A NOTE ON SELF-EXTREMAL SETS IN $L_{p}(\Omega)$ SPACES

VIET NGUYEN-KHAC AND KHIEM NGUYEN-VAN

Received 24 November 2004 and in revised form 25 August 2005

We give a necessary condition for a set in $L_{p}(\Omega)$ spaces $(1<p<\infty)$ to be self-extremal that partially extends our previous results to the case of L_{p} spaces. Examples of self-extremal sets in $L_{p}(\Omega)(1<p<\infty)$ are also given.

In $[4,5]$, we introduced the notion of (self-) extremal sets of a Banach space $(X,\|\cdot\|)$. For a nonempty bounded subset A of X, we denote by $d(A)$ its diameter and by $r(A)$ the relative Chebyshev radius of A with respect to the closed convex hull $\overline{\operatorname{co}} A$ of A, that is, $r(A):=\inf _{y \in \overline{c o} A} \sup _{x \in A}\|x-y\|$. The self-Jung constant of X is defined by $J_{s}(X):=$ $\sup \{r(A): A \subset X$, with $d(A)=1\}$. If in this definition we replace $r(A)$ by the relative Chebyshev radius $r_{X}(A)$ of A with respect to the whole X, we get the Jung constant $J(X)$ of X. Recall that a bounded subset A of X consisting of at least two points is said to be extremal (resp., self-extremal) if $r_{X}(A)=J(X) d(A)$ (resp., $r(A)=J_{s}(X) d(A)$).

Throughout the note, unless otherwise mentioned, we will work with the following assumption: (Ω, μ) is a σ-finite measure space such that $L_{p}(\Omega)$ is infinite-dimensional. The Jung and self-Jung constants of $L_{p}(\Omega)(1 \leq p<\infty)$ were determined in [1, 3, 6, 7]:

$$
\begin{equation*}
J\left(L_{p}(\Omega)\right)=J_{s}\left(L_{p}(\Omega)\right)=\max \left\{2^{1 / p-1}, 2^{-1 / p}\right\} . \tag{1}
\end{equation*}
$$

Theorem 1. If $1<p<\infty$ and A is self-extremal in $L_{p}(\Omega)$, then $\kappa(A)=d(A)$.
Here $\kappa(A):=\inf \{\varepsilon>0: A$ can be covered by finitely many sets of diameter $\leq \varepsilon\}$-the Kuratowski measure of noncompactness of A (for our convenience we use the notation $\kappa(A)$ in this note).

Before proving our theorem, we need the following results which for convenience we reformulate in the form of Lemmas 2 and 3.

Lemma 2 (see [1], Theorem 1.1). Let X be a reflexive strictly convex Banach space and A a finite subset of X. Then there exists a subset $B \subset A$ such that
(i) $r(B) \geq r(A)$;
(ii) $\|x-b\|=r(B)$ for every $x \in B$, where b is the relative Chebyshev center of B, that is, $b \in \overline{\operatorname{co}} B$ and $\sup _{x \in B}\|x-b\|=r(B)$.

Lemma 3 (see [8], Theorem 15.1). Let (Ω, μ) be a σ-finite measure space, $1<p<\infty$, x_{1}, \ldots, x_{n} vectors in $L_{p}(\Omega)$, and t_{1}, \ldots, t_{n} nonnegative numbers such that $\sum_{i=1}^{n} t_{i}=1$. The following inequality holds:

$$
\begin{equation*}
2 \sum_{i=1}^{n} t_{i}\left\|x_{i}-\sum_{j=1}^{n} t_{j} x_{j}\right\|^{\alpha} \leq \sum_{i, j=1}^{n} t_{i} t_{j}\left\|x_{i}-x_{j}\right\|^{\alpha}, \tag{2}
\end{equation*}
$$

where

$$
\alpha= \begin{cases}\frac{p}{p-1} & \text { if } 1<p<2, \tag{3}\\ p & \text { if } p \geq 2 .\end{cases}
$$

Proof of Theorem 1. Since $r(A)$ and $d(A)$ remain the same with replacing A by $\overline{\operatorname{co}} A$, we may assume that A is closed convex and $r(A)=1$. For each integer $n \geq 2$, we have

$$
\begin{equation*}
\bigcap_{x \in A} B\left(x, 1-\frac{1}{n}\right) \cap A=\varnothing \tag{4}
\end{equation*}
$$

where $B(x, r)$ denotes the closed ball centered at x with radius r which is weakly compact since $L_{p}(\Omega)$ is reflexive. Hence there exist $x_{q_{n-1}+1}, x_{q_{n-1}+2}, \ldots, x_{q_{n}}$ in A (with convention $\left.q_{1}=0\right)$ such that

$$
\begin{equation*}
\bigcap_{i=q_{n-1}+1}^{q_{n}} B\left(x_{i}, 1-\frac{1}{n}\right) \cap A=\varnothing . \tag{5}
\end{equation*}
$$

Set $A_{n}:=\left\{x_{q_{n-1}+1}, x_{q_{n-1}+2}, \ldots, x_{q_{n}}\right\}$. By Lemma 2, there exists a subset $B_{n}=\left\{y_{s_{n-1}+1}\right.$, $\left.y_{s_{n-1}+2}, \ldots, y_{s_{n}}\right\}$ of A_{n} satisfying properties (i)-(ii) of the lemma. Let us denote the relative Chebyshev center of B_{n} by b_{n}, and let $r_{n}:=r\left(B_{n}\right)$. By what we said above, we have $r_{n}>1-1 / n$ and $\left\|y_{i}-b_{n}\right\|=r_{n}$ for every $i \in I_{n}:=\left\{s_{n-1}+1, s_{n-1}+2, \ldots, s_{n}\right\}$. Since B_{n} is a finite set, there exist non-negative numbers $t_{s_{n-1}+1}, t_{s_{n-1}+2}, \ldots, t_{s_{n}}$ with $\sum_{i \in I_{n}} t_{i}=1$ such that $b_{n}=\sum_{i \in I_{n}} t_{i} y_{i}$. Applying Lemma 3, one gets

$$
\begin{equation*}
2 r_{n}^{\alpha}=2 \sum_{i \in I_{n}} t_{i}\left\|y_{i}-\sum_{j \in I_{n}} t_{j} y_{j}\right\|^{\alpha} \leq \sum_{i, j \in I_{n}} t_{i} t_{j}\left\|y_{i}-y_{j}\right\|^{\alpha} \tag{6}
\end{equation*}
$$

where α is as in (3).
Setting $B_{\infty}:=\left\{y_{s_{n-1}+1}, y_{s_{n-1}+2}, \ldots, y_{s_{n}}\right\}_{n=2}^{\infty}$, we claim that $\kappa\left(B_{\infty}\right)=d(A)$. Evidently $\kappa\left(B_{\infty}\right) \leq$ $d(A)$ by definition. If $\mathcal{\kappa}\left(A_{\infty}\right)<d(A)$, so there exist $\varepsilon_{0} \in(0, d(A))$ satisfying $\kappa\left(B_{\infty}\right) \leq d(A)-$ ε_{0}, and subsets $D_{1}, D_{2}, \ldots, D_{m}$ of $L_{p}(\Omega)$ with $d\left(D_{i}\right) \leq d(A)-\varepsilon_{0}$ for every $i=1,2, \ldots, m$
such that $B_{\infty} \subset \bigcup_{i=1}^{m} D_{i}$. Then one can find at least one set among $D_{1}, D_{2}, \ldots, D_{m}$, say D_{1}, with the property that there are infinitely many n satisfying

$$
\begin{equation*}
\sum_{i \in J_{n}} t_{i} \geq \frac{1}{m}, \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
J_{n}:=\left\{i \in I_{n}: y_{i} \in D_{1}\right\} . \tag{8}
\end{equation*}
$$

From (1), it follows that $(d(A))^{\alpha}=\left(1 / J_{s}\left(L_{p}(\Omega)\right)\right)^{\alpha}=2$. In view of (6), we have, for all n satisfying (7),

$$
\begin{align*}
2 \cdot r_{n}^{\alpha} & \leq \sum_{i, j \in I_{n}} t_{i} t_{j}\left\|y_{i}-y_{j}\right\|^{\alpha} \\
& \leq\left(d(A)-\varepsilon_{0}\right)^{\alpha} \cdot\left(\sum_{i, j \in J_{n}} t_{i} t_{j}\right)+(d(A))^{\alpha} \cdot\left(1-\sum_{i, j \in J_{n}} t_{i} t_{j}\right) \tag{9}\\
& \leq 2-\left[(d(A))^{\alpha}-\left(d(A)-\varepsilon_{0}\right)^{\alpha}\right] \cdot \frac{1}{m^{2}} .
\end{align*}
$$

On the other hand, obviously $1-1 / n<r_{n} \leq 1$, therefore $\lim _{n \rightarrow \infty} r_{n}=1$. We get a contradiction with (9) since there are infinitely many n satisfying (7).

One concludes that $\kappa\left(B_{\infty}\right)=d(A)$, and hence $\kappa(A)=d(A)$.
The proof of Theorem 1 is complete.
Observe that no relatively compact set A in $L_{p}(\Omega)(1<p<\infty)$ is self-extremal by Theorem 1. Hence we obtain an immediate extension of Gulevich's result for $L_{p}(\Omega)$ spaces.

Corollary 4 (cf. [2]). Suppose that $1<p<\infty$ and that A is a relatively compact set in $L_{p}(\Omega)$ with $d(A)>0$. Then $r(A)<(1 / \sqrt[\alpha]{2}) d(A)$, where α is as in (3).

The following theorem gives a necessary condition for a set in $L_{p}(\Omega)(1<p<\infty)$ to be self-extremal.

Theorem 5. Under the assumptions of Theorem 1, for every $\varepsilon \in(0, d(A))$, every positive integer m, there exists an m-simplex $\Delta(\varepsilon, m)$ with vertices in A such that each edge of $\Delta(\varepsilon, m)$ has length not less than $d(A)-\varepsilon$.

Proof. We will assume A is closed convex and $r(A)=1$. From the proof of Theorem 1, we derived a sequence $\left\{y_{s_{n-1}+1}, y_{s_{n-1}+2}, \ldots, y_{s_{n}}\right\}_{n=2}^{\infty}$ in A and a sequence of positive numbers $\left\{t_{s_{n-1}+1}, t_{s_{n 1}+2}, \ldots, t_{s_{n}}\right\}_{n=2}^{\infty}$ (with convention $s_{1}=0$) such that

$$
\begin{equation*}
2 \cdot r_{n}^{\alpha} \leq \sum_{i, j \in I_{n}} t_{i} t_{j}\left\|y_{i}-y_{j}\right\|^{\alpha}, \quad \sum_{i \in I_{n}} t_{i}=1, \tag{10}
\end{equation*}
$$

where $r_{n} \in(1-1 / n, 1], \alpha$ is as in (3), and $I_{n}:=\left\{s_{n-1}+1, s_{n-1}+2, \ldots, s_{n}\right\}$.

We denote

$$
\begin{align*}
T_{n j} & :=\sum_{i \in I_{n}} t_{i}\left\|y_{i}-y_{j}\right\|^{\alpha}, \\
S_{n} & :=\left\{j \in I_{n}: T_{n j} \geq 2 \cdot r_{n}^{\alpha} \cdot\left(1-\sqrt{1-r_{n}^{\alpha}}\right)\right\}, \\
S_{n}\left(y_{j}\right) & :=\left\{i \in I_{n}:\left\|y_{i}-y_{j}\right\|^{\alpha} \geq 2 \cdot\left(1-\frac{1}{\sqrt[4]{n}}\right)\right\}, \quad j \in S_{n}, \tag{11}\\
\hat{S}_{n}\left(y_{j}\right) & :=\left\{y_{i}: i \in S_{n}\left(y_{j}\right)\right\}, \quad j \in S_{n}, \\
\lambda_{n} & :=\sum_{i \in I_{n} \backslash S_{n}} t_{i}=1-\sum_{i \in S_{n}} t_{i} .
\end{align*}
$$

One can proceed furthermore as follows. We have

$$
\begin{align*}
2 r_{n}^{\alpha} & \leq \sum_{i, j \in I_{n}} t_{i} t_{j}\left\|y_{i}-y_{j}\right\|^{\alpha} \\
& =\sum_{j \in S_{n}} t_{j} \sum_{i \in I_{n}} t_{i}\left\|y_{i}-y_{j}\right\|^{\alpha}+\sum_{j \in I_{n} \backslash S_{n}} t_{j} \sum_{i \in I_{n}} t_{i}\left\|y_{i}-y_{j}\right\|^{\alpha} \\
& \leq 2 \sum_{j \in S_{n}} t_{j}+2 r_{n}^{\alpha}\left(1-\sqrt{1-r_{n}^{\alpha}}\right) \sum_{j \in I_{n} \backslash S_{n}} t_{j} \tag{12}\\
& =2-2 \lambda_{n}\left(1-r_{n}^{\alpha}+r_{n}^{\alpha} \sqrt{1-r_{n}^{\alpha}}\right) \\
& \leq 2-2 \lambda_{n} \sqrt{1-r_{n}^{\alpha}} .
\end{align*}
$$

Hence $\lambda_{n} \leq \sqrt{1-r_{n}^{\alpha}} \rightarrow 0$, as $n \rightarrow \infty$. Thus $\lim _{n \rightarrow \infty}\left(\sum_{i \in S_{n}} t_{i}\right)=\lim _{n \rightarrow \infty}\left(1-\lambda_{n}\right)=1$.
On the other hand,

$$
\begin{equation*}
2 r_{n}^{\alpha} \leq \sum_{i, j \in I_{n}} t_{i} t_{j}\left\|y_{i}-y_{j}\right\|^{\alpha} \leq 2\left(1-\left(\sum_{i \in I_{n}} t_{i}^{2}\right)\right) \leq 2\left(1-t_{i}^{2}\right) \tag{13}
\end{equation*}
$$

for every $i \in I_{n}$. Therefore $t_{i} \leq \sqrt{1-r_{n}^{\alpha}} \rightarrow 0$ as $n \rightarrow \infty$. One concludes that the cardinality $\left|S_{n}\right|$ of S_{n} tends to ∞ as $n \rightarrow \infty$. In a similar manner (cf. [5, the proof of Theorem 3.4]), for every $\varepsilon \in(0, d(A))$ and a given positive integer m, we choose n sufficiently large satisfying

$$
\begin{equation*}
\left|S_{n}\right|>m, \quad \frac{2 \alpha m}{\sqrt[4]{n}}<1, \quad 2\left(1-\frac{1}{\sqrt[4]{n}}\right) \geq(d(A)-\varepsilon)^{\alpha} \tag{14}
\end{equation*}
$$

such that for every $1 \leq k \leq m$ and every choice of $i_{1}, i_{2}, \ldots, i_{k} \in S_{n}$, we have

$$
\begin{equation*}
\bigcap_{\nu=1}^{k} \hat{S}_{n}\left(y_{i_{\nu}}\right) \neq \varnothing . \tag{15}
\end{equation*}
$$

With m and n as above and a fixed $j \in S_{n}$, setting $z_{1}:=y_{j}$, we take consecutively $z_{2} \in$ $\hat{S}_{n}\left(z_{1}\right), z_{3} \in \hat{S}_{n}\left(z_{1}\right) \cap \hat{S}_{n}\left(z_{2}\right), \ldots, z_{m+1} \in \bigcap_{k=1}^{m} \hat{S}_{n}\left(z_{k}\right)$. One sees that

$$
\begin{equation*}
\left\|z_{i}-z_{j}\right\|^{\alpha} \geq 2\left(1-\frac{1}{\sqrt[4]{n}}\right) \geq(d(A)-\varepsilon)^{\alpha} \tag{16}
\end{equation*}
$$

for all $i \neq j$ in $\{1,2, \ldots, m+1\}$, with n sufficiently large. We obtain an m-simplex formed by $z_{1}, z_{2}, \ldots, z_{m+1}$, whose edges have length not less than $d(A)-\varepsilon$, as claimed.

The proof of Theorem 5 is complete.
Remark 6. (i) Since for $L_{p}(\Omega)$ spaces $J_{s}=J$, the extremal sets in $L_{p}(\Omega)$ are also self-extremal. Thus we obtain a similar result for extremal sets in $L_{p}(\Omega)$ via Theorem 5 above.
(ii) In particular, $\Omega=\mathbb{N}, \mu(A):=\operatorname{card}(A), A \subset \mathbb{N}$ leads to the ℓ_{p} space case [5, Theorem 3.4].

Example 7. (i) Let $p \geq 2$, consider a sequence $\left\{\Omega_{n}\right\}_{i=1}^{\infty}$ consisting of measurable subsets of Ω such that

$$
\begin{equation*}
0<\mu\left(\Omega_{i}\right)<\infty, \quad i=1,2, \ldots ; \quad \Omega_{i} \cap \Omega_{j}=\varnothing \quad \forall i \neq j ; \quad \bigcup_{i=1}^{\infty} \Omega_{i}=\Omega \tag{17}
\end{equation*}
$$

Let $\chi_{\Omega_{i}}$ denote the characteristic function of Ω_{i}, and set

$$
\begin{equation*}
A:=\left\{f_{i}\right\}_{i=1}^{\infty}, \quad f_{i}:=\frac{\chi_{\Omega_{i}}}{\left[\mu\left(\Omega_{i}\right)\right]^{1 / p}} . \tag{18}
\end{equation*}
$$

One can check easily that $r(A)=1, d(A)=2^{1 / p}$, hence A is a self-extremal set in $L_{p}(\Omega)$.
(ii) In the case $1<p<2$, we set $B:=\left\{r_{i}\right\}_{i=0}^{\infty}$, where $\left\{r_{i}\right\}_{i=0}^{\infty}$ is the sequence of Rademacher functions in $L_{p}[0,1]$. If $r \in \operatorname{co}\left\{r_{0}, r_{1}, \ldots, r_{n}\right\}$ and $k \geq n+1$, then it is easy to see that $d(B)=2^{1-1 / p}$ and

$$
\begin{equation*}
\left\|r-r_{k}\right\|_{p}:=\left(\int_{0}^{1}\left|r-r_{k}\right|^{p} d \mu\right)^{1 / p} \geq\left|\int_{0}^{1}\left(r-r_{k}\right) r_{k} d \mu\right|=1 \tag{19}
\end{equation*}
$$

hence $r(B)=1$. Thus B is a self-extremal set in $L_{p}[0,1]$ with $1<p<2$. This is in contrast to the ℓ_{p} case [5], where we conjectured that there are no (self)-extremal sets in ℓ_{p} spaces with $1<p<2$.

Acknowledgment

The authors would like to thank the referees for several improvements and suggestions.

References

[1] T. Domínguez Benavides, Normal structure coefficients of $L^{p}(\Omega)$, Proc. Roy. Soc. Edinburgh Sect. A 117 (1991), no. 3-4, 299-303.
[2] N. M. Gulevich, The radius of a compact set in Hilbert space, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 167 (1988), Issled. Topol. 6, 157-158, 192 (Russian).
[3] V. I. Ivanov and S. A. Pichugov, Jung constants in ℓ_{p}^{n}-spaces, Mat. Zametki 48 (1990), no. 4, 37-47, 158 (Russian).
[4] V. Nguyen-Khac and K. Nguyen-Van, A characterization of extremal sets in Hilbert spaces, to appear in FPM, http://arxiv.org/abs/math.MG/0203190.
[5] - A geometric characterization of extremal sets in ℓ_{p} spaces, to appear in JMAA, http://arxiv.org/abs/math.MG/0207304.
[6] S. A. Pichugov, The Jung constant of the space L_{p}, Mat. Zametki 43 (1988), no. 5, 604-614, 701 (Russian).
[7] , Jung's relative constant of the space L_{p}, Ukrain. Mat. Zh. 42 (1990), no. 1, 122-125 (Russian).
[8] J. H. Wells and L. R. Williams, Embeddings and Extensions in Analysis, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 84, Springer, New York, 1975.

Viet Nguyen-Khac: Institute of Mathematics, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet Road, 10307 Hanoi, Vietnam

E-mail address: nkviet@math.ac.vn
Khiem Nguyen-Van: Department of Mathematics \& Informatics, Hanoi University of Education, Cau Giay District, Hanoi, Vietnam

E-mail address: nguyenvankhiem77@yahoo.com

