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In 1986, Johnson and Perry proved a class of inequalities for uniform hypergraphs which
included the following: for any such hypergraph, the geometric mean over the hyperedges
of the geometric means of the degrees of the nodes on the hyperedge is no less than the
average degree in the hypergraph, with equality only if the hypergraph is regular. Here,
we prove a wider class of inequalities in a wider context, that of edge-weighted uniform
hypergraphs.

1. Definitions and preliminary observations

A k-uniform hypergraph is a pair (V ,E)= G in which V , the set of vertices or nodes of G,
is a set, and E, the set of hyperedges or edges of G, is a multiset of multisets of elements of
V , with each e ∈ E having multiset cardinality k. When k = 2, such an object is called a
graph, or multigraph, and, in this case, when E and every element of E are sets, then G is
called a simple graph.

Throughout this paper, G= (V ,E) will be a finite k-uniform hypergraph of order n=
|V |; |E| will be denoted by m. We require that every vertex appears on some edge. A
weighting of the edges of G is a function wt : E → I , where I is a real interval, usually
[0,∞). For such a weighting, for any submultiset E′ of E, wt(E′) =∑e∈E′wt(e). We will
refer to the pair (G,wt) as an edge-weighted hypernetwork, or, more simply, as a weighted
network. Given (G,wt) and v ∈ V , the degree of v in (G,wt) is the sum of the weights of
the edges to which v belongs, where each weight is counted according to the multiplicity
of v on the edge. More formally, for v ∈ V and e ∈ E, let δ(v,e) be the number of times
that v occurs in the multiset e. Then the degree of v in (G,wt) is

d(v)=
∑
e∈E

δ(v,e)wt(e). (1.1)

The average degree in (G,wt) is d̄ = (1/n)
∑

v∈V d(v). When d is a constant function,
(G,wt) is regular, with degree d = d̄. When wt ≡ 1, the degree in the weighted network is
just the ordinary degree in G, denoted by dG.
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The k-uniformity of the hypergraph G implies a simple relation among d̄, n, and
wt(E):

d̄ = 1
n

∑
v∈V

d(v)= 1
n

∑
v∈V

∑
e∈E

δ(v,e)wt(e)

= 1
n

∑
e∈E

( ∑
v∈V

δ(v,e)

)
wt(e)= k

n

∑
e∈E

wt(e)

= k

n
wt(E).

(1.2)

For e ∈ E, let u1(e), . . . ,uk(e) be the k vertices on e (repeated according to their mul-
tiplicities), in no particular order. Suppose that F is a symmetric function of k real vari-
ables. The inequality form announced in the title is ∗(G,wt,F):

wt(E)−1
∑
e∈E

wt(e)F
(
d
(
u1(e)

)
, . . . ,d

(
uk(e)

))≥ F
(
d̄, . . . , d̄

)
. (1.3)

(Arrangements will be made so that all the k-tuples (d(u1(e)), . . . ,d(uk(e))) and (d̄, . . . ,
d̄) are in the domain of F.) Notice that∗(G,wt,F) holds with equality whenever (G,wt) is
regular. We will be especially interested in families of weighted networks (G,wt) for which
∗(G,wt,F) holds, for some particular F, with equality only when (G,wt) is regular.

Why the interest in inequalities of this form? One reason is that there are some quite
memorable and useful inequalities of this form. For instance, in [2], it is shown that
∗(G,wt,F) holds strictly for all nonregular k-uniform G, wt ≡ 1, and F(x1, . . . ,xk) =∑k

i=1 log(xi); manipulating this result, we obtain, with d = dG,

[
Πe∈E

[
Πk

j=1d
(
uj(e)

)]1/k
]1/|E| ≥ d̄, (1.4)

with equality only when G = (G,1) is regular. This says that the geometric mean, over
the edges, of the geometric means of the degrees of the vertices on each edge is no less
than the arithmetic average degree (with equality only when G is regular), which seems,
at first glance, to reverse the conventional wisdom about geometric means and arithmetic
means. A moment’s thought shows that (1.4) is not very surprising, since vertices con-
tribute as many factors to the product on the left-hand side of (1.4) as their degree, which
gives rich vertices of high degree an undemocratic advantage in hoisting the result. Still,
surprising or not, it is a pretty and inobvious inequality. Corollary 2.3 is a generalization
of it.

Obviously, there is a rich trove of problems under the general question of when—for
which G, wt, and F—the inequality ∗(G,wt,F) (i.e., (1.3)) holds, and the main result
here is just one small answer, a characterization of functions F of a very particular form
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such that ∗(G,wt,F) holds for all G and wt. Before getting to that result, however, we
make two easy remarks that bear on the general question.

(1) In defining k-uniform hypergraphs, we allowed E to be a multiset, that is, hyper-
edges can be repeated. Not only is this customary, but it also seemed unavoidable, for full
generality, in the main result in [2]. It is a happy consequence of the generalization to
weighted networks that we can simplify to the cases where E is merely a set. Suppose E

is a multiset, and ∗(G,wt,F) holds for some wt, F. Let Ĝ be obtained by collapsing each
multiple (repeated) hyperedge to a single hyperedge, and let ŵt be the weighting of the
hyperedges of Ĝ in which each hyperedge is weighted with the sum of the wt values on its
copies in E. Then Ĝ has the same vertices as G, with the same degrees, and the fact that
multiplication distributes over addition shows that ∗(Ĝ,ŵt,F) holds. The same observa-
tion shows that going the other way, splitting a weighted edge into copies and distributing
its weight over the copies, preserves the inequality.

(2) Suppose that 0 is allowed as an edge weight, and suppose that ∗(G,wt,F) holds,
for some F, and for all wt, or perhaps for all wt in some reasonable class, such as the class
of weightings with respect to which every vertex has positive degree. (If, e.g., F(x1, . . . ,xk)
is defined only for x1, . . . ,xk > 0, and if 0 is allowed as an edge weight, then ∗(G,wt,F)
would make sense only for weightings in that class.) Then we can conclude, if the class of
weightings wt for which ∗(G,wt,F) holds permits, that ∗(H ,wt,F) holds for all suitable
wt, and for all spanning subhypergraphs H of G. A spanning subhypergraph of G is one
obtained by deleting edges of G, but so that each vertex of G still lies on at least one
of the edges remaining. Given such a spanning subhypergraph H , and a weighting wt
of the edges of H , extend the weighting to a weighting of G simply by weighting each
edge of G which is not in H with zero. Then, ∗(G,wt,F) clearly implies ∗(H ,wt,F),
since the degrees of the vertices with respect to wt are the same, in G and H , and the
terms on the left-hand side of the inequality corresponding to edges in G, but not H , are
zero.

Observations (1) and (2) are trivial, but useful. For instance, to prove that ∗(G,wt,F)
holds, for some particular F, for all wt (or, all wt such that every degree is positive), and
for all loopless multigraphs (k = 2 and loops and isolates are not allowed) G, it suffices to
verify the inequality for all simple complete graphs. To prove that the inequality holds for
all wt and all multigraphs G, it suffices to show that it holds for all wt and G ranging over
the simple complete graphs with a loop added at each vertex.

2. Results and proofs

A real-valued function f is convex on an interval I if and only if

f
(
tx+ (1− t)y

)≤ t f (x) + (1− t) f (y) ∀x, y ∈ I , t ∈ [0,1]. (2.1)

If t ∈ (0,1) and x 
= y imply strict inequality, then f is said to be strictly convex. There is
an easy test for convexity: if f is continuous on I and f ′′ is defined and nonnegative on
the interior of I , then f is convex on I . If f ′′ > 0 on the interior of I , and f is continuous
on I , then f is strictly convex on I .
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If f is convex on I , x1, . . . ,xn ∈ I , λ1, . . . ,λn > 0, and
∑n

i=1 λi = 1, then

f

( n∑
i=1

λixi

)
≤

n∑
i=1

λi f
(
xi
)
. (2.2)

If f is strictly convex on I , then equality holds in the inequality just above if and only if
x1 = ··· = xk. This inequality is known as Jensen’s inequality (see [1], pages 70–74). We
will be using it first with λ1 = ··· = λn = 1/n.

The following lemma is actually a generalization of most of the theorem to follow. We
have relegated it to lemma status because it is quite unmemorable.

Lemma 2.1. Suppose that A= [ai j] is an n×m matrix of real numbers with constant col-
umn sum c; that ϕ is a real-valued function on a real interval I such that f , defined by
f (x)= xϕ(x), is convex on I ; and that (x1, . . . ,xm) is an m-tuple of real numbers such that
s =∑m

j=1 xj > 0 and di =
∑m

j=1 ai jx j ∈ I for each i = 1, . . . ,n. Let d̄ = (1/n)
∑n

i=1di. Then

s−1
∑m

j=1

∑n
i=1ϕ(di)ai jx j ≥ cϕ(d̄), and if f is strictly convex, then equality holds only if

d1 = ··· = dn.

Proof. First note that d̄ = (1/n)
∑n

i=1

∑m
j=1 ai jx j = (1/n)

∑m
j=1(

∑n
i=1 ai j)xj = (c/n)s. With

this in mind, we have

s−1
m∑
j=1

n∑
i=1

ϕ
(
di
)
ai jx j = s−1

n∑
i=1

( m∑
j=1

ai jx j

)
ϕ
(
di
)= s−1

n∑
i=1

diϕ
(
di
)

= s−1
n∑
i=1

f
(
di
)≥ s−1n f

(
d̄
)= s−1nd̄ϕ

(
d̄
)

= s−1n
c

n
sϕ
(
d̄
)= cϕ

(
d̄
)
,

(2.3)

by the presumed convexity of f , and if f is strictly convex, then equality forces the di to
be equal. �

Theorem 2.2. Suppose that ϕ is a real-valued function on a real interval I such that f (x)=
xϕ(x) is convex on I . For each integer k ≥ 1, and each k-uniform hypergraphG= (V ,E), and
each weighting wt of the edges of G such that wt(E) > 0, and the weighted degrees of vertices
are all in I , the inequality ∗(G,wt,F) holds, with F defined by F(x1, . . . ,xk) =∑k

i=1ϕ(xi).
Further, if f is strictly convex, then equality implies that the weighted network (G,wt) is
regular.

If I ⊆ [0,∞), ϕ is bounded on each compact subinterval of I and∗(C4,wt,F) holds for all
admissible edge weightings of C4, the simple cycle of length 4 (k = 2), then f (x)= xϕ(x) is
convex. Further, if equality implies that (C4,wt) is regular, then f is strictly convex.

Proof. The main claim of the theorem follows from the lemma, taking A to be the vertex-
edge incidence matrix of G. The rows of this graph are indexed by the vertices, the
columns by the edges, and the entry at position (v,e) is δ(v,e), the number of times v
appears in the multiset e. The assumption of k-uniformity says that the column sums are
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all equal to k. For a weighting wt satisfying the hypothesis of the theorem, let (wt(e))e∈E
play the role of (x1, . . . ,xm) in the lemma. Then s=wt(E), and for v ∈V ,

dv =
∑
e∈E

δ(v,e)wt(e)= d(v). (2.4)

Further,
∑

e∈E
∑

v∈V ϕ(d(v))δ(v,e)wt(e) = ∑e∈E wt(e)F(u1(e), . . . ,uk(e)). Thus, the ine-
quality concluded in the lemma is

wt(E)−1
∑
e∈E

wt(e)F
(
u1(e), . . . ,uk(e)

)≥ kϕ
(
d̄
)= F

(
d̄, . . . , d̄

)
, (2.5)

and the conclusion in case of strict convexity follows, as well.
Now suppose that I ⊆ [0,∞), ϕ is “locally bounded,” as hypothesized, and∗(C4,wt,F)

holds for all weightings wt such that wt(E) > 0 and the weighted degrees of the vertices
of C4 are all in I . Then, f is locally bounded. It is an elementary exercise to verify that,
in this case, to show that f is convex, it suffices to show that f is midpoint convex, that
is, that f ((x+ y)/2)≤ (1/2)( f (x) + f (y)) for all x, y ∈ I . Suppose that x, y ∈ I ; we may as
well suppose that x 
= y. Weight the edges of C4 as depicted:

x/2
��

x/2

y/2

y/2

� �

(2.6)

Then, I ⊆ [0,∞) and x 
= y imply that wt(E) = x + y > 0, and the degrees of the ver-
tices of C4, x, y, and (x+ y)/2 are all in I . The inequality ∗(C4,wt,F) asserts that (1/(x+
y))[2(x/2)(ϕ(x) + ϕ((x + y)/2)) + 2(y/2)(ϕ(y) + ϕ((x + y)/2))] ≥ 2ϕ((x + y)/2), which
rearranges to f (x) + f (y)≥ 2 f ((x+ y)/2), which verifies that f is midpoint convex, and
therefore convex.

If f is convex but not strictly convex, then f (x)= ax+ b for all x in some subinterval
of I , for some constants a and b. Choosing x and y, x 
= y, from that subinterval, and
weighting the edges of C4 as above, we have equality in ∗(C4,wt,F), yet (C4,wt) is not
regular. �

Corollary 2.3. Suppose that k ≥ 1, G = (V ,E) is a k-uniform hypergraph, and wt is a
weighting of the edges of G with real weights so that the degree of each vertex of G in (G,wt)
is positive. Then

[
Πe∈E

(
Πk

j=1d
(
uj(e)

))wt(e)/k
]1/wt(E) ≥ d̄, (2.7)

with equality only if (G,wt) is regular.

Proof. Apply the theorem with ϕ(x)= logx. Note that d̄ > 0 implies that wt(E) > 0. �
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Corollary 2.4. With k, G, and wt as in Corollary 2.3, suppose that p > 0. Then

[
1

wt(E)

∑
e∈E

wt(e)

(
1
k

k∑
j=1

d
(
uj(e)

)p)]1/p

≥ d̄, (2.8)

with equality only if (G,wt) is regular.

For the proof, apply the theorem with ϕ(x)= xp.
It is intriguing that the edge weights in the corollaries above are allowed to be nonpos-

itive, as long as the degrees come out positive. It is worth noting that k can be 1 in these
corollaries; in that case, each edge weight is a degree, and the inequalities turn out to be
rather familiar, to inequality aficionados. The inequality in Corollary 2.4, for instance,
when k = 1, is a familiar consequence of Hölder’s inequality.

Corollaries 2.3 and 2.4 are only the most obvious applications of Theorem 2.2. It
is worth noting that the two are related: as p tends to zero from above, the left-hand
side of the inequality in Corollary 2.4 tends to the left-hand side of the inequality in
Corollary 2.3. Further, if wt(e) ≥ 0 for all e ∈ E, the left-hand side of the inequality in
Corollary 2.4 nonincreases to the left-hand side in Corollary 2.3, as p ↓ 0, so the latter
inequality is “better” than the former, in that case.

The following is a generalization of Corollary 2.3. We have stated Corollary 2.3 sepa-
rately for esthetic reasons.

Corollary 2.5. Suppose that ϕ takes positive values on a real interval I , and f defined
by f (x)= x logϕ(x) is convex on I . For each integer k ≥ 1 and each k-uniform hypergraph
G= (V ,E), and each weighting wt of the edges of G such that wt(E) > 0, and the weighted
degrees of the vertices are all in I ,

(
Πe∈E

(
Πk

i=1ϕ
(
d
(
ui(e)

)))wt(e)/k
)1/wt(E) ≥ ϕ

(
d̄
)
. (2.9)

Further, if f is strictly convex on I , then equality holds only if (G,wt) is regular.

For the proof, apply Theorem 2.2 with ϕ replaced by logϕ.

Corollary 2.6. Suppose that k ≥ 1, G is a k-uniform hypergraph, ϕ and wt satisfy the
hypotheses of Corollary 2.5, and wt(e)≥ 0 for each e ∈ E. Let F(x1, . . . ,xk)= (Πk

i=1ϕ(xi))1/k.
Then ∗(G,wt,F) holds, and if the function f in Corollary 2.5 is strictly convex on I , then
equality in ∗(G,wt,F) holds if and only if (G,wt) is regular.

Proof. It is a well-known improvement of the arithmetic mean-geometric mean inequal-
ity that if λ1, . . . ,λm ≥ 0,

∑m
i=1 λi = 1, and a1, . . . ,am ≥ 0, then

m∑
i=1

λiai ≥Πm
i=1a

λi
i . (2.10)
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Applying this with the numbers wt(e)/wt(E), e ∈ E, playing the roles of the λi, and the
numbers (Πk

j=1ϕ(d(uj(e))))1/k playing the roles of ai, we have

1
wt(E)

∑
e∈E

wt(e)
(
Πk

j=1ϕ
(
d
(
uj(e)

)))1/k ≥
(
Πe∈E

(
Πk

j=1ϕ
(
d
(
uj(e)

)))wt(e)/k)1/wt(E)
.

(2.11)

Noting that F(d̄, . . . , d̄) = (ϕ(d̄)k)1/k = ϕ(d̄), the result now follows from Corollary 2.5.
�

With a few loose ends hanging, Theorem 2.2 pretty well characterizes those ϕ such that
∗(G,wt,F) holds, for all k-uniform hypergraphs G, for admissible wt (see the hypothesis
of Theorem 2.2), and for F defined by F(x1, . . . ,xk) =∑k

i=1ϕ(xi). Theorem 2.7 makes a
start on the same job, for F of the form F(x1, . . . ,xk)=Πk

i=1ϕ(xi).

Theorem 2.7. Let k ≥ 1, let G= (V ,E) be a k-uniform hypergraph, and let ϕ and wt satisfy
the hypotheses of Corollary 2.5. Suppose that F is defined by F(x1, . . . ,xk)=Πk

i=1ϕ(xi). Then
∗(G,wt,F) holds, and if f (x)= x logϕ(x) is strictly convex on I , then equality holds if and
only if (G,wt) is regular.

Proof. Since g(x)= xk is convex and increasing on [0,∞),

1
wt(E)

∑
e∈E

wt(e)Πk
i=1ϕ

(
d
(
ui(e)

))
= 1

wt(E)

∑
e∈E

wt(e)
((
Πk

i=1ϕ
(
d
(
ui(e)

)))1/k
)k

≥
(

1
wt(E)

∑
e∈E

wt(e)
(
Πk

i=1ϕ
(
d
(
ui(e)

)))1/k
)k

≥ ϕ
(
d̄
)k = F

(
d̄, . . . , d̄

)
,

(2.12)

by Corollary 2.6. The condition for equality also follows from Corollary 2.6. �

Notice that ϕ(x)= x satisfies the hypothesis of Theorems 2.2 and 2.7, with I = (0,∞)
in the case of Theorem 2.7. The inequalities from Theorem 2.7 with this ϕ seem espe-
cially powerful, even though they are not, technically speaking, as “good” as Corollary 2.3.
The reader is encouraged to try out a few examples, especially in the case k = 2. For in-
stance, the inequality from Theorem 2.7 with ϕ being the identity function, with the edge
weighting of C4 in the proof of Theorem 2.2, is equivalent to the venerable inequality
x2 + y2 ≥ 2xy.

3. Two problems

(1) Which other simple graphs can play the role that C4 plays in Theorem 2.2? Of course,
we need not confine the question to simple graphs, but it seems a more attractive problem
if we mercifully limit the question, at this point.

By remarks at the end of Section 1, if 0∈ I and if G, a simple graph, has the property
that substituting G for C4 in Theorem 2.2 results in a true statement, then any graph of
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which G is a spanning subgraph will have that property. So solving this problem (taking,
say, I = [0,∞)) will amount to finding the minimal graphs of each order, if any, that have
that property. We wonder if all cycles have that property, and if any trees do.

(2) For 1≤ s≤ k, let A(k,s) denote the collection of s-subsets of {1, . . . ,k} and let Pk,s

be defined by Pk,s(x1, . . . ,xk) =∑B∈A(k,s)Πi∈Bxi; Pk,s is the “standard” symmetric poly-
nomial of degree s of k variables. Theorems 2.2 and 2.7 are about ∗(G,wt,F) being
satisfied for all k-uniform G and all admissible wt, with F of the form F(x1, . . . ,xk) =
Pk,s(ϕ(x1), . . . ,ϕ(xk)), for s= 1 and s= k. The game we are playing is to ask for which ϕ is
∗(G,wt,F) true for all (G,wt). Attacking this question for 1 < s < k looks quite like a job.
Here is a smaller, more approachable question: so far, for s= 1 and s= k, if I = [0,∞), the
functions ϕ(x)= xp, p > 0, have turned out to be “good;” will these functions be “good”
for all s and k?
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