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By using the notion of Jη-proximal mapping for a nonconvex, lower semicontinuous, η-
subdifferentiable proper functional in reflexive Banach spaces, we introduce and study a
class of generalized set-valued variational-like inclusions in Banach spaces and show their
equivalences with a class of Wiener-Hopf equations. We propose two new iterative algo-
rithms for the class of generalized set-valued variational-like inclusions. Furthermore, we
prove the existence of solutions of the generalized set-valued variational-like inclusions
and the convergence criteria of the two iterative algorithms for the generalized set-valued
variational-like inclusions in reflexive Banach spaces. The results presented in this paper
are new and are an extension of the corresponding results in this direction.

1. Introduction

Variational inequality theory has emerged as a powerful tool for a wide class of unrelated
problems arising in various branches of physical, engineering, pure, and applied sciences
in a unified and general framework, see, for example, [8, 9, 10]. Variational inequalities
have been extended and generalized in different directions by using novel and innovative
techniques and ideas both for their own sake and for their applications, see, for exam-
ple, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 31]. An important and useful generalization of variational(-like) and
quasivariational(-like) inequalities is a variational(-like) inclusion.

Iterative algorithms have played a central role in the approximation solvability, espe-
cially in nonlinear variational inequalities as well as nonlinear equations. In general, we
cannot use resolvent operator of proximal mapping to construct algorithms for finding
the approximate solutions of variational-like inequalities (inclusions).

In the early 1990s, Shi [27] and Robinson [26] introduced and studied Wiener-Hopf
equations. Very recently, Ahmad et al. [2] have defined a new notion of Jη-proximal map-
ping for a noncovex, lower semicontinuous, η-subdifferentiable proper functional in Ba-
nach spaces which is an extension of J-proximal mapping given by Ding and Xia [7].

Motivated and inspired by the recent work in this direction, we introduce a class of
generalized set-valued variational-like inclusions and show their equivalences with a class
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of Wiener-Hopf equations by using the notion of Jη-proximal mapping for a nonconvex,
lower semicontinuous, η-subdifferentiable proper functional in reflexive Banach spaces.
Based on these equivalences, we propose two new iterative algorithms for the class of
generalized set-valued variational-like inclusions. Furthermore, we prove the existence of
solutions and discuss the convergence criteria for these generalized set-valued variational-
like inclusions. The results obtained in this paper are new and are an extension of the
corresponding results in [2, 3, 4, 5, 7, 13].

2. Preliminaries

Let E be a real Banach space equipped with the norm ‖ · ‖. Let 〈·,·〉 denote the dual pair
between E and its dual E∗ and let ∆ : E→ 2E

∗
be the normalized duality mapping defined

by

∆(x)= { f ∈ E∗ | 〈 f ,x〉 = ‖x‖2, ‖x‖ = ‖ f ‖E∗
}

, ∀x ∈ E. (2.1)

In the sequel, we will denote a selection of normalized duality mapping ∆ by j. It is well
known that if E is smooth, then ∆ is single-valued and if E =H , a Hilbert space, then ∆
is an identity map.

We denote by CB(E) the family of all nonempty closed and bounded subsets of E;
H(·,·) is the Hausdorff metric on CB(E) defined by

H(A,B)=max

{
sup
u∈A

d(u,B), sup
v∈B

d(A,v)

}
, ∀A,B ∈ CB(E). (2.2)

We recall the following definitions and results which are needed in the sequel.

Definition 2.1. Let A : E→ CB(E∗) be a set-valued mapping, let J : E→ E∗ and g : E→ E
be two single-valued mappings, and let η : E×E→ E be a bifunction.

(i) A is said to be (λ−H)-Lipschitz continuous if there exists a constant λ > 0 such
that

H(Ax,Ay)≤ λ‖x− y‖, ∀x, y ∈ E; (2.3)

(ii) J is said to be α-strongly η-monotone if there exists a constant α > 0 such that

〈
J(x)− J(y),η(x, y)

〉≥ α‖x− y‖2, ∀x, y ∈ E; (2.4)

(iii) g is said to be k-strongly accretive if there exists a constant k > 0 such that

〈
j(x− y),g(x)− g(y)

〉≥ k‖x− y‖2, ∀x, y ∈ E, j(x− y)∈
(x− y); (2.5)

(iv) η is said to be α-strongly monotone if there exists a constant α > 0 such that

〈
x− y,η(x, y)

〉≥ α‖x− y‖2, ∀x, y ∈ E. (2.6)
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Definition 2.2 [4]. Let η : E× E → E be a single-valued mapping. A proper functional
φ : E→ R∪{+∞} is said to be η-subdifferentiable at a point x ∈ E if there exists a point
f ∗ ∈ E∗ such that

φ(y)−φ(x)≥ 〈 f ∗,η(y,x)
〉

, ∀y ∈ E, (2.7)

where f ∗ is called η-subgradient of φ at x. The set of all η-subgradients of φ at x is
denoted by ∂ηφ(x). The mapping ∂ηφ : E→ 2E

∗
defined by

∂ηφ(x)= { f ∗ ∈ E∗ : φ(y)−φ(x)≥ 〈 f ∗,η(y,x)
〉

, ∀y ∈ E
}

(2.8)

is said to be η-subdifferential of φ at x ∈ E.

Definition 2.3 [5]. A functional f : E×E→ R∪{+∞} is said to be 0-diagonally quasicon-
cave (in short, 0-DQCV) in x if for any finite set {x1, . . . ,xn} ⊂ E and for any y =∑n

i=1 λixi
with λi ≥ 0 and

∑n
i=1 λi = 1,

∑n
i=1 f (xi, y)≤ 0.

Definition 2.4. Let η : E× E→ E be a single-valued mapping. Let φ : E→ R∪ {+∞} be
lower semicontinuous, η-subdifferentiable (may not be convex) proper functional and
let J : E→ E∗ be a nonlinear mapping. If for any given point x∗ ∈ E∗ and ρ > 0, there
exists a unique point x ∈ E satisfying

〈
Jx− x∗,η(y,x)

〉
+ ρφ(y)− ρφ(x)≥ 0, ∀y ∈ E, (2.9)

then the mapping x∗ �→ x, denoted by J
∂ηφ
ρ (x∗), is called (J −η)-proximal mapping of φ.

Clearly, there exists x∗ − Jx ∈ ρ∂ηφ(x) and then it follows that

J
∂ηφ
ρ
(
x∗
)= (J + ρ∂ηφ

)−1(
x∗
)
. (2.10)

Lemma 2.5 (Nadler [25]). Let E be a complete metric space and let T : E→ CB(E) be a set-
valued mapping. Then for any ε > 0 and for any x, y ∈ E, u ∈ T(x), there exists v ∈ T(y)
such that

d(u,v)≤ (1 + ε)H
(
T(x),T(y)

)
. (2.11)

Lemma 2.6 [7]. Let D be a nonempty convex subset of a topology vector space and let f :
D×D→ R∪{±∞} be such that

(i) for each x ∈D, y �→ f (x, y) is lower semicontinuous on each compact subset of D,
(ii) for each finite set {x1, . . . ,xn} ⊂D and for each y =∑n

i=1 λixi with λi ≥ 0 and
∑n

i=1 λi
= 1, min1≤i≤n f (xi, y)≤ 0,

(iii) there exists a nonempty compact convex subset D0 of D and a nonempty compact
subset K of D such that for each y ∈ D \K , there is an x ∈ co(D0∪{y}) satisfying
f (x, y) > 0.

Then there exists ŷ ∈D such that f (x, ŷ)≤ 0 for all x ∈D.
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Very recently, exploiting Lemma 2.6 and using the similar technique of Ding and Xia
[7], Ahmad et al. [2] have proved the existence and Lipschitz continuity of the (J − η)-
proximal mapping of a proper functional φ on reflexive Banach spaces.

Lemma 2.7 [2]. Let E be a reflexive Banach space with the dual space E∗ and let φ : E→
R∪{+∞} be a lower semicontinuous, η-subdifferentiable proper functional (which may not
be convex). Let J : E→ E∗ be continuous and η-strongly monotone with constant α > 0. Let
η : E×E→ E be a continuous mapping such that η(y′, y)=−η(y, y′) for all y′, y ∈ E, and
for any x ∈ E, the function h(y,x)= 〈x∗ − Jx,η(y,x)〉 is 0-DQCV in y. Then for any ρ > 0,
and any x∗ ∈ E∗, there exists a unique x ∈ E such that〈

Jx− x∗,η(y,x)
〉

+ ρφ(y)− ρφ(x)≥ 0, ∀y ∈ E. (2.12)

That is, x = J
∂ηφ
ρ (x∗) and so the Jη-proximal mapping of φ is well defined. Furthermore,

if η : E × E → E is Lipschitz continuous with constant τ > 0, then J
∂ηφ
ρ is (τ/α)-Lipschitz

continuous.

In order to obtain our results, we also use the following lemma.

Lemma 2.8 [2]. Let E be a real Banach space and let ∆ : E→ 2E
∗

be the normalized duality
mapping. Then

‖x+ y‖2 ≤ ‖x‖2 + 2
〈
y, j(x+ y)

〉
, ∀x, y ∈ E, j(x+ y)∈ ∆(x+ y). (2.13)

Let A,B,C,D : E→ CB(E∗) and G : E→ CB(E) be set-valued mappings; let M,N : E∗ ×
E∗ → E∗, η : E×E→ E, and g : E→ E be single-valued mappings; and let φ : E×E→ R∪
{+∞} be such that for each fixed s ∈ E, φ(·,s) : E→ R∪{+∞} is a proper lower semicon-
tinuous and η-subdifferentiable on E and g(E)∩dom∂ηφ(·,s) �= ∅. Consider the following
generalized nonlinear set-valued variational-like inclusion problem: find x ∈ E, u ∈ A(x),
v ∈ B(x), w ∈ C(x), z ∈D(x), and s∈G(x) such that g(x)∈ dom(∂ηφ(·,s)) and〈

M(u,v)−N(w,z),η
(
y,g(x)

)〉≥ φ
(
g(x),s

)−φ(y,s), ∀y ∈ E. (2.14)

Special cases. (I) IfG= I , the identity mapping, then problem (2.14) reduces to the following
generalized nonlinear variational-like inclusion: find x ∈ E, u∈ A(x), v ∈ B(x), w ∈ C(x),
z ∈D(x) such that g(x)∈ dom(∂ηφ(·,x)) and〈

M(u,v)−N(w,z),η
(
y,g(x)

)〉≥ φ
(
g(x),x

)−φ(y,x), ∀y ∈ E, (2.15)

which is to be a new one.
(II) If M(u,v)= f (x) for all x ∈ E, u∈ A(x), v ∈ B(x), then problem (2.15) is equivalent

to the following generalized quasivariational-like inclusion problem: find x ∈ E, u ∈ A(x),
v ∈ B(x) such that g(x)∈ dom(∂ηφ(·,x)) and〈

f (x)−N(u,v),η
(
y,g(x)

)〉≥ φ
(
g(x),x

)−φ(y,x), ∀y ∈ E. (2.16)

This problem has been introduced and studied by Ahmad et al. [2] very recently.
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(III) If E =H , a Hilbert space, N(w,z) = 0 for all w ∈ C(x) and z ∈ D(x), and G = I ,
an identity mapping on H , then problem (2.14) reduces to the following generalized quas-
ivariational-like inclusion problem: find x ∈ H , u ∈ A(x), v ∈ B(x) such that g(x) ∈
dom(∂ηφ(·,x)) and

〈
M(u,v),η

(
y,g(x)

)〉≥ φ
(
g(x),x

)−φ(y,x), ∀y ∈H , (2.17)

which is introduced and studied by Ding [4].
(IV) If E = H , a Hilbert space; M(u,v) = u− v, for all u,v ∈ H ; A, B are both single-

valued mappings; N(w,z) = 0 for all w ∈ C(x) and z ∈ D(x);and G = I , an identity
mapping on H , then problem (2.14) reduces to the following variational inclusion consid-
ered by Ding and Luo [5]: find x ∈H such that g(x)∩dom∂ηφ(·,x) �= ∅ and

〈
A(x)−B(x),η

(
y,g(x)

)〉≥ φ
(
g(x),x

)−φ(y,x), ∀y ∈H. (2.18)

We remark that for the appropriate and suitable choices of the mappings η, M, N ,
A, B, C, D, G, g, φ and the space E, one can obtain from problem (2.14) many known
and new classes of generalized variational and quasivariational inequalities (inclusions)
and complementarity problems, studied previously by many authors as special cases, see
[2, 4, 5, 7, 12] and the references therein.

3. Wiener-Hopf equations and iterative algorithms

Assume that g(E)∩dom∂ηφ(·,s) �= ∅ for any s∈ E.
Related to problem (2.14), we consider the following Wiener-Hopf equation (in short,

WHE): find t ∈ E∗, x ∈ E, u∈ A(x), v ∈ B(x), w ∈ C(x), z ∈D(x), s∈G(x) such that

M(u,v)−N(w,z) + ρ−1R
∂ηφ(·,s)
ρ (t)= 0, (3.1)

where ρ > 0 is a constant, R
∂ηφ(·,s)
ρ = I − J ◦ J∂ηφ(·,s)

ρ , and I : E∗ → E∗ is the identity map-
ping.

Lemma 3.1. The following statements are equivalent:
(i) (x,u,v,w,z,s), where x ∈ E, u∈ A(x), v ∈ B(x), w ∈ C(x), z ∈D(x), s∈G(x), is a

solution of problem (2.14);
(ii) (x,u,v,w,z,s), where x ∈ E, u∈ A(x), v ∈ B(x), w ∈ C(x), z ∈D(x), s∈G(x), is a

solution of the following equation:

g(x)= J
∂ηφ(·,s)
ρ

(
J ◦ g(x)− ρM(u,v) + ρN(w,z)

)
, (3.2)

where J
∂ηφ(·,s)
ρ denotes Jη-proximal mapping of φ(·,s) for each fixed s ∈ E, J ◦ g de-

notes J composition g, and ρ > 0 is a constant;
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(iii) (t,x,u,v,w,z,s), where x ∈ E, u∈ A(x), v ∈ B(x), w ∈ C(x), z ∈D(x), s∈G(x), is
a solution of WHE (3.1), where

g(x)= J
∂ηφ(·,s)
ρ (t), (3.3)

t = J ◦ g(x)− ρM(u,v) + ρN(w,z). (3.4)

Proof. It is obvious that (i) is equivalent to (ii) in view of the definition of J
∂ηφ
ρ . Hence, we

only need to prove that (i) is equivalent to (ii). In fact, let (x,u,v,w,z,s) be the solution

of problem (2.14), then (3.2) holds. Using the fact that R
∂ηφ(·,s)
ρ = I − J ◦ J∂ηφ(·,s)

ρ and (3.2),
we get that

R
∂ηφ(·,s)
ρ

[
J ◦ g(x)− ρM(u,v) + ρN(w,z)

]
= J ◦ g(x)− ρM(u,v) + ρN(w,z)− J ◦ J∂ηφ(·,s)

ρ
[
J ◦ g(x)− ρM(u,v) + ρN(w,z)

]
= J ◦ g(x)− ρM(u,v) + ρN(w,z)− J ◦ g(x)

=−ρM(u,v) + ρN(w,z),
(3.5)

which implies that

M(u,v)−N(w,z) + ρ−1R
∂ηφ(·,s)
ρ (t)= 0, (3.6)

with t = J ◦ g(x)− ρM(u,v) + ρN(w,z).
Conversely, let (t,x,u,v,w,z,s) be a solution of WHE (3.1). It follows that

ρM(u,v)− ρN(w,z)=−R∂ηφ(·,s)
ρ (t)= J ◦ J∂ηφ(·,s)

ρ (t)− t. (3.7)

From (3.2) and (3.7), we have

ρM(u,v)− ρN(w,z)

= J ◦ J∂ηφ(·,s)
ρ

[
J ◦ g(x)− ρM(u,v) + ρN(w,z)

]− J ◦ g(x) + ρM(u,v)− ρN(w,z)

=⇒ J ◦ g(x)= J ◦ J∂ηφ(·,s)
ρ

[
J ◦ g(x)− ρM(u,v) + ρN(w,z)

]
=⇒ g(x)= J

∂ηφ(·,s)
ρ

[
J ◦ g(x)− ρM(u,v) + ρN(w,z)

]
,

(3.8)

which means that (x,u,v,w,z,s) is the solution of problem (2.14). This completes the
proof. �

Based on Lemma 3.1, we can suggest the following iterative algorithms for problems
(2.14) and (2.15), respectively.
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Algorithm 3.2. Let A,B,C,D : E→ CB(E∗) and G : E→ CB(E) be set-valued mappings, let
M,N :E∗×E∗ → E∗, η : E×E→ E, J : E→ E∗ be single-valued mappings, and let g : E→ E
be the single-valued mapping with g(E)= E. Let φ : E×E→ R∪{+∞} be a lower semi-
continuous, η-subdifferentiable proper functional on E satisfying g(E)∩dom ∂ηφ(·,s) �=
∅. For given t0 ∈ E∗, x0 ∈ E, u0 ∈ A(x0), v0 ∈ B(x0), w0 ∈ C(x0), z0 ∈D(x0), s0 ∈G(x0),
by (3.4), we have

t1 = J ◦ g(x0
)− ρM

(
u0,v0

)
+ ρN

(
w0,z0

)
. (3.9)

By g(E)= E, there exists a point x1 ∈ E such that

g
(
x1
)= J

∂ηφ(·,s0)
ρ

(
t1
)
. (3.10)

Since u0 ∈ A(x0), v0 ∈ B(x0), w0 ∈ C(x0), z0 ∈ D(x0), s0 ∈ G(x0), by Nadler’s lemma
(Lemma 2.5), there exist u1 ∈ A(x1), v1 ∈ B(x1), w1 ∈ C(x1), z1 ∈D(x1), s1 ∈G(x1) such
that ∥∥u1−u0

∥∥≤ (1 + 1)H
(
A
(
x1
)
,A
(
x0
))

,∥∥v1− v0
∥∥≤ (1 + 1)H

(
B
(
x1
)
,B
(
x0
))

,∥∥w1−w0
∥∥≤ (1 + 1)H

(
C
(
x1
)
,C
(
x0
))

,∥∥z1− z0
∥∥≤ (1 + 1)H

(
D
(
x1
)
,D
(
x0
))

,∥∥s1− s0
∥∥≤ (1 + 1)H

(
G
(
x1
)
,G
(
x0
))
.

(3.11)

Let t2 = J ◦ g(x1)− ρM(u1,v1) + ρN(w1,z1), by g(E)= E, there exists a point x2 ∈ E such
that

g
(
x2
)= J

∂ηφ(·,s1)
ρ

(
t2
)
, (3.12)

continuing the above process inductively, we can define the following iterative sequences
{tn}, {xn}, {un}, {vn}, {wn}, {zn}, {sn} for solving problem (2.14) as follows:

(i)

un ∈ A
(
xn
)

:
∥∥un+1−un

∥∥≤ (1 + (n+ 1)−1)H(A(xn+1
)
,A
(
xn
))

,

vn ∈ B
(
xn
)

:
∥∥vn+1− vn

∥∥≤ (1 + (n+ 1)−1)H(B(xn+1
)
,B
(
xn
))

,

wn ∈ C
(
xn
)

:
∥∥wn+1−wn

∥∥≤ (1 + (n+ 1)−1)H(C(xn+1
)
,C
(
xn
))

,

zn ∈D
(
xn
)

:
∥∥zn+1− zn

∥∥≤ (1 + (n+ 1)−1)H(D(xn+1
)
,D
(
xn
))

,

sn ∈G
(
xn
)

:
∥∥sn+1− sn

∥∥≤ (1 + (n+ 1)−1)H(G(xn+1
)
,G
(
xn
))

;

(3.13)

(ii)

tn+1 = J ◦ g(xn)− ρM
(
un,vn

)
+ ρN

(
wn,zn

)
; (3.14)
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(iii)

g
(
xn+1

)= J
∂ηφ(·,sn)
ρ

(
tn+1

)
, (3.15)

for n≥ 0, where ρ > 0 is a constant.

Algorithm 3.3. Let A,B,C,D : E→ CB(E∗) be four set-valued mappings, let M,N : E∗ ×
E∗ → E∗, η : E×E→ E, J : E→ E∗, g : E→ E be single-valued mappings. Let φ : E×E→
R∪{+∞} be a lower semicontinuous, η-subdifferentiable proper functional on E satis-
fying g(E)∩dom∂ηφ(·,x) �= ∅. For given t0 ∈ E∗, x0 ∈ E, u0 ∈ A(x0), v0 ∈ B(x0), w0 ∈
C(x0), z0 ∈ D(x0), compute the sequences {tn}, {xn}, {un}, {vn}, {wn}, {zn} for solving
problem (2.15) as follows:

(i)

un ∈ A
(
xn
)

:
∥∥un+1−un

∥∥≤ (1 + (n+ 1)−1)H(A(xn+1
)
,A
(
xn
))

,

vn ∈ B
(
xn
)

:
∥∥vn+1− vn

∥∥≤ (1 + (n+ 1)−1)H(B(xn+1
)
,B
(
xn
))

,

wn ∈ C
(
xn
)

:
∥∥wn+1−wn

∥∥≤ (1 + (n+ 1)−1)H(C(xn+1
)
,C
(
xn
))

,

zn ∈D
(
xn
)

:
∥∥zn+1− zn

∥∥≤ (1 + (n+ 1)−1)H(D(xn+1
)
,D
(
xn
))

;

(3.16)

(ii)

tn+1 = (1− λ)tn + λ
[
J ◦ g(xn)− ρM

(
un,vn

)
+ ρN

(
wn,zn

)]
, (3.17)

for n≥ 0;
(iii)

g
(
xn
)= J

∂ηφ(·,xn)
ρ

(
tn
)
, ∀n≥ 1, (3.18)

where ρ > 0 is a constant and 0 < λ < 1 is a relaxation parameter.

4. Convergence

In this section, we prove the existence of solutions to problems (2.14) and (2.15) and
convergence of Algorithms 3.2 and 3.3 in different methods.

Theorem 4.1. Let E be a real reflexive Banach space. Let η : E×E→ E be continuous and τ-
Lipschitz continuous such that η(x, y)=−η(y,x) for all x, y ∈ E; let for any given x∗ ∈ E∗,
the function h(y,u) = 〈x∗ − Ju,η(y,u)〉 be 0-DQCV in y; let J : E→ E∗ be α-strongly η-
monotone and λj Lipschitz continuous; let φ : E×E→ R∪{+∞} be a lower semicontinuous,
η-subdifferentiable proper functional on E; let A,B,C,D : E→ CB(E∗) and G : E→ CB(E)
be λA, λB, λC, λD and (λG−H)-Lipschitz continuous, respectively; let g be k-strongly accre-
tive and λg-Lipschitz continuous; letM : E∗ ×E∗ → E∗ be λM1 and λM2 -Lipschitz continuous
in the first and second arguments, respectively; and let N : E∗ × E∗ → E∗ be λN1 and λN2 -
Lipschitz continuous in the first and second arguments, respectively. Suppose that there exist
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constants σ > 0, ρ > 0 such that for each s1,s2 ∈ E, v∗ ∈ E∗,

∥∥∥J∂ηφ(·,s1)
ρ

(
v∗
)− J

∂ηφ(·,s2)
ρ

(
v∗
)∥∥∥≤ σ

∥∥s1− s2
∥∥, (4.1)

ρ <

√√√√ 2k− 1− 2σ2λ2
G− 4b2λ2

j λ2
g

16b2
(
λ2
M1
λ2
A + λ2

M2
λ2
B + λ2

N1
λ2
C + λ2

N2
λ2
D

) , (4.2)

b= τ

a
, k > 0.5 + σ2λ2

G + 2b2λ2
j λ

2
g , (4.3)

then the iterative sequences {tn}, {xn}, {un}, {vn}, {wn}, {zn}, {sn} generated by Algorithm
3.2 strongly converge to t, x, u, v, w, z, s, respectively, and (x,u,v,w,z,s) is a solution of
problem (2.14).

Proof. By the Lipschitz continuity and k-strong accretivity of g, and by Lemma 2.7, we
have

∥∥xn+1− xn
∥∥2 = ∥∥g(xn+1

)− g
(
xn
)− g

(
xn+1

)
+ g
(
xn
)

+ xn+1− xn
∥∥2

≤ ∥∥g(xn+1
)− g

(
xn
)∥∥2− 2

〈
g
(
xn+1

)− g
(
xn
)− xn+1 + xn, j

(
xn+1− xn

)〉
≤ ∥∥g(xn+1

)− g
(
xn
)∥∥2− 2(k− 1)

∥∥xn+1− xn
∥∥2
.

(4.4)

Then,

∥∥xn+1− xn
∥∥2 ≤ 1

2k− 1

∥∥g(xn+1
)− g

(
xn
)∥∥2

. (4.5)

By Algorithm 3.2(ii) and (iii), (4.1), (λG−H)-Lipschitz continuity of G, and Lemma 2.5,
we have

1
2

∥∥g(xn+1
)− g

(
xn
)∥∥2

≤
∥∥∥J∂ηφ(·,sn)

ρ
(
tn+1

)− J
∂ηφ(·,sn−1)
ρ

(
tn+1

)∥∥∥2
+
∥∥∥J∂ηφ(·,sn−1)

ρ
(
tn+1

)− J
∂ηφ(·,sn−1)
ρ

(
tn
)∥∥∥2

≤ σ2
∥∥sn− sn−1

∥∥2
+ b2

∥∥tn+1− tn
∥∥2

≤ σ2(1 +n−1)2
λ2
G

∥∥xn− xn−1
∥∥2

+ b2
∥∥tn+1− tn

∥∥2
.

(4.6)

Now we estimate ‖tn+1 − tn‖2. Since M is λM1 ,λM2 -Lipschitz continuous in the first and
second arguments, respectively, and N is λN1 ,λN2 -Lipschitz continuous in the first and
second arguments, respectively, and using the Lipschitz continuity of A, B, C, D, G, J , g,
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and (4.2) and (4.3), we obtain that

∥∥tn+1− tn
∥∥2 = ∥∥J ◦ g(xn)− ρM

(
un,vn

)
+ ρN

(
wn,zn

)− J ◦ g(xn−1
)

+ ρM
(
un−1,vn−1

)− ρN
(
wn−1,zn−1

)∥∥2

= ∥∥J ◦ g(xn)− J ◦ g(xn−1
)

− ρ
[
M
(
un,vn

)−M
(
un−1,vn−1

)− (N(wn,zn
)−N

(
wn−1,zn−1

))]∥∥2

≤ 2λ2
j λ

2
g

∥∥xn− xn−1
∥∥2

+ 2ρ2
∥∥M(un,vn

)−M
(
un−1,vn−1

)− (N(wn,zn
)−N

(
wn−1,zn−1

))∥∥2

≤ 2λ2
j λ

2
g

∥∥xn− xn−1
∥∥2

+ 4ρ2
∥∥M(un,vn

)−M
(
un−1,vn−1

)∥∥2

+ 4ρ2
∥∥N(wn,zn

)−N
(
wn−1,zn−1

)∥∥2

≤ 2λ2
j λ

2
g

∥∥xn− xn−1
∥∥2

+ 8ρ2
(

1 +
1
n

)2(
λ2
M1
λ2
A + λ2

M2
λ2
B + λ2

N1
λ2
C + λ2

N2
λ2
D

)∥∥xn− xn−1
∥∥2
.

(4.7)

It follows from (4.5)–(4.7) that

∥∥xn+1− xn
∥∥≤ αn

∥∥xn− xn−1
∥∥, (4.8)

where

αn =

√√√√(1 +n−1
)2[

2σ2λ2
G + 16b2ρ2

(
λ2
M1
λ2
A + λ2

M2
λ2
B + λ2

N1
λ2
C + λ2

N2
λ2
D

)]
+ 4b2λ2

j λ2
g

2k− 1
. (4.9)

Let

α=
√√√2σ2λ2

G + 16b2ρ2
(
λ2
M1
λ2
A + λ2

M2
λ2
B + λ2

N1
λ2
C + λ2

N2
λ2
D

)
+ 4b2λ2

j λ2
g

2k− 1
. (4.10)

It is easy to see that αn → α as n→∞. Since 0 < α < 1 by conditions (4.2) and (4.3), αn <
(1 +α)/2 < 1 for sufficiently large n. It follows from (4.8) that {xn} is a Cauchy sequence
and hence there is an x ∈ E such that xn→ x ∈ E as n→∞. By the Lipschitz continuity of
A, B, C, D, G, it follows from Algorithm 3.2(i) that {un}, {vn}, {wn}, {zn}, {sn} are also
Cauchy sequences. Let un→ u, vn→ v, wn→w, zn→ z, sn→ s as n→∞. By Algorithm 3.2
(ii) and (iii), we get that

tn+1 = J ◦ g(xn)− ρM
(
un,vn

)
+ ρN

(
wn,zn

)
,

g
(
xn+1

)= J
∂ηφ(·,sn)
ρ

(
tn+1

)
.

(4.11)
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In view of Lipschitz continuity of g, J , M, N and (4.1), letting n→∞, we have that

t = (J ◦ g(x)− ρM(u,v) + ρN(w,z)
)
,

g(x)= J
∂ηφ(·,s)
ρ (t).

(4.12)

Next, we claim that u∈ A(x). In fact,

d
(
u,A(x)

)≤ ∥∥u−un
∥∥+d

(
un,A

(
xn
))

+H
(
A
(
xn
)
,A(x)

)
≤ ∥∥u−un

∥∥+ λA
∥∥xn− x

∥∥−→ 0 as n−→∞.
(4.13)

Hence, d(u,A(x))= 0 and so u∈A(x) since A(x)∈ CB(E∗). In a similar way, we can also
prove that v ∈ B(x), w ∈ C(x), z ∈ D(x), s ∈ G(x). From the above argument, we know
that (x, t,u,v,w,z,s) satisfies WHE (3.1). It follows from Lemma 3.1 that (x,u,v,w,z,s) is
a solution of problem (2.14). This completes the proof. �

Corollary 4.2. Let E be a real reflexive Banach space. Let η : E×E→ E be strongly mono-
tone with constant α > 0 and Lipschitz continuous with constant τ > 0 and continuous such
that η(x, y) = −η(y,x) for all x, y ∈ E; let, for any given x∗ ∈ E∗, the function h(y,u) =
〈x∗ −u,η(y,u)〉 be 0-DQCV in y; let J = I , the identity mapping; and let φ, A, B, C, D, G,
g, M, N be as in Theorem 4.1. Suppose that there exist constants σ > 0, ρ > 0 satisfying (4.1)
and the following conditions:

ρ <

√√√√ 2k− 1− 2σ2λ2
G− 4b2λ2

g

16b2
(
λ2
M1
λ2
A + λ2

M2
λ2
B + λ2

N1
λ2
C + λ2

N2
λ2
D

) , (4.14)

b = τ

a
, k > 0.5 + σ2λ2

G + 2b2λ2
g . (4.15)

Then the iterative sequences generated by Algorithm 3.2 strongly converge to t, x, u, v, w, z,
s, respectively, and (x,u,v,w,z,s) is a solution of problem (2.14).

Remark 4.3. Theorem 4.1 and Corollary 4.2 extend and improve the corresponding re-
sults in [2].

Theorem 4.4. Let E, M, N , A, B, C, D, g, h, J , η be as in Theorem 4.1. Suppose that there
exist constants σ > 0, ρ > 0 satisfying (4.1) and the following conditions:

ρ <

√
k− 0.5− σ2− bλjλg

b
(
λM1λA + λM2λB + λN1λC + λN2λD

) , (4.16)

b = τ

α
, b2λ2

j λ
2
g + σ2 + 0.5 < k, (4.17)

then the iterative sequences {tn}, {xn}, {un}, {vn}, {wn}, {zn} generated by Algorithm 3.3
strongly converge to x, u, v,w, z, respectively, and (x,u,v,w,z) is a solution of problem (2.15).
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Proof. From Algorithm 3.3, the Lipschitz continuity of J , g and M, N in the first and
second arguments, and H-Lipschitz continuity of A, B, C, D, we have

∥∥tn+2− tn+1
∥∥= ∥∥(1− λ)tn+1 + λ

[
J ◦ g(xn+1

)− ρM
(
un+1,vn+1

)
+ ρN

(
wn+1,zn+1

)]
− (1− λ)tn− λ

[
J ◦ g(xn)− ρM

(
un,vn

)
+ ρN

(
wn,zn

)]∥∥
≤ (1− λ)

∥∥tn+1− tn
∥∥+ λ

∥∥J ◦ g(xn+1
)− J ◦ g(xn)∥∥

+ λρ
[∥∥M(un+1,vn+1

)−M
(
un,vn

)∥∥+
∥∥N(wn+1,zn+1

)−N
(
wn,zn

)∥∥]
≤ (1− λ)

∥∥tn+1− tn
∥∥+ λλjλg

∥∥xn+1− xn
∥∥+ λρ

(
1 + (n+ 1)−1)

× (λM1λA + λM2λB + λN1λC + λN2λD
)∥∥xn+1− xn

∥∥
≤ (1− λ)

∥∥tn+1− tn
∥∥+ λ

[
λjλg + ρ

(
1 + (n+ 1)−1)

× (λM1λA + λM2λB + λN1λC + λN2λD
)]∥∥xn+1− xn

∥∥.
(4.18)

Now, we estimate ‖xn+1− xn‖. Since g is k-strongly accretive, by using Algorithm 3.3(ii)
and (iii), (4.1), and Lemmas 2.6 and 2.7, we have

∥∥xn+1− xn
∥∥2 = ∥∥xn+1− xn−

(
g
(
xn+1

)− g
(
xn
))

+
(
g
(
xn+1

)− g
(
xn
))∥∥2

≤ ∥∥g(xn+1
)− g

(
xn
)∥∥2− 2

〈
g
(
xn+1

)− g
(
xn
)− xn+1 + xn, j

(
xn+1− xn

)〉
≤
[
τ

α

∥∥tn+1− tn
∥∥+ σ

∥∥xn+1− xn
∥∥]2

− (2k− 2)
∥∥xn+1− xn

∥∥2

≤ 2
[
b2
∥∥tn+1− tn

∥∥2
+ σ2

∥∥xn+1− xn
∥∥2
]
− (2k− 2)

∥∥xn+1− xn
∥∥2
.

(4.19)

It follows that

∥∥xn+1− xn
∥∥≤ b√

k− 0.5− σ2

∥∥tn+1− tn
∥∥. (4.20)

Combining (4.18) and (4.19), we have

∥∥tn+2− tn+1
∥∥≤ (1− λ)

∥∥tn+1− tn
∥∥+ λ

[
λjλg + ρ

(
1 + (n+ 1)−1)

× (λM1λA + λM2λB + λN1λC + λN2λD
)] b√

k− 0.5− σ2

∥∥tn+1− tn
∥∥

≤ [1− λ
(
1−αn

)]∥∥tn+1− tn
∥∥,

(4.21)
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where

αn =
b
[
λjλg + ρ

(
1 + (n+ 1)−1

)(
λM1λA + λM2λB + λN1λC + λN2λD

)]
√
k− 0.5− σ2

. (4.22)

Letting n→∞, we see that αn→ α, where

α= b
[
λjλg + ρ

(
λM1λA + λM2λB + λN1λC + λN2λD

)]
√
k− 0.5− σ2

. (4.23)

Since α < 1 by conditions (4.16) and (4.17), 0 < (1− λ(1−αn)) < (1 +α)/2 for sufficiently
large n. It follows from (4.21) that {tn} is a Cauchy sequence and hence there is a t ∈ E
such that tn→ t in E as n→∞. Similarly, by (4.20), we observe that xn→ x in E as n→∞.
Also from Algorithm 3.3(i) we have that un → u, vn → v, wn → w, and zn → z in E as n→
∞. As the same argument in Theorem 4.1, we know that u ∈ A(x), v ∈ B(x), w ∈ C(x),

z ∈ D(x). Finally, the continuity of J , A, B, C, D, g, J
∂ηφ(·,x)
ρ and Algorithm 3.3 ensure

that (t,x,u,v,w,z) is a solution of WHE (3.1) with G= I . It follows from Lemma 3.1 that
(x,u,v,w,z) is a solution of problem (2.15). This completes the proof. �

Corollary 4.5. Let E be a real reflexive Banach space. Let η : E×E→ E be strongly mono-
tone with constant α > 0 and Lipschitz continuous with constant τ > 0 and continuous such
that η(x, y) = −η(y,x) for all x, y ∈ E; let, for any given x∗ ∈ E∗, the function h(y,u) =
〈x∗ − u,η(y,u)〉 be 0-DQCV in y; let J = I , the identity mapping; let φ, A, B, C, D, g, M,
N be as in Theorem 4.4. Suppose that there exist constants σ > 0, ρ > 0 satisfying (4.1) and
the following conditions:

ρ <

√
k− 0.5− σ2− bλg

b
(
λM1λA + λM2λB + λN1λC + λN2λD

) , (4.24)

b = τ

α
, b2λ2

g + σ2 + 0.5 < k, (4.25)

then the iterative sequences {tn}, {xn}, {un}, {vn}, {wn}, {zn} generated by Algorithm 3.3
strongly converge to t, x, u, v, w, z, respectively, and (x,u,v,w,z) is a solution of problem
(2.15).

Remark 4.6. Theorem 4.4 and Corollary 4.5 extend and improve the corresponding re-
sults in [3, 4, 5, 7].
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