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The well-known semi-infinite dock problem of the theory of scattering of surface water
waves is reexamined and known results are recovered by utilizing a Fourier type of anal-
ysis, giving rise to Carleman-type singular integral equations over semi-infinite ranges.

1. Introduction

The dock problem (cf. [2], [4, 5]), which is that of understanding the scattering of sur-
face water waves by a thin semi-infinite rigid plate floating on the free surface of water
of infinite depth, gives rise to the following mixed boundary value problem, involving
Laplace’s equation in two dimensions, with (x, y) representing the rectangular Cartesian
coordinates, assuming linearised theory of water waves:

∇2φ= 0, −∞ < x <∞, y > 0, (1.1)

Kφ+φy = 0 on y = 0, x < 0, (1.2)

φy = 0 on y = 0, x > 0, (1.3)

r
∂φ

∂r
= 0 as r = (x2 + y2)1/2 −→ 0, (1.4)

φ and φx are continuous at x = 0, y > 0, (1.5)

φ−→ 0 as y −→∞, (1.6)

φ −→

e

−Ky+iKx + Re−Ky−iKx as x −→−∞,

0 as x −→∞.
(1.7)

Here Re{(g2/σ3)φ(x, y)e−iσt} denotes the velocity potential (actual) describing the fluid
motion assumed irrotational, where σ is the circular frequency and g is the acceleration
due to gravity, K = σ2/g, R is the unknown reflection coefficient due to a progressive
wave train described by the complex velocity potential function e−Ky+iKx incident on the
semi-infinite rigid plate occupying the position y = 0, and x ≥ 0.
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A direct use of a Fourier type of analysis (cf. [7]) is shown to reduce the above bound-
ary value problem to either of two possible singular integral equations of the Carleman
type over a semi-infinite range. It is then shown that the closed form solutions of both of
these Carleman equations are possible, giving rise to closed form solution of the problem
under consideration. The associated reflection coefficient R is determined and is found
to agree with the known result. The free surface profile and the pressure distribution on
the dock are depicted graphically at initial time t = 0 against the distance. These figures
coincide with those given in [2].

The present analysis is believed to be more straightforward and simple, as compared
to the existing methods of [2] and [4, 5] to handle this class of problems in the theory of
surface water waves.

2. The detailed analysis

Using Havelock’s expansion of water wave potential (cf. [7]), we look for the following
representations of the function φ(x, y) in the regions x < 0 and x > 0 (y > 0), satisfying
(1.1), (1.2), (1.3), (1.6), and (1.7):

φ(x, y)= e−Ky+iKx + Re−Ky−iKx +
2
π

∫∞
0

A(ξ)
ξ2 +K2

L(ξ, y)eξxdξ, for x < 0, (2.1)

φ(x, y)= 2
π

∫∞
0

B(ξ)
ξ

cosξ ye−ξxdξ, for x > 0, (2.2)

where

L(ξ, y)= ξ cosξ y−K sinξ y, (2.3)

and A(ξ), B(ξ) are two unknown functions to be determined along with the unknown
reflection coefficient R.

We emphasize, at this stage itself, that the representation (2.2) demands that we must
have

B(0)= 0 (2.4)

to help the integral in (2.2) converge.
The conditions (1.5) give the following relations:

(1 +R)e−Ky +
2
π

∫∞
0

A(ξ)
ξ2 +K2

L(ξ, y)dξ = 2
π

∫∞
0

B(ξ)
ξ

cosξ y dξ, y > 0,

iK(1−R)e−Ky +
2
π

∫∞
0

ξA(ξ)
ξ2 +K2

L(ξ, y)dξ =− 2
π

∫∞
0
B(ξ)cosξ y dξ, y > 0.

(2.5)

Now there are two possible ways of handling the two relations (2.5) as far as the appli-
cation of Fourier analysis is concerned. The first possibility is to use a Fourier cosine
inversion formula to both the relations (2.5) to determine B(ξ) in terms of A(ξ), and the
second possibility is to use the Havelock’s expansion theorem (cf. [7]) to determine A(ξ)
in terms of B(ξ).
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Then by using the first of the above two approaches, we obtain that

B(ξ)
ξ

= (1 +R)K
ξ2 +K2

+
ξA(ξ)
ξ2 +K2

− 2K
π

∫∞
0

uA(u)(
u2− ξ2

)(
u2 +K2

)du, ξ > 0, (2.6)

−B(ξ)= i(1−R)K
ξ2 +K2

+
ξ2A(ξ)
ξ2 +K2

− 2K
π

∫∞
0

u2A(u)(
u2− ξ2

)(
u2 +K2

)du, ξ > 0, (2.7)

which on elimination of B(ξ), give rise to the following singular integral equation of the
Carleman type:

ξC(ξ)− K

π

∫∞
0

C(u)
u− ξ

du=−K
(

1
ξ − iK

+
R

ξ + iK

)
, ξ > 0, (2.8)

where

C(ξ)= 2ξA(ξ)
ξ2 +K2

. (2.9)

We observe that (2.8) contains the unknown constant R (the unknown reflection coeffi-
cient), and this can be determined by utilizing the convergence criterion (2.4).

Also, by using the second approach, we obtain that

A(ξ)= B(ξ)− 2Kξ
π

∫∞
0

B(u)
u
(
ξ2−u2

)du, ξ > 0, (2.10)

provided that

1 +R= 4K2

π

∫∞
0

B(u)
u
(
u2 +K2

)du, (2.11)

ξA(ξ)=−ξB(ξ) +
2Kξ
π

∫∞
0

B(u)
ξ2−u2

du, ξ > 0, (2.12)

provided that

1−R= 4iK
π

∫∞
0

B(u)
u2 +K2

du. (2.13)

The following generalized identities (cf. [1]) have been utilized in deriving the results
(2.6), (2.7), (2.10), and (2.12):

lim
ε→0

∫∞
0
e−εy cosuy cosξ y dy = π

2

{
δ(ξ −u) + δ(ξ +u)

}
,

lim
ε→0

∫∞
0
e−εy sinuy sinξ y dy = π

2

{
δ(ξ −u)− δ(ξ +u)

}
,

lim
ε→0

∫∞
0
e−εy sinuy cosξ y dy = u

u2− ξ2
,

(2.14)

where u,ξ > 0 and δ(x) is the Dirac delta function.
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Also the singular integral occurring in (2.8) and elsewhere in the present work is to be
understood as its Cauchy principal value (cf. [3]).

Eliminating A(ξ) between the relations (2.10) and (2.12), we obtain a second singular
integral equation of the Carleman type, as given by

ξB(ξ) +
K

π

∫∞
0

B(u)
u− ξ

du= c, (say) ξ > 0, (2.15)

where c can be regarded as an unknown constant to be determined, along with the other
unknown constant R (the unknown reflection coefficient), by using the two constraints
(2.11) and (2.13).

Now both the integral equations (2.8) and (2.15) are of the same type and each of
them can be cast into a Riemann-Hilbert problem involving the complex-plane, with a
cut along the positive real axis, which can finally be solved by using standard techniques
available in [3] or [6].

The two Riemann-Hilbert problems for the two integral equations (2.8) and (2.15) are
given by

Φ+(ξ)− ξ + iK

ξ − iK
Φ−(ξ)=−K

{
R

ξ2 +K2
+

1
(ξ − iK)2

}
, (ξ > 0),

Λ+(ξ)− ξ − iK

ξ + iK
Λ−(ξ)= c

ξ + iK
, (ξ > 0),

(2.16)

respectively, involving the two sectionally analytic functions Φ(ζ) and Λ(ζ), [ζ = ξ + iη],
in the cut ζ plane, where

Φ(ζ)= 1
2πi

∫∞
0

C(u)
u− ζ

du,

η �= 0,

Λ(ζ)= 1
2πi

∫∞
0

B(u)
u− ζ

du,

(2.17)

with Φ+(ξ)=Φ(ξ + i0), Φ−(ξ)=Φ(ξ − i0), Λ+(ξ)=Λ(ξ + i0), and Λ−(ξ)=Λ(ξ − i0).
The solutions of the above two Riemann-Hilbert problems are straightforward (cf.

[3]) and we find that

Φ(ζ)=− K

2πi
Φ0(ζ)

∫∞
0

{
R

u2 +K2
+

1
(u− iK)2

}
1

Φ+
0 (u)(u− ζ)

du,

Λ(ζ)= Λ0(ζ)
2πi

∫∞
0

c

Λ+
0 (u)(u+ iK)(u− ζ)

du,

(2.18)
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with

Φ0(ζ)= exp

[
1

2πi

∫∞
0

ln((u+ iK)/(u− iK))
u− ζ

du

]
, (2.19a)

Λ0(ζ)= exp

[
1

2πi

∫∞
0

ln((u− iK)/(u+ iK))− 2πi
u− ζ

du

]
. (2.19b)

The solutions of the integral equations (2.8) and (2.15) can be finally determined by using
the Plemelj’s formulae as given by

C(ξ)=Φ+(ξ)−Φ−(ξ), (2.20)

B(ξ)=Λ+(ξ)−Λ−(ξ). (2.21)

Evaluating the various integrals appearing in the relations (2.18), by using standard
techniques involving contour integration (cf. [1] and Appendix A to the present paper),
we find that

C(ξ)=− K

ξ2 +K2

Φ+
0 (ξ)

Φ0(iK)
− KR

(ξ + iK)2

Φ+
0 (ξ)

Φ0(−iK)
, ξ > 0, (2.22)

B(ξ)= cD1

π

Λ+
0 (ξ)

ξ − iK
, (2.23)

where D1 is an unknown constant.
We next use the relations (2.6) and (2.9) along with the result (2.22) and find that

B(ξ)= K

2
Φ0(−ξ)

{
1

(ξ + iK)Φ0(iK)
+

R

(ξ − iK)Φ0(−iK)

}
(2.24)

is obtained after evaluating several integrals by using appropriate contour integration
procedures (see Appendix B).

Then, by using the condition (2.4), we find that we must have (see Appendix C.1)

R= Φ0(−iK)
Φ0(iK)

= exp
(
− iπ

4

)
(2.25)

obtained by using the relation (2.19a).
Again, by using the result (2.23) in the two relations (2.11) and (2.13), and by eval-

uating the various integrals (see Appendix C.2), after using the relation (2.19b), we find
that

R= Λ0(iK)
Λ0(−iK)

= exp
(
− iπ

4

)
, (2.26)

cD1

π
= K

2Λ0(−iK)
. (2.27)

We thus find that the mixed boundary value problem under consideration gets solved
completely either by the aid of the relations (2.24), (2.25), (2.22), and (2.9), or by the aid



3464 The dock problem revisited

of the relations (2.23), (2.26), (2.27), and (2.12), which determine the unknown functions
A(ξ) and B(ξ) and the unknown reflection coefficient R completely so that the complete
knowledge of the potential φ(x, y) can be obtained by using the relations (2.1) and (2.2).

We find that the value ofR is e−iπ/4, as obtained by Holford [4, 5], by using a completely
different analysis.

It is rather interesting to verify (see Appendix D) that the two representations of B(ξ),
as given by the relations (2.23) along with (2.27) and (2.24) along with (2.25), are identi-
cal.

3. Discussion

The exact form of φ(x, y) can be obtained from (2.1) for x < 0 and from (2.2) for x > 0
after substituting A(ξ) and B(ξ) in terms of Φ(ξ). This should coincide with the result
for the potential function (except for a multiplying constant) given in [2] (ReχR(z) given
there). However, this is not verified here directly. Instead we obtain here the free surface
depression η(x, t) and the pressure p(x, t) on the dock by using Bernoulli’s equation, and
depict them graphically against the nondimensional distance Kx at time t = 0 (actually
Kη(x,0) and Kp(x,0)/ρg) for x < 0 and x > 0, respectively.

Using Bernoulli’s equation, the free surface distribution η(x, t) (x < 0) is obtained as

η(x, t)=− 1
K

Re
{
iφ(x,0)e−iσt

}

= 1
K

[
sin(Kx− σt)− sin

(
π

4
+Kx+ σt

)
+

√
2
π

sin
(
π

8
+ σt

)
I(Kx)

]
,

(3.1)

where

I(s)=
∫ π/2

0
cosθ exp

{
scotθ +

sinθ
π

∫ π/2

0

α

sinαsin(θ−α)
dα

}
dθ. (3.2)

Similarly, the pressure on the dock p(x, t) (x > 0) is obtained as

p(x, t)= ρg

K
Re
{
iφ(x,0)e−iσt

}
= ρg

K

√
2
π

sin
(
π

8
+ σt

)
J(Kx), (3.3)

where

J(s)=
∫ π/2

0
exp

{
− scotθ +

sinθ
π

∫ π/2

0

α

sinαsin(θ +α)
dα

}
dθ. (3.4)

Figures 3.1 and 3.2 depict, respectively, the free surface profile η(x,0) against x(x < 0)
and the pressure distribution p(x,0) on the dock also against x(x > 0); η, p, x being
nondimensionalised as Kη, Kp/ρg, Kx. These curves in Figures 3.1 and 3.2 can be iden-
tified with the curves given in [2] obtained from the potential function ReχR(z) given
there. This indirectly verifies that the solution for the potential function obtained here
coincides with the solution ReχR(z) given in [2] (except for a multiplying constant).
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Figure 3.1. Free surface profile at t = 0.
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Figure 3.2. Distribution of pressure on the dock at t = 0.
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Appendices

A. Determination of C(ξ)

In this appendix we will describe the contour integration procedure to obtain the value
of C(ξ), as given by the relation (2.22).

The relation (2.20) gives

C(ξ)=Φ+(ξ)−Φ−(ξ)=− Kξ

ξ + iK

{
R

ξ2 +K2
+

1
(ξ − iK)2

}

− K2Φ+
0 (ξ)

π(ξ + iK)

∫∞
0

{
R

u2 +K2
+

1
(u− iK)2

}
1

Φ+
0 (u)(u− ξ)

du, ξ > 0.

(A.1)

The integrals appearing in (A.1) can be evaluated by considering integrals of the form

I(ζ)=
∫
Γ

P(τ)
Q(τ)

1
Φ0(τ)(τ − ζ)

dτ, (A.2)

with Γ a positively oriented closed contour consisting of a loop around the positive real
axis and a circle of large radius with centre at the origin, in the complex τ-plane, and P(τ)
and Q(τ) are polynomials in τ. If these polynomials are such that the contribution to the
integral in (A.2) over the circle of large radius vanishes, then

I(ζ)=
∫
Γ

P(u)
Q(u)

{
1

Φ+
0 (u)

− 1
Φ−

0 (u)

}
1

(u− ζ)
du

=−2iK
∫∞

0

P(u)
Q(u)

1
Φ+

0 (u)(u− iK)(u− ζ)
du

(A.3)

after using the relation

Φ+
0 (ξ)= ξ + iK

ξ − iK
Φ−

0 (ξ). (A.4)

Thus by using P(τ)= 1 and Q(τ)=−2iK(τ + iK), it is observed that

I1(ζ)=
∫∞

0

1(
u2 +K2

)
Φ+

0 (u)(u− ζ)
du

=− 1
2iK

∫
Γ

dτ

(τ + iK)Φ0(τ)(τ − ζ)

=− π

K

1
ζ + iK

{
1

Φ0(ζ)
− 1
Φ0(−iK)

}
.

(A.5)
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Similarly, by choosing P(τ)= 1 and Q(τ)=−2iK(τ − iK) in (A.3),

I2(ζ)=
∫∞

0

1
(u− iK)2Φ+

0 (u)(u− ζ)
du

=− 1
2iK

∫
Γ

dτ

(τ − iK)Φ0(τ)(τ − ζ)

=− π

K

1
ζ − iK

{
1

Φ0(ζ)
− 1
Φ0(iK)

}
.

(A.6)

Using Plemelj’s formulae,

∫∞
0

1(
u2 +K2

)
Φ+

0 (u)(u− ξ)
du= 1

2
{I+

1 (ξ) + I−1 (ξ)}

= π

K

1
ξ + iK

{
1

Φ0(−iK)
− ξ

(ξ − iK)Φ+
0 (ξ)

}
,

(A.7)

∫∞
0

1
(u− iK)2Φ+

0 (u)(u− ξ)
du= 1

2

{
I+

2 (ξ) + I−2 (ξ)
}

= π

K

1
ξ − iK

{
1

Φ0(iK)
− ξ

(ξ − iK)Φ+
0 (ξ)

}
.

(A.8)

Using (A.7) and (A.8) in (A.1), C(ξ) is obtained as

C(ξ)=− K

ξ2 +K2

Φ+
0 (ξ)

Φ0(iK)
− KR

(ξ + iK)2

Φ+
0 (ξ)

Φ0(−iK)
, ξ > 0. (A.9)

B. Proof of (2.24)

Here we will describe the details of the procedure to derive the relation (2.24).
On using (2.21), we obtain

B(ξ)= (1 +R)Kξ
ξ2 +K2

− Kξ

2
(
ξ2 +K2

)
{

Φ+
0 (ξ)

Φ0(iK)
+R

Φ−
0 (ξ)

Φ0(−iK)

}

+
K2ξ

π

∫∞
0

1(
u2− ξ2

)(
ξ2 +K2

)
{

Φ+
0 (u)

Φ0(iK)
+R

Φ−
0 (u)

Φ0(−iK)

}
du.

(B.1)

The integrals in (B.1) can be evaluated by considering the integral

J(ζ)=
∫
Γ

P(τ)
Q(τ)

Φ0(τ)(
τ2− ζ2

)dτ, (B.2)
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where Γ is the same as in (A.2) and P(τ),Q(τ) are polynomials such that the contribution
to the integral in (B.2) from the circle of large radius vanishes. We obtain

∫∞
0

Φ+
0 (u)(

u2 +K2
)(
u2− ζ2

)du= π

K

{
Φ0(ζ)

2ζ(ζ − iK)
+

Φ0(−ζ)
2ζ(ζ + iK)

− Φ0(iK)
(ζ2 +K2)

}
, (B.3)

∫∞
0

Φ−
0 (u)(

u2 +K2
)(
u2− ζ2

)du= π

K

{
Φ0(ζ)

2ζ(ζ + iK)
+

Φ0(−ζ)
2ζ(ζ − iK)

− Φ0(−iK)(
ζ2 +K2

)
}

, (B.4)

where ζ = ξ + iη (ξ > 0). Hence the use of Plemelj’s formulae produces

∫∞
0

Φ+
0 (u)(

u2 +K2
)(
u2− ξ2

)du= π

K

{
Φ+

0 (ξ)
2
(
ξ2 +K2

) +
Φ0(−ξ)

2ξ(ξ + iK)
− Φ0(iK)(

ξ2 +K2
)
}

, (B.5)

∫∞
0

Φ−
0 (u)(

u2 +K2
)(
u2− ξ2

)du= π

K

{
Φ−

0 (ξ)
2
(
ξ2 +K2

) +
Φ0(−ξ)

2ξ(ξ − iK)
− Φ0(−iK)(

ξ2 +K2
)
}
. (B.6)

Using the results of (B.6) in (B.1), ultimately B(ξ) is obtained as

B(ξ)= K

2
Φ0(−ξ)

{
1

(ξ + iK)Φ0(iK)
+

R

(ξ − iK)Φ0(−iK)

}
. (B.7)

C. Evaluation of R

C.1. Here we will prove the result (2.25).
From (2.19a), we find that

lnΦ0(z)= 1
π

∫ π/2

0
ln

(
z−K tanθ

z

)
dθ (C.1)

so that

ln

{
Φ0(iK)
Φ0(−iK)

}
= 1

π

∫ π/2

0
ln

(
i− tanθ
i+ tanθ

)
dθ = iπ

4
. (C.2)

Hence we obtain that

R= e−iπ/4. (C.3)

C.2. To determine the values of cD1/π =D (say) and R, the relation (2.23) is used in the
relations (2.11) and (2.13). This gives rise to the relations

1 +R= 4DK2

π

∫∞
0

Λ+
0 (ξ)

ξ(ξ − iK)
(
ξ2 +K2

)dξ,

1−R= 4iDK
π

∫∞
0

Λ+
0 (ξ)

(ξ − iK)
(
ξ2 +K2

)dξ.
(C.4)
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The integrals in (C.4) can be evaluated by considering integrals of the form (A.2). Thus,

1 +R= 2D
K

{
Λ0(iK) +Λ0(−iK)

}
,

1−R= 2D
K

{
Λ0(−iK)−Λ0(iK)

} (C.5)

so that

R= Λ0(iK)
Λ0(−iK)

, D = cD1

π
= K

2
1

Λ0(−iK)
. (C.6)

D. Equivalence of (2.23) and (2.24)

Here we prove the following results:

Λ0(−iK)
Φ0(iK)

= 1
2

, (D.1)

Λ+
0 (ξ)

Φ0(−ξ)
= ξ

ξ + iK
(D.2)

so that the expressions as given by the relations (2.23) along with (2.27) and (2.24) along
with (2.25) represent the same function B(ξ).

To show (D.1), it may be noted from (2.19a) and (2.19b) that

Φ0(iK)= exp

[
1

2πi

∫∞
0

ln((u+ iK)/(u− iK))
u− iK

du

]
,

Λ0(−iK)= exp

[
1

2πi

∫∞
0

ln((u− iK)/(u+ iK))− 2πi
u+ iK

du

]
.

(D.3)

Using the result

ln
(
u− iK

u+ iK

)
+ ln

(
u+ iK

u− iK

)
= 2πi, (D.4)

it is found that

Λ0(−iK)
Φ0(iK)

= exp

[
− 1
πi

∫∞
0

ln
(
u+ iK

u− iK

)
u

u2 +K2
du

]

= exp

[
− 2
π

∫ π/2

0

(
π

2
− θ

)
tanθdθ

]
= 1

2
.

(D.5)

To show (D.2), the results in (2.19b) and (D.4) are used to obtain

Λ+
0 (ξ)= exp

[
1
2

ln
(
ξ − iK

ξ + iK

)
− 1

2πi

∫∞
0

ln((u+ iK)/(u− iK))
u− ξ

du

]
, ξ > 0. (D.6)
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Also, from (2.19a), it is seen that

Φ0(−ξ)= exp

[
1

2πi

∫∞
0

ln((u+ iK)/(u− iK))
u+ ξ

du

]
, ξ > 0. (D.7)

Hence

Λ+
0 (ξ)

Φ0(−ξ)
=
(
ξ − iK

ξ + iK

)1/2

exp

[
− 1
πi

∫∞
0

ln
(
u+ iK

u− iK

)
u

u2− ξ2
du

]
. (D.8)

The integral in (D.8) can be evaluated and its value is 2πi ln{(ξ2 +K2)1/2/ξ}. Substituting
this value in (D.8), the result in (D.2) is obtained.
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