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Suppose that X is a nonempty subset of a metric space E and Y is a nonempty subset of a
topological vector space F. Let g : X → Y and ψ : X ×Y →R be two functions and let S :
X → 2Y and T : Y → 2F

∗
be two maps. Then the generalized g-quasivariational inequality

problem (GgQVI) is to find a point x ∈ X and a point f ∈ T(g(x)) such that g(x) ∈
S(x) and supy∈S(x){Re〈 f , y − g(x)〉 + ψ(x, y)} = ψ(x,g(x)). In this paper, we prove the
existence of a solution of (GgQVI).

1. Introduction and preliminaries

The quasivariational inequality has proven to be useful in different areas such as mathe-
matical physics, nonlinear optimization, optimal control theory, and mathematical eco-
nomics (see Arrow and Debreu [2], Aubin [3], Aubin and Ekeland [6], Mosco [17], and
Shafer and Sonnenschein [21]). Many researchers attempted to generalize this inequality
by weakening the conditions of existence of a solution. Among these researchers, we can
mention Shih and Tan [22], Tian and Zhou [23, 24], Zhou and Chen [26], and Nessah
and Chu [19]. Our work follows this direction of reseach. In this paper, we introduce the
generalized g-quasivariational inequality (GgQVI) and provide sufficient conditions for
the existence of its solution.

Let E be a metric space and let F be a topological vector space. Let X and Y be
nonempty subsets of E and F, respectively, and let 2X be the family of all nonempty sub-
sets of X . We will denote by F∗ the continuous dual of F, by Re〈 f , y〉 the real part of pair-
ing between F∗ and F for f ∈ F∗ and y ∈ F. Given the functions g : X → Y and ψ : X ×
Y → R and the maps S : X → 2Y and T : Y → 2F

∗
, the generalized g-quasivariational in-

equality problem (GgQVI) is to find a point x ∈ X , g(x)∈ S(x), and a point f ∈ T(g(x))
such that supy∈S(x){Re〈 f , y− g(x)〉+ψ(x, y)} = ψ(x,g(x)).

Some particular cases of the (GgQVI) were introduced before: by Chan and Pang [9]
in 1982 in the case where E = F = Rn, g = idX , and ψ = 0, by Shih and Tan [22] in 1985
in the case where E = F is infinite dimensional, g = idX , ψ = 0, and by Chowdhury and
Tarafdar [10] in the case where E = F, g = idX , and ψ = 0.
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Gwinner [14], Ansari et al. [1], Ding et al. [12], and Nessah [18] introduced and stud-
ied the following nonlinear inequality problem of finding x ∈ X such that

g(x)∈ C(x), φ(x, y)≤ Re
〈
f , y− g(x)

〉
, ∀y ∈ C(x), (1.1)

where 〈·,·〉 is the pairing between F∗ and F, in the case where E = F, X = Y , g = idX and
C(x)= Y , for all x ∈ X . This problem is equivalent to the problem of solving the GgQVI,
where T(y)= 0, for all y ∈ Y and ψ(x, y)= φ(x, y)≤ Re〈 f , y− g(x)〉.

It is to be noted that in all the previous works, it is assumed that the function φ(x, y)
is defined on the cartesian product X ×X of the same set X . In contrast, in GgQVI, the
function φ(x, y) is defined on the cartesian product of two different sets X ×Y . This gen-
eralization opens more possibilities for applications of the quasivariational inequalities.
One of the potential areas of application of the GgQVI is game theory. Indeed, the exis-
tence of some equilibria like the strong Berge equilibrium [16] requires a function φ(x, y)
defined on the product of two different sets.

Let us consider the following notations. Let Y be a subset of a topological vector space.
Let K be a subset of Y and x ∈ K .

(1) The tangent cone of K in x is defined by

TK (x)=
⋃

h>0

[K − x]
h

. (1.2)

(2) The normal cone of K in x is defined by

NK (x)= {p ∈ X∗ such that Re〈p,v〉 ≤ 0, ∀v ∈ TK (x)
}

,

ZK (x)= [TK (x) + x
]∩Y. (1.3)

Note that A is the closure of the subset A and ∂A is its boundary.
Consider X a nonempty subset of a metrical space E, Y a nonempty subset of a locally

convex space F. Let 2Y be the set of all the parts of Y .
A map C : X → 2Y is said to be upper semicontinuous if the set {x ∈ X such that

C(x)∩A 	= ∅} is closed inX , for all closed setA in Y [25]; it is said to be closed if the cor-
responding graph is closed in X ×Y , that is, the set {(x, y)∈ X ×Y such that y ∈ C(x)}
is closed in X ×Y [5].

A function f : Y → R is said to be upper semicontinuous if for all y0 ∈ Y , for all λ >
f (y0), there is a neighborhood v of y0 such that for all y ∈ v, λ ≥ f (y); f is said to be
continuous if f and − f are upper semicontinuous. We say that f is quasiconcave if for
any y1, y2 in Y and for any θ ∈ [0,1], we have min{ f (y1), f (y2)} ≤ f (θy1 + (1− θ)y2); f
is said to be quasiconvex if − f is quasiconcave.

A function f : Y → F∗ is said to be upper hemicontinuous along line segments in Y
if for all y1, y2 ∈ Y , the function z �→ 〈 f (z), y2− y1〉 is upper semicontinuous on the line
segment [y1, y2].

We say that the map C : Y → 2Y is upper hemicontinuous if for any p ∈ Y∗, function
x �→ σ(C(x), p)= supy∈C(x) Re〈p, y〉 is upper semicontinuous on Y .



R. Nessah and M. Larbani 3375

We say that the map C : X → 2E satisfies [4]
(1) the tangential condition if

∀x ∈ X , C(x)∩TX(x) 	= ∅, (1.4)

where X is assumed to be convex,
(2) the dual tangential condition if

∀x ∈ X , ∀p ∈NX(x), then σ
(
C(x),−p)≥ 0. (1.5)

We will use the following results.

Lemma 1.1 [4]. The tangential condition (1.4) implies the dual tangential condition (1.5).

Lemma 1.2 [15]. Let X be a nonempty convex subset of a vector space and let Y be a
nonempty compact convex subset of a Hausdorff topological vector space. Suppose that f
is a real-valued function on X ×Y such that for each x ∈ X , the map y �→ f (x, y) is lower
semicontinuous and convex on Y and for each fixed y ∈ Y , the map x �→ f (x, y) is concave
on X . Then,

min
y∈Y

sup
x∈X

f (x, y)= sup
x∈X

min
y∈Y

f (x, y). (1.6)

Lemma 1.3 [10]. Let E be a topological vector space, let X be a nonempty convex subset of E,
let h : X →R be convex, and let T : X → 2E

∗
be an upper hemicontinuous along line segments

in X . Suppose y ∈ X is such that infu∈T(x) Re〈u, y− x〉 ≤ h(x)− h(y) for all x ∈ X . Then,
infu∈T(y) Re〈u, y− x〉 ≤ h(x)−h(y) for all x ∈ X .

Lemma 1.4 [8]. Let C : E→ 2F be a map, where E and F are metric spaces. If the graph of C
is compact, then C is upper semicontinuous.

Lemma 1.5. Let X be a nonempty, compact set in a metric space E, let Y be a nonempty
convex, compact set in a Hausdorff locally convex space F, let g be a continuous function
from X into Y , and let C be an upper hemicontinuous set-valued function from X into Y ,
with C(x) nonempty, closed, and convex. Suppose that the following conditions are met.

(1) g(X) is convex in Y .
(2) For each g(x)∈ ∂g(X), C(x)∩Zg(X)(g(x)) 	= ∅.

Then, there exists x ∈ X such that g(x)∈ C(x).

Proof. Consider the map Υ defined as follows:

Υ : g(X)−→ 2Y ,

g(x) �−→ Υ
(
g(x)

)= C(x)− g(x).
(1.7)

Let us prove that Υ is upper hemicontinuous.
Indeed, let g(x)∈ g(X) and p ∈ Y∗, we have

σ
(
Υ
(
g(x)

)
, p
)= sup

y∈Υ(g(x))
Re〈p, y〉 = sup

y∈C(x)−g(x)
Re〈p, y〉 = sup

y+g(x)∈C(x)
Re〈p, y〉. (1.8)
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Let z = y + g(x), then we obtain y = z− g(x) and

σ
(
Υ
(
g(x)

)
, p
)= sup

z∈C(x)
Re
〈
p,z− g(x)

〉= sup
z∈C(x)

Re〈p,z〉−Re
〈
p,g(x)

〉
. (1.9)

Then

σ
(
Υ
(
g(x)

)
, p
)= σ(C(x), p

)−Re
〈
p,g(x)

〉
. (1.10)

Since C is upper hemicontinuous and p, g are continuous functions, then we conclude
that F is upper hemicontinuous. Thus, the map Υ is upper hemicontinuous with non-
empty, closed, and convex values. Since g is continuous on the compact X , then Weier-
strass theorem implies that g(X) is compact. Taking into account condition (2) of Lemma
1.5 and the fact that for g(x)∈ intg(X), we have Tg(X)(g(x))= Y , we obtain Tg(X)(g(x))∩
Υ(g(x)) 	= ∅, for all g(x) ∈ g(X). Since g(X) is convex in a Hausdorff locally convex
space, then all the conditions of the zero-map theorem [7] are verified for Υ. From
this theorem, we deduce that there exists x ∈ X such that 0 ∈ Υ(g(x)), that is, g(x) ∈
C(x). �

2. Existence of solution

In the following theorem, we establish a sufficient condition for the existence of a solution
of the GgQVI.

Theorem 2.1. Let
(1) X be a nonempty compact subset of a metrical space E,
(2) Y a nonempty convex and compact subset of a locally convex Hausdorff topological

vector space F,
(3) g : X → Y a continuous function such that g(X) is a compact and convex subset of Y ,
(4) S an upper hemicontinuous map from X into 2Y with nonempty, convex, and closed

values such that for any g(x)∈ ∂g(X), [S(x)− g(x)]∩Tg(X)(g(x)) 	= ∅,
(5) T : Y → 2F

∗
an upper hemicontinuous along line segments in X with respect to the

weak∗-topology on F∗ such that eachT(y) is weak∗-compact convex and the function
y �→ inf f∈T(y) Re〈 f , y〉 is continuous and quasiconcave on Y ,

(6) ψ : X ×Y →R a function satisfying that
(6.1) ψ is continuous;
(6.2) for any x ∈ X , the function y �→ ψ(x, y) is quasiconcave on Y ;
(6.3) for any g(x)∈∂g(X), for any y ∈ Y , and for any q∈F∗, there is aw∈Zg(X)(g(x))

such that inf f∈T(y) Re〈 f , y− g(x)〉+ψ(x, y)≤ inf f∈T(w) Re〈 f ,g(x)−w〉+ψ(x,
w) and Re〈q, y〉 ≤ Re〈q,w〉,

(7) V0 the set

V0 =
{
x ∈ X such that α(x)= sup

y∈S(x)

{
inf

f∈T(y)
Re
〈
f , y− g(x)

〉
+ψ(x, y)

}
> ψ

(
x,g(x)

)}
,

(2.1)

which must be open.
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Then, there exists an x ∈ X such that

g
(
x
)∈ S(x), f ∈ T(g(x)

)
such that max

y∈S(x)

{
Re
〈
f , y− g(x)

〉
+ψ(x, y)

}= ψ(x,g(x)
)
.

(2.2)

Proof. We divide the proof into three steps.

Step 1. There exists a point x ∈ X such that g(x)∈ S(x) and

sup
y∈S(x)

{
inf

f∈T(y)
Re
〈
f , y− g(x)

〉
+ψ(x, y)

}
= ψ(x,g(x)

)
. (2.3)

Suppose that (2.3) is not true. Then for each x ∈ X , either g(x) /∈ S(x) or supy∈S(x)

{inf f∈T(y) Re〈 f , y − g(x)〉 + ψ(x, y)} > ψ(x,g(x)); that is, for each x ∈ X , either g(x) /∈
S(x) or x ∈V0.

According to separation theorem and considering the fact that S(x) is nonempty, con-
vex, and closed, g(x) /∈ S(x) implies that for all x ∈ X , there exists q ∈ F∗ such that

Re
〈− q,g(x)

〉− σ(S(x),−q) > 0, (2.4)

where σ(S(x),q)= supy∈S(x) Re〈−q, y〉 is the support function of S(x).
Let

Vq =
{
x ∈ X such that Re

〈− q,g(x)
〉
> σ

(
S(x),−q)}. (2.5)

Assumptions (3), (4), and (7) of Theorem 2.1 imply that the sets V0, Vq, and q ∈ F∗ are
open in E.

The equality (2.3) implies that X ⊂V0∪
⋃
q∈F∗Vq. Since X is compact, it is possible to

cover it by a finite number n of its subsets {V0,Vq1 , . . . ,Vqn}. Let {hi}i=0,...,n be a continuous
partition of unity associated with the subcover {V0,Vq1 , . . . ,Vqn}.

Let us introduce the function Φ : X ×Y →R defined by

(x, y) �−→Φ(x, y)= h0(x)
{

inf
f∈T(y)

Re
〈
f , y− g(x)

〉
+ψ(x, y)

}
+

n∑
i=1

hi(x)Re
〈
qi, y− g(x)

〉
.

(2.6)

We now show that there is an x ∈ X such that

sup
y∈Y

Φ(x, y)=Φ
(
x,g(x)

)
. (2.7)

Assume that

∀x ∈ X , ∃y ∈ Y such that Φ(x, y) >Φ
(
x,g(x)

)
. (2.8)

Consider the following set:

θy =
{
x ∈ X such that Φ(x, y) >Φ

(
x,g(x)

)}
, y ∈ Y. (2.9)
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Then, for all y ∈ Y , θy is open andX ⊂⋃y∈Y θy . SinceX is compact, it can be covered by a
finite number r of its subsets {θy1 , . . . ,θyr}. Let {l j} j=1,r be a continuous partition of unity
associated with the subcover {θy1 , . . . ,θyr}; that is, we have for all x ∈ X ,

∑r
j=1l j(x) = 1

and for all j = 1,r, supp l j ⊂ θyj .
Consider the map

M : X −→ 2Y (2.10)

defined by

x �−→M(x)=
{
y ∈ Y such that max

λ∈S

r∑
i=1

λiΦ
(
x, yi

)≤Φ(x, y)

}
, (2.11)

where

S=
{
λ= (λ1, . . . ,λn

)∈Rr such that
r∑
i=1

λi = 1, λi ≥ 0, ∀i= 1,r

}
. (2.12)

We now show that the map M is upper semicontinuous on X , with nonempty, convex,
and closed values in Y and satisfying that for all g(x) ∈ ∂g(X), there exists u ∈ X , there
exists α > 0 such that αg(u) + (1−α)g(x)∈M(x).

(1) Let us prove that for all x ∈ X , M(x) 	= ∅.
Consider a point x ∈ X , the function λ �→∑r

i=1 λiΦ(x, yi) is linear on Rr . Therefore,
it is continuous over the compact set S and according to the theorem of Weierstrass [5],
there exists λ∈ S such that

max
λ∈S

r∑
i=1

λiΦ(x, yi)=
r∑
i=1

λiΦ(x, yi)≤
r∑
i=1

λimax
i=1,r

Φ(x, yi)=Φ(x, yi0 ). (2.13)

Therefore, yi0 ∈M(x), which implies that M(x) 	= ∅.
(2) For all x ∈ X , M(x) is closed in Y .
Consider x ∈ X and z ∈M(x). There is a sequence {zk}k≥1 of elements of M(x) which

converges to z.
As a consequence of the fact that for all k ≥ 1, zk ∈M(x), we get

∀k ≥ 1, max
λ∈S

r∑
i=1

λiΦ
(
x, yi

)≤Φ
(
x,zk

)
. (2.14)

Taking into account condition (6.1) of Theorem 2.1 and the fact that pi ∈ Y∗, i = 1,r
with k→ +∞, we obtain

max
λ∈S

r∑
i=1

λiΦ
(
x, yi

)≤Φ(x,z). (2.15)

Therefore, z ∈M(x), that is, M(x) is closed.
(3) For all x ∈ X , M(x) is convex in Y .
Let x ∈ X and let z, z be two elements of M(x) and θ ∈ [0,1].
We now show that θz+ (1− θ)z ∈M(x).
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Since z and z are two elements of M(x), we have maxλ∈S
∑r

i=1 λiΦ(x, yi)≤Φ(x,z) and
maxλ∈S

∑r
i=1 λiΦ(x, yi)≤Φ(x,z). Therefore,

max
λ∈S

r∑
i=1

λiΦ
(
x, yi

)≤min
{
Φ(x,z), Φ(x,z)

}
. (2.16)

Taking into account condition (6.2) of Theorem 2.1, the fact that pi ∈ Y∗, i = 1,r, and
inequality (2.16), we obtain

max
λ∈S

r∑
i=1

λiΦ
(
x, yi

)≤Φ
(
x,θ z+ (1− θ)z

)
, ∀θ ∈ [0,1], (2.17)

that is, θz+ (1− θ)z ∈M(x).
(4) M is upper semicontinuous.
According to Lemma 1.2, it is sufficient to show that the graph of M is closed in the

compact set X ×Y .
Let (x,z) ∈ Graph(M). There is a sequence {(xk,zk)}k≥1 of elements of Graph(M)

which converges to (x,z). Therefore, for all k ≥ 1, zk ∈M(xk); that is, for all k ≥ 1,

max
λ∈S

r∑
i=1

λiΦ(xk, yi)≤Φ(xk,zk). (2.18)

Taking into account condition (6.1) of Theorem 2.1 and the fact that pi ∈ Y∗, i =
1,r, when k →∞, we obtain maxλ∈S

∑r
i=1 λiΦ(x, yi) ≤Φ(x,z); that is, z ∈M(x). Hence,

(x,z)∈Graph(M). In other words, Graph(M) is closed.
(5) For all g(x) ∈ ∂g(X), there exists α > 0, there exists u ∈ X such that αg(u) + (1−

α)g(x)∈M(x).
Let g(x)∈ ∂g(X). It is shown in (1) that for all x ∈ X , there exists yi0 ∈ Y such that

max
λ∈S

r∑
i=1

λiΦ
(
x, yi

)≤Φ
(
x, yi0

)
. (2.19)

(In particular, (2.19) remains true for any x ∈ X such that g(x)∈ ∂g(X).)
Condition (6.3) of Theorem 2.1 implies that there exists α > 0, there exists u∈ X such

that Φ(x, yi0 )≤Φ(x,αg(u) + (1−α)g(x)) with αg(u) + (1−α)g(x)∈ Y .Therefore,

max
λ∈S

r∑
i=1

λiΦ
(
x, yi

)≤Φ
(
x,αg(u) + (1−α)g(x)

)
, (2.20)

that is, αg(u) + (1−α)g(x)∈M(x).
From (1)–(5), we deduce that M satisfies all conditions of Lemma 1.5. Hence, there

exists a point x ∈ X such that g(x̃)∈M(x̃); that is,

max
λ∈S

r∑
i=1

λiΦ
(
x̃, yi

)≤Φ
(
x̃,g(x̃)

)
. (2.21)

Thus, for all λ∈ S,
∑r

i=1 λiΦ(x̃, yi)≤Φ(x̃,g(x̃)).
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Let λ̃= (l1(x̃), . . . , lr(x̃)). We have λ̃∈ S since li(x̃)≥ 0 and
∑r

i=1 li(x̃)= 1, then

r∑
i=1

li(x̃)Φ
(
x̃, yi

)≤Φ
(
x̃,g(x̃)

)
. (2.22)

Consider the set J = {i∈ {1, . . . ,r} such that li(x̃) > 0}. By construction, J 	= ∅.
Note that

∑r
i=1 li(x̃)Φ(x̃, yi)=

∑
i∈J li(x̃)Φ(x̃, yi).

We have for all i ∈ J , li(x̃) > 0. Therefore, x̃ ∈ supp li ⊂ θyi , for all i ∈ J , that is, for all
i∈ J , Φ(x̃, yi) >Φ(x̃,g(x̃)).

Then, we have
∑

i∈J li(x̃)Φ(x̃, yi)>
∑

i∈J li(x̃)Φ(x̃,g(x̃))=Φ(x̃,g(x̃)), that is,Φ(x̃,g(x̃)) <
Φ(x̃,g(x̃)), which is impossible.

Thus, we conclude that there exists x ∈ X such that supy∈YΦ(x, y)=Φ(x,g(x)), that
is, for all y ∈ Y , we have

h0(x)
{

inf
f∈T(y)

Re
〈
f , y− g(x)

〉
+ψ(x, y)

}
+

n∑
i=1

hi(x)Re
〈
qi, y− g(x)

〉≤ h0(x)ψ
(
x,g(x)

)
.

(2.23)

If h0(x)= 0, we have
∑n

i=1hi(x)= 1. Therefore, (2.23) becomes

n∑
i=1

hi(x)Re
〈
qi, y− g(x)

〉≤ 0, ∀y ∈ Y. (2.24)

Inequality (2.24) implies that q =∑n
i=1hi(x)qi belongs to the normal cone Ng(X)(g(x)).

According to Lemma 1.1 and condition (4) of Theorem 2.1, we have

σ
(
S(x),−q)≥ Re

〈− q,g(x)
〉
. (2.25)

The fact that hi(x) > 0, i= 1, . . . ,n, implies that x ∈ supphi ⊂Vqi , that is,

Re〈−qi,g(x)
〉
> σ

(
S(x),−qi

)
. (2.26)

Then,

σ
(
S(x),−q)= σ(S(x),−

n∑
i=1

hi(x)qi

)
≤

n∑
i=1

hi(x)σ
(
S(x),−qi

)
<

n∑
i=1

hi(x)Re
〈− qi,g(x)

〉= Re
〈− q,g(x)

〉
,

(2.27)

which contradicts inequality (2.25). We then conclude that h0(x) > 0.
The inequality h0(x) > 0 implies that x ∈ supph0 ⊂V0. Therefore,

h0(x) sup
y∈S(x)

{
inf

f∈T(y)
Re
〈
f , y− g(x)

〉
+ψ(x, y)

}
> h0(x)ψ

(
x,g(x)

)
. (2.28)

Since the function y �→ inf f∈T(y) Re〈 f , y− g(x)〉+ψ(x, y) is continuous on the compact
S(x), it follows that according to Weierstrass theorem [5], there exists y ∈ S(x) such
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that supy∈S(x){inf f∈T(y) Re〈 f , y − g(x)〉 + ψ(x, y)} = inf f∈T(y) Re〈 f , y − g(x)〉 + ψ(x, y).
Therefore,

h0(x)
{

inf
f∈T(y)

Re
〈
f , y− g(x)

〉
+ψ(x, y)

}
> h0(x)ψ

(
x,g(x)

)
. (2.29)

If
∑n

i=1hi(x)= 0, (2.23) becomes h0(x){inf f∈T(y) Re〈 f , y−g(x)〉+ψ(x, y)}≤h0(x)ψ(x,
g(x)), for all y ∈ Y , which contradicts inequality (2.29). Therefore,

∑n
i=1hi(x) > 0. Let

K = {i∈ {1, . . . ,n}/hi(x) > 0}, then K 	= ∅. If i∈ K , then x ∈ supphi ⊂Vqi ; that is,

Re
〈− qi,g(x)

〉
> σ

(
S(x),−qi

)
. (2.30)

We have

Re〈−q, y〉 ≤ σ(S(x),−q)= σ(S(x),−
n∑
i=1

hi(x)qi

)

≤
n∑
i=1

hi(x)σ
(
S(x),−qi

)
<
∑
i∈K

hi(x)Re
〈− qi,g(x)

〉
= Re

〈− q,g(x)
〉
.

(2.31)

Thus,

n∑
i=1

hi(x)Re
〈
qi, y− g(x)

〉
> 0. (2.32)

Inequalities (2.29) and (2.32) imply that

h0(x)
{

inf
f∈T(y)

Re
〈
f , y− g(x)

〉
+ψ(x, y)

}
+

n∑
i=1

hi(x)Re
〈
qi, y− g(x)

〉
> h0(x)ψ

(
x,g(x)

)
,

(2.33)

which contradicts (2.23). This contradiction proves the statement of Step 1.

Step 2. We have

inf
f∈T(g(x))

Re
〈
f , y− g(x)

〉
+ψ(x, y)≤ ψ(x,g(x)

)
, ∀y ∈ S(x). (2.34)

Indeed, from Step 1, g(x)∈ S(x) and S(x) is a convex subset of X . We have also

inf
f∈T(y)

Re
〈
f , y− g(x)

〉
+ψ(x, y)≤ ψ(x,g(x)

)
, ∀y ∈ S(x). (2.35)

Hence, by assumption (6.2) of Theorem 2.1 and Lemma 1.3, we have

inf
f∈T(g(x))

Re
〈
f , y− g(x)

〉
+ψ(x, y)≤ ψ(x,g(x)

)
, ∀y ∈ S(x). (2.36)
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Step 3. There exists a function f ∈ T(x) such that Re〈 f , y− g(x)〉+ψ(x, y)≤ ψ(x,g(x)),
for all y ∈ S(x).

From Step 2, we have supy∈S(x){inf f∈T(g(x)) Re〈 f , y − g(x)〉 + ψ(x, y)} = ψ(x,g(x)),
where T(g(x)) is a weak∗-compact convex subset of the Hausdorff topological vector
space F∗ and S(x) is a compact convex subset of X .

Indeed, define � : S(x)× T(g(x))→ R by �(y, f ) = Re〈 f , y − g(x)〉+ ψ(x, y) for all
y ∈ S(x) and for all f ∈ T(g(x)). For each y ∈ S(x), the function f �→�( f , y) is linear
and continuous on T(g(x)) and for each f ∈ T(g(x)), the function y �→�( f , y) is quasi-
concave on S(x). Thus by Lemma 1.2, we have

min
f∈T(g(x))

max
y∈S(x)

�( f , y)= max
y∈S(x)

min
f∈T(g(x))

�( f , y). (2.37)

Hence,

min
f∈T(g(x))

max
y∈S(x)

{
Re
〈
f , y− g(x)

〉
+ψ(x, y)

}= ψ(x,g(x)
)
. (2.38)

Since T(g(x)) is compact, there exists f ∈ T(g(x)) such that Re〈 f , y− g(x)〉+ψ(x, y)≤
ψ(x,g(x)), for all y ∈ S(x). �

Remark 2.2. If we consider X = Y , and g = idX , then [10, Theorem 3.1] becomes a par-
ticular case of Theorem 2.1.

From Theorem 2.1, we deduce the following quasivariational equation theorem [19].

Corollary 2.3. Assume that
(1) X is a nonempty compact subset of a metric space E,
(2) Y is a nonempty convex and compact subset of a locally convex Hausdorff topological

vector space F,
(3) g : X → Y is a continuous function such that g(X) is convex,
(4) C is an upper hemicontinuous map fromX into 2Y with nonempty, convex, and closed

values such that for any g(x)∈ ∂g(X), [C(x)− g(x)]∩Tg(X)(g(x)) 	= ∅,
(5) Ψ : X ×Y →R is a function satisfying that

(5.1) Ψ is continuous;
(5.2) for any x ∈ X , the function y �→Ψ(x, y) is quasiconcave on Y ;
(5.3) for any g(x) ∈ ∂g(X), for any y ∈ Y , and for any p ∈ Y∗, there exists w ∈

Zg(X)(g(x)) such that
(5.3.1) Ψ(x, y)≤Ψ(x,w),
(5.3.2) Re〈p, y〉 ≤ Re〈p,w〉,

(6) the set {x ∈ X :α(x)= supy∈C(x)Ψ(x, y)≤Ψ(x,g(x))} is closed.
Then there exists x ∈ X such that

g(x)∈ C(x), sup
y∈C(x)

Ψ(x, y)=Ψ
(
x,g(x)

)
. (2.39)

Proof. It is sufficient to consider T : Y → 2F
∗

such that T(y) = 0, for all y ∈ Y , where
0(z)= 〈0,z〉 = 0, for all z ∈ F. �
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From Theorem 2.1, we deduce the following theorem [18].

Corollary 2.4. LetX be a nonempty compact subset of a metric space E, let Y be nonempty
convex and compact subset of a locally convex separated space F, and let f be a nonzero
continuous linear functional on F. Assume that

(1) g : X → Y is a continuous function such that g(X) is convex over Y ,
(2) C is an upper hemicontinuous set-valued function from X into 2Y with nonempty,

convex, and closed values such that for any g(x) ∈ ∂g(X), [C(x)− g(x)]∩ Tg(X)

(g(x)) 	= ∅,
(3) φ : X ×Y →R is a function satisfying that

(3.1) φ is continuous over X ×Y and φ(x,g(x))= 0, for all x ∈ X ;
(3.2) for all x ∈ X , the function y �→ φ(x, y) is quasiconcave on Y ;
(3.3) for any g(x) ∈ ∂g(X), for all y ∈ Y , and for all p ∈ Y∗, there exists w ∈ Zg(X)

(g(x)) such that
(3.3.1) φ(x, y)−Re〈 f , y− g(x)〉 ≤ φ(x,w)−Re〈 f ,w− g(x)〉,
(3.3.2) Re〈p, y〉 ≤ Re〈p,w〉,

(4) the set {x ∈ X such that α(x) = supy∈C(x)φ(x, y)−Re〈 f , y− g(x)〉 ≤ φ(x,g(x))} is
closed.

Then there exists x ∈ X such that

g(x)∈ C(x), φ(x, y)≤ Re
〈
f , y− g(x)

〉
, ∀y ∈ C(x). (2.40)

Proof. Assume that in Theorem 2.1 we have ψ(x, y) = φ(x, y)−Re〈 f , y − g(x)〉 and T :
Y → 2F

∗
such that T(y)= 0, for all y ∈ Y . Then Corollary 2.4 follows immediately from

Theorem 2.1. �

From Theorem 2.1, we deduce the following g-maximum equality theorem [20].

Corollary 2.5 [20] (g-maximum equality theorem). Assume that
(1) X is a nonempty, compact subset of a metric space E,
(2) Y is a nonempty, convex, and compact subset of a separated locally convex space F,
(3) g : X → Y is a continuous function such that g(X) is compact and convex in Y ,
(4) Ψ : X ×Y →R is a function satisfying

(4.1) Ψ is continuous;
(4.2) for any x ∈ X , the function y �→Ψ(x, y) is quasiconcave on Y ;
(4.3) for all g(x) ∈ ∂g(X) and for all y ∈ Y , there exists z ∈ Zg(X)(g(x)) such that

Ψ(x, y)≤Ψ(x,z).
Then there exists x ∈ X such that

sup
y∈Y

Ψ(x, y)=Ψ
(
x,g(x)

)
. (2.41)

Remark 2.6. Corollary 2.5 (g-maximum equality theorem) is a generalization of the min-
imax inequality (see Fan [13]).
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