in the solid both experience finite discontinuity at the same location. The
finite discontinuities are not constants but decay exponentially with distance from the
boundary.

2. Formulation of the problem and basic equations

We consider a homogeneous, isotropic, thermally and electrically conducting elastic half-
space D : x ≥ 0 at a uniform reference temperature θ0 in contact with a vacuum D′ : x < 0.

We suppose that in both media, there is an initial uniform magnetic field of intensity �H0

acting in the z-direction so that �H0 = (0,0,H0), where H0 is a constant. At the instant
t = 0+, we assume that the stress-free plane boundary x = 0 is suddenly heated to a tem-
perature T0 and left in this state.

The thermal shock T = T0H(t), where H(t) is the Heavy-side unit step function, pro-
duces in the half-space a magneto-elastic wave which depends on the spatial coordinate
x and time t. At the same time, an electromagnetic wave is radiated into the vacuum [7].

The simplified linearized equations of electrodynamics of slowly moving continuous
media having perfect electrical conductivity are

�∇×�h= 4π
c
�j, �∇× �E =−µe

c

∂�h
∂t

, �∇·�h= 0, �E =−µe
c

(
∂�u
∂t
× �H0

)
, (2.1)
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where �h and �E denote perturbations of the magnetic and electric fields, respectively, �j
is the electric current density vector, �H0 is the initial constant magnetic field, �u is the
mechanical displacement vector, µe is the magnetic permeability, and c is the velocity of
light. The displacement equations of motion in magneto-thermoelasticity are

µ∇2�u+ (λ+µ)�∇(div�u)− γ�∇T +
1
c

(�j× �B)= ρ�̈u, (2.2)

where (�j × �B) is the electromagnetic body force, �B is the magnetic induction vector, λ,µ
are Lame’s constants, γ = (3λ+ 2µ)αt, αt is the coefficient of linear thermal expansion, T
is the temperature increase above the reference temperature θ0, and ρ is the constant mass
density.

After linearization,

�j× �B = �j×µe
(�H0 +�h

)∼= µe
(�j× �H0

)= µec

4π

[(�∇×�h)× �H0
]
. (2.3)

Equation (2.2), then, after linearization, reduces to

µ∇2�u+ (λ+µ)�∇(div�u)− γ�∇T +
µec

4π

[(�∇×�h)× �H0
]= ρ�̈u. (2.4)

The heat transport equation in the theory of thermoelasticity (type III) presented by
Green and Naghdi [5] (in absence of heat sources) is

ρCvT̈ + γθ0 div �̈u= K∇2Ṫ +K∗∇2T , K∗ > 0, (2.5)

where Cv is the specific heat at constant strain, K is the thermal conductivity, and K∗

is a material constant characteristic of the theory. It may be noted that the third model
represented by (2.5) of Green and Naghdi [5] for heat transport in solids accommodates
infinite thermal wave speed due to the presence of third-order mixed derivative term
present on the right-hand side of (2.5) and it involves thermal damping. As such, the
corresponding thermoelastic model admits coupled damped thermoelastic waves.

Since the disturbances depend on the spatial coordinate x and time t, we assume, for
one-dimensional deformation,

�u= [u(x, t),0,0
]
, T = T(x, t), �h=�h(x, t). (2.6)

For �H0 = (0,0,H0), (2.1) reduces to

�E =
(

0,
µeH0

c
u̇,0
)

,

∂�h
∂t
=
(

0,0,−H0
∂u̇

∂x

)
,

�j =
(

0,− c

4π
∂hz
∂x

,0
)
.

(2.7)
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The second equation of (2.7), on integration, yields hz =−H0(∂u/∂x) for a perfect con-
ductor.

Equations (2.4) and (2.5), in one-dimensional case, for a perfect conductor simplify
to

(
λ+ 2µ+ a2

0ρ
)∂2u

∂x2
− γ

∂T

∂x
= ρ

∂2u

∂t2
,

ρCv
∂2T

∂t2
+ γθ0

∂3u

∂x∂t2
= K

∂3T

∂x2∂t
+K∗

∂2T

∂x2
,

(2.8)

where a0 =
√
µeH

2
0 /4πρ is the Alfv’en wave velocity of the medium.

The system of Maxwell’s equations in vacuum is expressed as

�∇×�h0 = 1
c

∂�D0

∂t
, �∇·�h0 = 0, �∇· �E0 = 0. (2.9)

where �h0 and �E0 are the perturbed magnetic field and the electric field in vacuum. These
give

�∇×�h0 = 1
c

∂�E0

∂t
, �∇× �E0 =−1

c

∂�h0

∂t
. (2.10)

These equations yield the following equations satisfied by �E0 and �h0:

(
∇2− 1

c2

∂2

∂t2

)(�E0,�h0)= 0. (2.11)

In one-dimensional case, this reduces to
(

∂2

∂x′2
− 1
c2

∂2

∂t2

)(
E0
y ,h0

z)= 0, (2.12)

where x′ = −x.
The components T11 and T0

11 of Maxwell’s stress tensors in the elastic medium and in
vacuum are given by

T11 =− µe
4π

hzH0, T0
11 =−

1
4π

h0
zH0. (2.13)

The total stress in the half-space is composed of Hooke’s mechanical stress and Maxwell’s
stress. Thus, the total stress in the half-space is

σ∗11 = σ11 +T11 = (λ+ 2µ)
∂u

∂x
− γT +T11

= (λ+ 2µ)
∂u

∂x
− γT − µe

4π
hzH0

=
{

(λ+ 2µ) +
µe
4π

H2
0

}
∂u

∂x
− γT ,

(2.14)

where σ11 is the Hooke mechanical stress.
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Boundary conditions. (i) The continuity of total stress composed of thermoelastic and
electromagnetic stress across the boundary x = x′ = 0 yields

σ11 +T11 = T0
11 on x = x′ = 0. (2.15)

(ii) The tangential component of �E-field is continuous across x = x′ = 0, which leads
to

Ey = E0
y on x = x′ = 0. (2.16)

(iii) The thermal boundary condition on x = x′ = 0 gives T(0, t) = T0H(t), where T0

is a constant.
We assume that the system is at rest initially and temperature and temperature velocity

all vanish initially.
Then

u(x,0)= u̇(x,0)= 0, T(x,0)= Ṫ(x,0)= 0. (2.17)

We introduce the following notations and nondimensional variables:

c2
1 =

λ+ 2µ
ρ

, c2
0 = a2

0 + c2
1, κ= K

ρCv
, ξ = c0x

κ
, η = c2

0t

κ
,

U = c0
(
λ+ 2µ+ a2

0ρ
)

γθ0κ
u, Θ= T

θ0
,

(2.18)

where c1 is the dilatational wave velocity in the half-space. Equations (2.8) then reduce to
nondimensional forms as

∂2U

∂ξ2
− ∂Θ

∂ξ
= ∂2U

∂η2
, ξ > 0, (2.19)

∂2Θ

∂η2
+ εT

∂3U

∂ξ∂η2
= ∂3Θ

∂η∂ξ2
+C2

T
∂2Θ

∂ξ2
, ξ > 0, (2.20)

where εT = γ2θ0/ρ2Cvc
2
0 is the magneto-thermoelastic coupling, which reduces to ε the

thermoelastic coupling constant for H0 = 0.
Equations (2.19)-(2.20) admit damped magneto-thermoelastic wave solutions in the

half-space. Here CT = c3/c0, where c3 =
√
K∗/ρCv and CT is the nondimensional finite

thermal wave speed corresponding to c3 which is the finite thermal wave speed of GN
model II.

In D′ : x′ > 0, that is, x < 0, the equation satisfied by h0
z reduces to

(
∂2

∂ξ′2
−β2 ∂2

∂η2

)
h0
z = 0, for ξ′ > 0, ξ′ = −ξ, (2.21)

where β = c0/c and 1/β is the Alfv’en acoustic wave velocity of the medium.
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Further, the boundary condition for continuity of total stress across ξ = ξ′ = 0 in
nondimensional form reduces to

∂U

∂ξ
−Θ+β1h

0
z = 0 on ξ = ξ′ = 0, (2.22)

where β1 =H0/4πγθ0.

The condition of continuity of �E-field across x = x′ = 0 reduces to Ey = E0
y which,

by the help of (2.7), (2.9), and (2.12), yields, in nondimensional form, the following
equation:

β2
∂2U

∂η2
− ∂h0

z

∂ξ′
= 0 on ξ = ξ′ = 0, (2.23)

where β2 = µeH0γθ0/ρc2.
Lastly, the thermal boundary condition gives

Θ(0,η)= T0

θ0
H(η). (2.24)

The initial conditions are

U(ξ,0)= ∂U(ξ,0)
∂η

= 0, Θ(ξ,0)= ∂Θ(ξ,0)
∂η

= 0. (2.25)

The nondimensional total stress in the half-space is obtained from (2.14) as

σ ′11 =
σ∗11

γT0
= ∂U

∂ξ
−Θ. (2.26)

The perturbed magnetic field in the half-space is hz =−H0(∂u/∂x) which in nondimen-
sional form reduces to

h′z =−
∂U

∂ξ
, (2.27)

where h′z = (ρc2
0/H0γθ0)hz = nondimensional form of hz.

It may be observed that (2.19) and (2.21) are fully hyperbolic but the mixed derivative
term on the right-hand side of (2.20) destroys the wave structure. In fact, this equation
predicts a non-wave-like heat conduction different from the usual diffusion equation pre-
dicted by conventional parabolic heat equation. It is therefore expected that the solutions
of the coupled equations (2.19)-(2.20) with coupled boundary conditions (2.22)-(2.23)
should be composed of a wave part (dilatational wave) and a diffusive part due to the
presence of the thermal damping term in the heat transport equation. As (2.21) (hy-
perbolic type) uncouples from the system, its solution will be composed of a wave part
traveling with Alfv’en acoustic wave speed in vacuum.
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Solution of the problem in the Laplace transform domain. We introduce a potential func-
tion φ defined by

U = ∂φ

∂ξ
. (2.28)

Then (2.19), on integrating with respect to ξ, yields

Θ(ξ,η)=
(
∂2

∂ξ2
− ∂2

∂η2

)
φ, ξ > 0. (2.29)

Equation (2.20) becomes

∂2Θ

∂η2
+ εT

∂4φ

∂ξ2∂η2
= ∂3Θ

∂η∂ξ2
+C2

T
∂2Θ

∂ξ2
, ξ > 0. (2.30)

Taking Laplace transform of (2.29), (2.30), and (2.21) and using the initial conditions, we
obtain

Θ(ξ,s)=
(
d2

dξ2
− s2

)
φ, ξ > 0, (2.31)

[(
C2
T + s

) d2

dξ2
− s2

]
Θ= εTs

2 d
2φ

dξ2
, ξ > 0, (2.32)

d2h0
z

dξ2
= β2s2h0

z , ξ′ > 0, (2.33)

where s is the Laplace transform parameter. Further (2.26)-(2.27) in the Laplace trans-
form domain become

σ ′11 =
dU

dξ
−Θ= d2φ

dξ2
−Θ, ξ > 0,

h′z =−
dU

dξ
=−d2φ

dξ2
, ξ > 0.

(2.34)

The boundary conditions (2.22)–(2.24) in the Laplace transform domain reduce to the
following:

d2φ

dξ2
−Θ+β1h0

z = 0 on ξ = ξ′ = 0,

β2s
2 dφ

dξ
− dh0

z

dξ′
= 0 on ξ = ξ′ = 0,

Θ= T0

θ0

1
s

on ξ = 0.

(2.35)

Elimination of Θ from (2.31) and (2.32) yields

[(
C2
T + s

) d4

dξ4
− (1 + εT +C2

T + s
)
s2 d2

dξ2
+ s4

]
φ= 0. (2.36)
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The general solution of the above equation, vanishing as ξ →∞, is given by

ϕ(ξ,s)= A1 exp
(− λ1ξ

)
+B1 exp

(− λ2ξ
)
, ξ > 0, (2.37)

where λ2
1,2 are the roots of the quadratic equation

(
C2
T + s

)
λ4− (1 + εT +C2

T + s
)
s2λ2 + s4 = 0. (2.38)

Hence,

λ1 = s


 (a+ s) +

√
(a+ s)2− 4(C2

T + s)

2
(
C2
T + s

)



1/2

, (2.39)

λ2 = s


 (a+ s)−

√
(a+ s)2− 4(C2

T + s)

2
(
C2
T + s

)



1/2

, (2.40)

where a= 1 + εT +C2
T .

From (2.31) and (2.37), we obtain

Θ(ξ,s)=A1
(
λ2

1− s2)exp
(− λ1ξ

)
+B1

(
λ2

2− s2)exp
(− λ2ξ

)
, ξ > 0. (2.41)

Further, (2.33) yields

h0
z = C1 exp(−sβξ′), ξ′ > 0. (2.42)

The constants A1, B1, C1 are obtained with the help of the boundary conditions (2.35).
Hence,

ϕ(ξ,s)= T0

θ0s

(
sβ+β1β2λ2

)
e−λ1ξ − (sβ+β1β2λ1

)
e−λ2ξ(

λ1− λ2
){
β1β2s2 +β

(
λ1 + λ2

)
s+β1β2λ1λ2

} , ξ > 0,

U(ξ,s)= T0

θ0s

λ2
(
sβ+β1β2λ1

)
e−λ2ξ − λ1

(
sβ+β1β2λ2

)
e−λ1ξ(

λ1− λ2
){
β1β2s2 +β

(
λ1 + λ2

)
s+β1β2λ1λ2

} , ξ > 0,

Θ(ξ,s)= T0

θ0s

(
λ2

1− s2
)(
sβ+β1β2λ2

)
e−λ1ξ − (λ2

2− s2
)(
sβ+β1β2λ1

)
e−λ2ξ(

λ1− λ2
){
β1β2s2 +β

(
λ1 + λ2

)
s+β1β2λ1λ2

} , ξ > 0,

h′z(ξ,s)= T0

θ0s

λ2
2

(
sβ+β1β2λ1

)
e−λ2ξ − λ2

1

(
sβ+β1β2λ2

)
e−λ1ξ(

λ1− λ2
){
β1β2s2 +β

(
λ1 + λ2

)
s+β1β2λ1λ2

} , ξ > 0,

h0
z(ξ′,s)= T0

sβ2e−sβξ
′

β1β2s2 +β
(
λ1 + λ2

)
s+β1β2λ1λ2

, ξ < 0,

σ ′11(ξ,s)= T0

θ0

s
(
sβ+β1β2λ2

)
e−λ1ξ − s

(
sβ+β1β2λ1

)
e−λ2ξ(

λ1− λ2
){
β1β2s2 +β

(
λ1 + λ2

)
s+β1β2λ1λ2

} , ξ > 0.

(2.43)
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As the Laplace inversions are very much complicated due to the presence of square root
sign in (2.40), we concentrate on solutions for small times only. We make use of Abel’s
theorem limt→0 f (t) = lims→∞{s f̄ (s)}, that is, small values of time correspond to large
values of the parameter s. Thus expanding λ1,2 in ascending powers of 1/s to a few terms,
we have

λ1
∼= α+ s+

α1

s
, λ2

∼=√s+
β0√
s

+
γ0

s
√
s

for large s, (2.44)

where

α= εT
2

, α1 = 4εT
(
1−C2

T

)− ε2
T

8
,

β0 =− εT +C2
T

2
, γ0 = 2εTC2

T + 3C4
T − ε2

T

8
.

(2.45)

Using the approximations (2.44) for large s, we have

ϕ(ξ,s)∼= T0

θ0s3

β

β+β1β2
exp(−αξ)

[
1− a2

s
+

p0√
s

]
exp(−sξ)

− T0

θ0s3

[
1 +

p′0− a2

s
− a3

s3/2

]
exp(−√sξ), ξ > 0,

U(ξ,s)∼= T0

θ0

β

β+β1β2
exp(−αξ)

[
− 1
s2

+
a2−α

s3
− p0

s2
√
s

]
exp(−sξ)

+
T0

θ0

[
1
s5/2

+
p′0− a2

s7/2

]
exp(−√sξ), ξ > 0,

Θ(ξ,s)∼= T0

θ0

β

β+β1β2
exp(−αξ)

[
2α
s2

+
k0

s2
√
s
− 2αa2

s3

]
exp(−sξ)

+
T0

θ0

[
1
s
− k′0 + a2

s2
− a3

s5/2

]
exp(−√sξ), ξ > 0,

h′z(ξ,s)= T0

θ0

β

β+β1β2
exp(−αξ)

[
− 1

s
− p0

s
√
s

+
a2− 2α

s2
− 2αp0

s2
√
s

]
exp(−sξ)

+
T0

θ0

[
1
s2

+
p′0− a2

s3
− a3

s7/2

]
exp(−√sξ), ξ > 0,

h0
z(ξ′,s)= T0

θ0

β2

β+β1β2

[
1
s2
− a2

s3
− a3

s7/2

]
exp(−sβξ′), ξ < 0,

σ ′11(ξ,s)∼= T0

θ0

β2

β+β1β2
exp(−αξ)

[
1
s

+
p0

s
√
s
− a2

s2
+
αp0− k0

s2
√
s

]
exp(−sξ)

+
T0

θ0

[
− 1

s
+
k′0 + a2− 1

s2
+

a3

s5/2

]
exp(−√sξ), ξ > 0.

(2.46)
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We note the following results after simplification:

β = c0

c
, β1 = H0

4πγθ0
, β2 = µeH0γθ0

ρc2
, a2 = 2

(
εT − 1

)
+
(
εT − 2

)
β3

2
(
1 +β3

) ,

p0 = β3 = β1β2

β
, p′0 =

αβ1β2

β+β1β2
, p′0− a2 = β3− εT + 1

1 +β3
, a3 = εTβ3

1 +β3
, α= εT

2
,

a2−α= εT − 2− 2β3

2(1 +β3)
, k0 = εTβ3, 2αa2 = 2εT

(
εT − 1

)
+ εT

(
εT − 2

)
β3

2
(
1 +β3

) ,

k′0 =
β+β1β2(1−α)

β+β1β2
, k′0 + a2 = εT

1 +β3
, αp0− k0 =− εTβ3

2
,

k′0 + a2− 1= εT − 1−β3

1 +β3
, a2− 2α=−2

(
1 +β3

)
+ εTβ3

2
(
1 +β3

) , 2αp0 = εTβ3.

(2.47)

We then obtain the final expressions of ϕ, U , Θ, h′z, h0
z , σ ′11 in the following forms in

ascending powers of 1/s:

ϕ(ξ,s)∼= T0

θ0s3
exp

(
− εT

2
ξ
)[

1
1 +β3

− 2
(
εT − 1

)
+
(
εT − 2

)
β3

2
(
1 +β3

)2
1
s

+
β3

1 +β3

1√
s

]
exp(−sξ)

− T0

θ0s3

[
1 +

β3− εT + 1
1 +β3

1
s
− εTβ3

1 +β3

1
s3/2

]
exp(−√sξ),

U(ξ,s)∼= T0

θ0
exp

(
− εT

2
ξ
)[
− 1

1 +β3

1
s2
− β3

1 +β3

1
s2
√
s

+
εT − 2− 2β3

2
(
1 +β3

)2
1
s3

]
exp(−sξ)

+
T0

θ0

[
1
s5/2

+
β3− εT + 1

1 +β3

1
s7/2

]
exp(−√sξ),

Θ(ξ,s)∼= T0

θ0
exp

(
− εT

2
ξ
)[

εT
1+β3

1
s2

+
εTβ3

1+β3

1
s2
√
s
− 2εT

(
εT−1

)
+εT

(
εT−2

)
β3

2
(
1+β3

)2
1
s3

]
exp(−sξ)

− T0

θ0

[
1
s
− εT

1 +β3

1
s2
− εTβ3

1 +β3

1
s5/2

]
exp(−√sξ),

h′z(ξ,s)= T0

θ0

[
− 1

1 +β3

1
s
− β3

1 +β3

1
s
√
s
− 2(1 +β3) + εTβ3

2
(
1 +β3

)2
1
s2
− εTβ3

1 +β3

1
s2
√
s

]
exp(−sξ)

+
T0

θ0

[
1
s2

+
β3− εT + 1

1 +β3

1
s3
− εTβ3

1 +β3

1
s7/2

]
exp(−√sξ),
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h0
z(ξ′,s)∼= T0

θ0

β2

β
(
1 +β3

)
[

1
s2
− 2

(
εT − 1

)
+
(
εT − 2

)
β3

2
(
1 +β3

) 1
s3
− εTβ3

1 +β3

1
s7/2

]
exp(−sβξ′),

σ ′11(ξ,s)∼= T0

θ0
exp

(
− εT

2
ξ
)[

1
1 +β3

1
s

+
β3

1 +β3

1
s
√
s
− 2

(
εT − 1

)
+
(
εT − 2

)
β3

2
(
1 +β3

)2
1
s2

− εTβ3

2
(
1 +β3

) 1
s2
√
s

]
exp(−sξ)

+
T0

θ0

[
− 1

s
+
εT − 1−β3

1 +β3

1
s2

+
εTβ3

1 +β3

1
s5/2

]
exp(−√sξ).

(2.48)

Taking inverse of Laplace transforms, we obtain the following small-time solutions of
U , Θ, h′z, h0

z , σ11:

U(ξ,η)∼= T0

θ0
exp

(
− εT

2
ξ
)[
− 1

1 +β3
(η− ξ)− β3

1 +β3

4
3
√
π

(η− ξ)3/2

+
εT − 2− 2β3

2
(
1 +β3

)2

(η− ξ)2

2!

]
H(η− ξ)

+
T0

θ0

[
(4η)3/2i3 erf c

(
ξ

2√η
)

+
β3− εT + 1

1 +β3
(4η)5/2i5 erf c

(
ξ

2√η
)]

,

(2.49)

Θ(ξ,η)∼= T0

θ0
exp

(
− εT

2
ξ
)[

εT
1 +β3

(η− ξ) +
εTβ3

1 +β3

4
3
√
π

(η− ξ)3/2

− 2εT
(
εT − 1

)
+ εT

(
εT − 2

)
β3

2
(
1 +β3

)2

(η− ξ)2

2!

]
H(η− ξ)

+
T0

θ0

[
erf c

(
ξ

2√η
)
− εT

1 +β3
(4η)i2 erf c

(
ξ

2√η
)
− εTβ3

1 +β3
(4η)3/2i3 erf c

(
ξ

2√η
)]

,

(2.50)

h′z(ξ,η)= T0

θ0
exp

(
− εT

2
ξ
)[
− 1

1 +β3
− β3

1 +β3

2√
π

(η− ξ)1/2

− 2
(
1 +β3

)
+ εTβ3

2
(
1 +β3

)2 (η− ξ)− εTβ3

1 +β3

4
3
√
π

(η− ξ)3/2
]
H(η− ξ)

+
T0

θ0

[
(4η)i2 erf c

(
ξ

2√η
)

+
β3− εT + 1

1 +β3
(4η)2i4 erf c

(
ξ

2√η
)

− εTβ3

1 +β3
(4η)5/2i5 erf c

(
ξ

2√η
)]

,

(2.51)
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h0
z(ξ′,η)∼= T0

θ0

β2

β
(
1 +β3

)
[

(η−βξ′)− 2
(
εT − 1

)
+
(
εT − 2

)
β3

2
(
1 +β3

) (η−βξ′)2

2!

− εTβ3

1 +β3

8
15
√
π

(η−βξ′)5/2
]
H(η−βξ′),

(2.52)

σ11(ξ,η)∼= T0

θ0
exp

(
− εT

2
ξ
)[

1
1+β3

+
β3

1+β3

2√
π

(η−ξ)1/2− 2
(
εT − 1

)
+
(
εT − 2

)
β3

2
(
1 +β3

)2 (η− ξ)

− εTβ3

2
(
1 +β3

) 4
3
√
π

(η− ξ)3/2
]
H(η− ξ)

+
T0

θ0

[
− erf c

(
ξ

2√η
)

+
εT − 1−β3

1 +β3
(4η)i2 erf c

(
ξ

2√η
)

+
εTβ3

1 +β3
(4η)3/2i3 erf c

(
ξ

2√η
)]

.

(2.53)

We have used the following Laplace inversion formulae [1]:

L−1
[
e−a

√
s

sn/2+1

]
= (4η)n/2in erf c

(
a

2√η
)

, n= 0,1,2, . . . ,

L−1
[
e−as

sn+1

]
= (η− a)n

Γn+ 1
H(η− a), n >−1,

(2.54)

where the functions erf(x) and the associated complementary error functions of nth de-
gree are defined by

in erf c(x)=
∫∞
x
in−1 erf c(ξ)dξ, n= 1,2, . . . , (2.55)

with

i0 erf c(x)= erf c(x)= 2√
π

∫∞
x
e−u

2
du, erf c(x)= 1− erf(x). (2.56)

3. Numerical results and discussion

The small-time solutions for displacement, temperature, stress, and the perturbed mag-
netic field in the solid reveal that each is composed of an elastic dilatational wave front
traveling with unit dilatational speed and a diffusive part (thermal part of the solutions).
The diffusive part arises due to the thermal damping term present in the heat trans-
port equation. The diffusive part which is predominantly thermal propagates with infi-
nite speed as expected. The terms associated with H(η = ξ) represent the contribution of
the wave traveling with unit speed at the wave front ξ = η at time t = η. From solutions
(2.49)–(2.51) and (2.53), we thus observed that the first part of the solutions represents a
wave with exponential attenuation depending on the magneto-thermoelastic coupling εT .
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Figure 3.1. Displacement versus distance.

The displacement and temperature in the solid are both continuous at the elastic wave
front while the stress and the perturbed magnetic field suffer finite discontinuities at this
location. The discontinuities decay exponentially with distance from the boundary. The
solution (2.52) for perturbed field in vacuum represents a wave propagating with Alfv’en
acoustic wave 1/β without any attenuation. Further, the perturbed field in vacuum is con-
tinuous at Alfv’en acoustic wave front. The finite discontinuities of the stress field and the
perturbed magnetic field at the elastic wave front in the solid are not constants and are
given by

[
σ11
]
ξ=η =−

T0

θ0

1
1 +β3

exp
(
− εT

2
ξ
)

, ξ > 0,

[
h′z
]
ξ=η =

T0

θ0

1
1 +β3

exp
(
− εT

2
ξ
)

, ξ > 0.

(3.1)

With an aim to illustrate the problem, we will present some numerical results. We have
chosen a copper-like material for which εT = 0.0168, β3 = 0.05. We take CT = 2.

Using this data, the values of the physical quantities are evaluated as plotted in Figures
3.1, 3.2, 3.3, and 3.4.

Figure 3.1 represents variations of displacement against distance for two different times
η=0.25 and η=0.95. It is observed that the displacement curve is continuous and it grad-
ually increases with distance. The graph shows negative value in the range 0<ξ <0.188
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Figure 3.2. Temperature versus distance.
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Figure 3.3. Perturbed field versus distance.
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Figure 3.4. Stress versus distance.

Table 3.1

Jumps η = 0.25 η = 0.95

[σ11θ0/T0]ξ=η −0.95170 −0.94889
[h′zθ0/T0]ξ=η 0.95298 0.95032

for η= 0.25 and in the range 0 < ξ < 0.622 for η = 0.95, which means that it is in opposite
direction.

Figure 3.2 indicates variation of temperature versus distance. The values of tempera-
ture gradually decrease with distance ξ, the curve is continuous in agreement with the
theoretical results.

Figure 3.3 shows that the perturbed field gradually increases with distance for small
time η = 0.25 and suffers a finite jump at the elastic wave front ξ = η = 0.25. Further for
time η = 0.95, the value of perturbed field first gradually increases with distance and then
again it gradually decreases and suffers a finite jump at the elastic wave front ξ = η = 0.95.

Figure 3.4 gives the stress distribution. Stress curve suffers a finite jump at two instants
η = 0.25 and η = 0.95, where the wave front is positioned at the two instants η = 0.25 and
η = 0.95 in agreement with theoretical results.

Finite jumps in stress and the perturbed magnetic fields at two different instants η =
0.25 and η = 0.95 are exhibited in Table 3.1.

The results are in complete agreement with the theoretical expression for jumps.
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