ANNIHILATORS OF NILPOTENT ELEMENTS

ABRAHAM A. KLEIN

Received 23 February 2005 and in revised form 4 September 2005

Let *x* be a nilpotent element of an infinite ring *R* (not necessarily with 1). We prove that A(x)—the two-sided annihilator of *x*—has a large intersection with any infinite ideal *I* of *R* in the sense that $card(A(x) \cap I) = card I$. In particular, card A(x) = card R; and this is applied to prove that if *N* is the set of nilpotent elements of *R* and $R \neq N$, then $card(R \setminus N) \ge card N$.

For an element x of a ring R, let $A_{\ell}(x)$, $A_r(x)$, and A(x) denote, respectively, the left, right and two-sided annihilator of x in R. For a set X, we denote card X by |X|; and say that a subset Y of X is *large* in X if |Y| = |X|. We prove that if x is any nilpotent element and I is any infinite ideal of R, then $A(x) \cap I$ is large in I, and in particular $|A_{\ell}(x)| = |A_r(x)| = |A(x)| = |R|$. The last result is applied to obtain a generalization of a result of Putcha and Yaqub [2] which shows that an infinite nonnil ring has infinitely many nonnilpotent elements. A short proof of their result is given in [1]. We prove a much stronger result showing that the set of nonnilpotent elements of a nonnil ring is at least as large as is its set of nilpotent elements. The following lemma is simple but crucial.

LEMMA 1. Let *R* be an infinite ring, (S, +) an infinite subgroup of (R, +), and *x* an element of *R*. Then either |Sx| = |S| or $|A_{\ell}(x) \cap S| = |S|$, and similarly |xS| = |S| or $|A_{r}(x) \cap S| = |S|$.

Proof. Consider the map $y \mapsto yx$ from (S, +) onto (Sx, +). The kernel is $A_{\ell}(x) \cap S$, so $|S| = |Sx||A_{\ell}(x) \cap S|$ and the result follows since *S* is infinite.

A subset of a ring R is said to be *root closed* if whenever it contains a power of an element, it also contains the element itself.

THEOREM 2. Let *R* be an infinite ring and α an infinite cardinal. Then, the following hold.

(i) For any left (right) ideal I of R, the set $\{x \in R \mid |A_r(x) \cap I| = \alpha\}$ (resp., $\{x \in R \mid |A_\ell(x) \cap I| = \alpha\}$) is root closed. In particular, if I is infinite, $\{x \in R \mid |A_r(x) \cap I| = |I|\}$ (resp., $\{x \in R \mid |A_\ell(x) \cap I| = |I|\}$) is root closed, so it contains the set N of nilpotent elements of R.

Copyright © 2005 Hindawi Publishing Corporation International Journal of Mathematics and Mathematical Sciences 2005:21 (2005) 3517–3519 DOI: 10.1155/IJMMS.2005.3517

3518 Annihilators of nilpotent elements

(ii) For any ideal I of R, $\{x \in R \mid |A(x) \cap I| = \alpha\}$ is root closed. In particular, if I is infinite, $\{x \in R \mid |A(x) \cap I| = |I|\}$ is root closed, so it contains N.

Proof. (i) Let $|A_r(x^n) \cap I| = \alpha$ for some $n \ge 2$ and consider $x^{n-1}(A_r(x^n) \cap I)$. By Lemma 1, either $|x^{n-1}(A_r(x^n) \cap I)| = \alpha$ or $|A_r(x^{n-1}) \cap I| = |A_r(x^{n-1}) \cap (A_r(x^n) \cap I)| = \alpha$. Now $x^{n-1}(A_r(x^n) \cap I) \subseteq A_r(x) \cap I \subseteq A_r(x^{n-1}) \cap I \subseteq A_r(x^n) \cap I$, so $|A_r(x^{n-1}) \cap I| = \alpha$ even when $|x^{n-1}(A_r(x^n) \cap I)| = \alpha$. It follows by induction that $|A_r(x) \cap I| = \alpha$.

(ii) Let $|A(x^n) \cap I| = \alpha$ for some $n \ge 2$. Since $A_{\ell}(x^n) \cap I$ is a left ideal and $|A_r(x^n) \cap (A_{\ell}(x^n) \cap I)| = |A(x^n) \cap I| = \alpha$, it follows by (i) that $|A_r(x) \cap (A_{\ell}(x^n) \cap I)| = \alpha = |A_{\ell}(x^n) \cap (A_r(x) \cap I)|$; and since $A_r(x) \cap I$ is a right ideal, we get, again by (i), that $|A_{\ell}(x) \cap (A_r(x) \cap I)| = \alpha$, namely $|A(x) \cap I| = \alpha$.

Applying the previous theorem for I = R, we obtain the following corollary.

COROLLARY 3. Let x be a nilpotent element of an infinite ring R, then $|A_{\ell}(x)| = |A_r(x)| = |A(x)| = |R|$.

The previous corollary will be applied in the proof of the above-mentioned generalization of a result of Putcha and Yaqub [2]. We also need the following result.

LEMMA 4. Let *b* be a nonnilpotent element of an infinite ring *R*. If $R \setminus N$ is infinite, then $|A_{\ell}(b)| \leq |R \setminus N|$ and $|A_{r}(b)| \leq |R \setminus N|$.

Proof. Let $x \in A_{\ell}(b) \cap N$, then xb = 0 and $x^n = 0$ for some $n \ge 1$. Let $m \ge n$, then $(b + x)^m = b^m + b^{m-1}x + \dots + bx^{m-1}$. Since $(b^{m-1}x + \dots + bx^{m-1})^2 = 0$ and $b \notin N$, $b^{2m} \ne 0$ and $(b + x)^m \ne 0$, so $b + x \notin N$. Hence, the map $x \mapsto b + x$ is 1 - 1 from $A_{\ell}(b) \cap N$ into $R \setminus N$ and therefore $|A_{\ell}(b) \cap N| \le |R \setminus N|$. Since $R \setminus N$ is infinite, we get that $|A_{\ell}(b)| = |A_{\ell}(b) \setminus N| + |A_{\ell}(b) \cap N| \le |R \setminus N| = |R \setminus N|$.

In a ring with 1, the map $x \mapsto 1 + x$ from N into $R \setminus N$ is 1 - 1, so $|R \setminus N| \ge |N|$. The next theorem shows that the same result holds in any nonnil ring. In particular, we get the result of Putcha and Yaqub [2] stating that R is finite when $R \setminus N$ is finite and not empty.

THEOREM 5. Let *R* be a nonnil ring, then $|R \setminus N| \ge |N|$.

Proof. We start with *R* infinite. Suppose $|R \setminus N| < |N|$, then |N| = |R| and $|R \setminus N| < |R|$. By the previous lemma, if $b \in R \setminus N$, $|A_{\ell}(b)| \le |R \setminus N|$, so $|A_{\ell}(b)| < |R|$ and by Lemma 1, |Rb| = |R|. Now $|R| = |Rb| \le |Nb| + |(R \setminus N)b|$ and $|(R \setminus N)b| \le |R \setminus N| < |R|$, so |Nb| =|R|. Therefore, $|\{b + xb|x \in N\}| = |R|$, so since $|R \setminus N| < |R|$, there exists $x \in N$ such that $b + xb \notin R \setminus N$, namely $b + xb \in N$. Since $x \in N$, 1 + x is formally invertible, so $A_r(b + xb) = A_r(b)$. By Corollary 3, $|A_r(b + xb)| = |R|$ and by Lemma 4, $|A_r(b)| \le |R \setminus N| < |R|$, a contradiction.

Now let *R* be finite and let *J* be its radical. Since *J* is nilpotent, if $a \in R$, a + J is nilpotent in *R*/*J* if and only if *a* is nilpotent, and if $a \notin N$, $(a + J) \cap N = \emptyset$. Since *R*/*J* is a finite semisimple ring, it has 1, so at least half of its elements are nonnilpotent, hence at least half of the distinct cosets a + J, $a \in R$, do not intersect *N*, and therefore at least half of the elements of *R* are not nilpotent, so $|R \setminus N| \ge |N|$.

References

- H. E. Bell and A. A. Klein, On finiteness, commutativity, and periodicity in rings, Math. J. Okayama Univ. 35 (1993), 181–188 (1995).
- [2] M. S. Putcha and A. Yaqub, *Rings with a finite set of nonnilpotents*, Int. J. Math. Math. Sci. 2 (1979), no. 1, 121–126.

Abraham A. Klein: Department of Pure Mathematics, School of Mathematical Sciences, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel *E-mail address*: aaklein@post.tau.ac.il