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The study of the behavior of means under equal increments of their variables provides a
new approach to Ky Fan-type inequalities. Via this approach we are able to prove some
new results on Ky Fan-type inequalities. We also prove some inequalities involving the
symmetric means.

1. Introduction

Let Mn,r(x) be the generalized weighted power means: Mn,r(x) = (
∑n

i=1ωix
r
i )

1/r , where
ωi > 0, 1≤ i≤ n, with

∑n
i=1ωi = 1 and x = (x1,x2, . . . ,xn). Here Mn,0(x) denotes the limit

of Mn,r(x) as r → 0+. Unless specified otherwise, we always assume 0 < x1 ≤ x2 ··· ≤ xn.
We denote σn =

∑n
i=1ωi(xi−An)2.

To any given x, t ≥ 0 we associate x′ = (1− x1,1− x2, . . . ,1− xn), xt = (x1 + t, . . . ,xn + t).
When there is no risk of confusion, we will write Mn,r for Mn,r(x), Mn,r,t for Mn,r(xt), and
M′

n,r for Mn,r(x′) if xn < 1. We also define An =Mn,1, Gn =Mn,0, Hn =Mn,−1 and similarly
for A′n, G′n, H′

n, An,t, Gn,t, Hn,t.
To simplify expressions, we define

∆r,s,t,α = Mα
n,r,t −Mα

n,s,t

Mα
n,r −Mα

n,s
, ∆′r,s =

M′
n,r −M′

n,s

Mn,r −Mn,s
(1.1)

with ∆r,s,t,0 = (ln(Mn,r,t/Mn,s,t))/(ln(Mn,r /Mn,s)). We also write ∆r,s,t for ∆r,s,t,1. In order
to include the case of equality for various inequalities in our discussions, for any given
inequality, we define 0/0 to be the number which makes the inequality an equality.

Recently, the author [14, Theorem 2.1] has proved the following result.

Theorem 1.1. For r > s, the following inequalities are equivalent:

r− s

2x1
σn ≥Mn,r −Mn,s ≥ r− s

2xn
σn, (1.2)

xn
1− xn

≥ ∆′r,s ≥
x1

1− x1
, (1.3)

where in (1.3) we require xn < 1.
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Cartwright and Field [9] first proved the validity of (1.2) for r = 1, s = 0. For other
extensions and refinements of (1.2), see [3, 13, 18, 19]. Inequality (1.3) is commonly
referred to as the additive Ky Fan’s inequality. We refer the reader to the survey article [2]
and the references therein for an account of Ky Fan’s inequality.

The study of the behavior of means under equal increments of their variables was
initiated by Hoehn and Niven [16]. Aczél and Páles [1] proved ∆1,s,t ≤ 1 for any s �= 1. We
can interpret their result as an assertion of the monotonicity of An,t −Mn,s,t as a function
of t. The asymptotic behavior of t(Mn,r,t −An,t) was studied by Brenner and Carlson [7].
The same idea of [14] can be used to show that both (1.2) and (1.3) are equivalent to

xn
t+ x1

≥ ∆r,s,t ≥ x1

t+ xn
, (1.4)

which holds for all t ≥ 0,
In Section 3, we will study the monotonicities of (t + xn)(Mn,r,t −Mn,s,t) and (t +

x1)(Mn,r,t −Mn,s,t) as functions of t for r = 1 or s = 1 and then apply the result to in-
equalities of the type (1.2).

The study of the behavior of means under equal increments of their variables provides
us with a new approach of studying Ky Fan-type inequalities. In Section 4, we use this
approach to show that some of the inequalities we have studied are actually equivalent.

The following inequality connecting three classical means (with ωi = 1/n here) is due
to W. L. Wang and P. F. Wang [24] (left-hand side inequality) and Alzer et al. [5] (right-
hand side inequality):

(
An

A′n

)n−1
Hn

H′
n
≥
(
Gn

G′n

)n

≥
(
Hn

H′
n

)n−1
An

A′n
. (1.5)

The above inequality was refined in [14] and in Section 5 we will give another refine-
ment of the above inequality.

Alzer [4] has given a counterexample to show that Aα
n −Gα

n and A′αn −G′αn are not
comparable in general for α > 1. However, Pečarić and Alzer [22] (see also [2, Theorem
7.2] proved the following result.

Theorem 1.2. For ωi = 1/n, xn ≤ 1/2,

A′nn −G′nn ≥An
n−Gn

n. (1.6)

Theorem 1.2 suggests that A′αn −G′αn ≥ Aα
n−Gα

n for α= 1/q with q =min{ωi}, a result
we will establish in Section 6. A similar result is also proved there.

Let r ∈ {0,1, . . . ,n}; the rth symmetric function En,r of x and its mean Pn,r are defined
by

En,r(x)=
∑

1≤i1<···<ir≤n

r∏
j=1

xij , 1≤ r ≤ n, En,0 = 1, Pr
n,r(x)= En,r(x)(

n
r

) . (1.7)

The usage of En,r , E′n,r , En,r,t, Pn,r , P′n,r , Pn,r,t is similar to the case for the power means.
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Many of the results we will obtain for power means also have their analogues for sym-
metric means, which we will spend the last section to explore. For example, the result
of W. L. Wang and P. F. Wang mentioned above is more general; they have shown the
following.

Theorem 1.3. For 1≤ r ≤ n− 1, xi ∈ (0,1/2], 1≤ i≤ n,

lnPn,r − lnPn,r+1 ≥ lnP′n,r − lnP′n,r+1. (1.8)

We also note the following result of Bullen and Marcus [8].

Theorem 1.4. For 1≤ k ≤ r ≤ n,

(r + 1)
(

lnPn+1,k − lnPn+1,r+1
)≥ r

(
lnPn,k − lnPn,r

)
(1.9)

with equality holding if and only if x1 = ··· = xn+1.

In Section 7, we will provide a refinement of Theorems 1.3 and 1.4 for k = 1.

2. Lemmas

Lemma 2.1. Let J(x) be the smallest closed interval that contains all of xi and let f (x),g(x)∈
C2(J(x)) be two twice differentiable functions, then

∑n
i=1ωi f (xi)− f

(∑n
i=1ωixi

)
∑n

i=1ωig(xi)− g
(∑n

i=1ωixi
) = f ′′(ξ)

g′′(ξ)
(2.1)

for some ξ ∈ J(x), provided that the denominator of the left-hand side is nonzero.

Lemma 2.1 and the following consequence of it are due to Mercer [17].

Lemma 2.2. For w > u, w �= v, u �= v,

∣∣∣∣∣ u(u− v)
w(w− v)

∣∣∣∣∣ 1
xw−u1

≥
∣∣∣∣∣
(
Mu

n,u−Mu
n,v

)
(
Mw

n,w −Mw
n,v

)
∣∣∣∣∣≥

∣∣∣∣∣ u(u− v)
w(w− v)

∣∣∣∣∣ 1
xw−un

(2.2)

with equality holding if and only if x1 = ··· = xn.

Lemma 2.3. Let t ≥ 0, q = (q1, . . . ,qn) with qi ≥ 1, 1 ≤ i ≤ n, then for n ≥ 2, f (x;q) ≤
f (xt;q), where

f (x;q)= x2
n

((∑n
i=1 qi

)− 1∑n
i=1 qixi

+
1

x2
1

(∑n
i=1 qi/xi

) − 1
x1

)
, (2.3)
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and equality holds if and only if one of the following conditions holds: (i) t = 0; (ii) n = 2,
q1 = q2 = 1; (iii) x1 = x2 = ··· = xn. Moreover, when (ii) or (iii) happens, it also holds that
f (x;q)= f (xt;q)= 0.

Proof. It is routine to check f (x;q)= f (xt;q) when t = 0 holds. So now we may assume
that t > 0. Then one checks easily that

(∑n
i=1 qi

)− 1∑n
i=1 qixi

− 1
x1

+
1

x2
1

(∑n
i=1 qi/xi

)

=
∑n

i=1 qi
(
x1− xi

)− x1

x1
(∑n

i=1 qixi
) +

1
x2

1

(∑n
i=1 qi/xi

)

=
(∑n

i=1 qi
(
x1− xi

)− x1
)
x1
(∑n

i=1 qi/xi
)

+
∑n

i=1 qixi
x2

1

(∑n
i=1 qixi

)(∑n
i=1 qi/xi

) .

(2.4)

Note that

( n∑
i=1

qi
(
x1− xi

)− x1

)
x1

( n∑
i=1

qi
xi

)
+

n∑
i=1

qixi

=
( n∑

i=1

qi
(
x1− xi

))
x1

( n∑
i=1

qi
xi

)
−

n∑
i=1

qi
(
x2

1 − x2
i

)
xi

=
n∑
i=1

qi
(
x1− xi

)((
q1− 1

)
+
∑
j �=1,i

q jx1

xj
+

(
qi− 1

)
x1

xi

)
.

(2.5)

Hence,

f (x;q)=
∑n

i=1 qi
(
x1− xi

)((
q1− 1

)
xn/x1 +

∑
j �=1,i

(
qjxn/xj

)
+
(
qi− 1

)
xn/xi

)
(∑n

i=1 qixi/xn
)(∑n

i=1 qix1/xi
) ≤ 0. (2.6)

Since x/y > (x+ t)/(y + t) when x > y > 0, t > 0, it follows from the above expression that
f (x;q) ≤ f (xt;q). The conditions for equality can be checked easily and this completes
the proof. �

Lemma 2.4. Let t ≥ 0, q = (q1, . . . ,qn) with qi ≥ 1, 1 ≤ i ≤ n, then for n ≥ 2, g(x;q) ≤
g(xt;q), where

g(x;q)= x2
n

(
1
x1
− 1∑n

i=1 qixi
−
(∑n

i=1 qi
)− 1

x2
1

(∑n
i=1 qi/xi

)
)

, (2.7)

and equality holds if and only if one of the following conditions holds: (i) t = 0; (ii) n = 2,
q1 = q2 = 1; (iii) x1 = x2 = ··· = xn. Moreover, when (ii) or (iii) happens, it also holds that
g(x;q)= g(xt;q)= 0.
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Proof. It is routine to check g(x;q) = g(xt;q) when t = 0 holds. So now we may assume
that t > 0. Then one checks easily that

1
x1
−
(∑n

i=1 qi
)− 1

x2
1

(∑n
i=1 qi/xi

) − 1∑n
i=1 qixi

=
∑n

i=1 qi
(
x1− xi

)
/xi + 1

x2
1

(∑n
i=1 qi/xi

) − 1∑n
i=1 qixi

=
(∑n

i=1 qi
(
x1− xi

)
/xi + 1

)(∑n
i=1 qixi

)− x2
1

(∑n
i=1 qi/xi

)
x2

1

(∑n
i=1 qixi

)(∑n
i=1 qi/xi

) .

(2.8)

Note that ( n∑
i=1

qi
(
x1− xi

)
xi

+ 1

)( n∑
i=1

qixi

)
− x2

1

( n∑
i=1

qi
xi

)

=
( n∑

i=1

qi
(
x1− xi

)
xi

)( n∑
i=1

qixi

)
−

n∑
i=1

qi
(
x2

1 − x2
i

)
xi

=
n∑
i=1

qi

(
x1− xi

)
xi

((
q1− 1

)
x1 +

∑
j �=1,i

q jx j +
(
qi− 1

)
xi

)
.

(2.9)

Hence,

g(x;q)=
∑n

i=1 qi
((
x1− xi

)
xn/xi

)((
q1− 1

)
+
∑

j �=1,i

(
qjxj/x1

)
+
(
qi− 1

)
xi/x1

)
(∑n

i=1 qixi/xn
)(∑n

i=1 qix1/xi
) ≤ 0.

(2.10)

Since x/y > (x+ t)/(y + t) when x > y > 0, t > 0, it follows from the above expression that
g(x;q) ≤ g(xt;q). The conditions for equality can be checked easily and this completes
the proof. �

Lemma 2.5. For 0 < q < 1, when 0 < y < x ≤ 1,

f (q)= 2q
(
x1/q− y1/q) (2.11)

is an increasing function of q. When 1≤ y < x, f (q) is a decreasing function of q.

Proof. We have

f ′(q)= 2
(
x1/q− y1/q)− 2

(
ln
(
x1/q)x1/q− ln

(
y1/q)y1/q). (2.12)

So it is enough to show that u−u lnu increases for 0 < u≤ 1 and decreases for u≥ 1 and
this is easy to check. �

Lemma 2.6. For 0 < q < 1, (1− q)1/q−1 is an increasing function of q, in particular,

(1− q)1/q−1 ≤ 1
2

(2.13)

when 0 < q ≤ 1/2 and the above inequality reverses when 1/2≤ q < 1. In either case, equality
holds if and only if q = 1/2.
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Proof. It suffices to show that f ′(q) > 0 for 0 < q < 1 with f (q)= (1/q− 1)ln(1− q). Now
f ′(q)=−h(q)/q2 with h(q)= q+ ln(1− q) < 0 for 0 < q < 1 and this completes the proof.

�

The following lemma is due to Wu et al. [25] (see also [2, pages 317-318]).

Lemma 2.7. Let 2≤ r ≤ n, x = (x1, . . . ,xn), x1 ≤ x2 ≤ ··· ≤ xn. There exists y = (y1, . . . , yr)
with x1 ≤ y1 ≤ ··· ≤ yr ≤ xn such that Pn,i(x) = Pr,i(y), 0 ≤ i ≤ r. Moreover, if x1, . . . ,xn
are not all equal, then y1, . . . , yr are also not all equal.

3. Some monotonicity properties

Theorem 3.1. Let r > s, t ≥ 0.
(i) If ∆r,s,t,α ≤ 1, then ∆r,s,t,β ≤ 1 for β ≤ α. If ∆r,s,t,α ≥ 1, then ∆r,s,t,β ≥ 1 for β ≥ α.

(ii) Let α≤ 1. If ∆r,s,t ≤ xn/(t + xn), then ∆r,s,t,α ≤ (xn/(t + xn))2−α. If ∆r,s,t ≥ x1/(t + x1),
then ∆r,s,t,α ≥ (x1/(t+ x1))2−α.

(iii) ∆r,s,t,α ≤ 1 for α≤ 0 and for any s �= 1, α≤ 1, ∆1,s,t,α ≤ 1.
(iv) For any r �= 1, min(((t + xn)/xn)r−2, ((t + x1)/x1)r−2) ≤ ∆r,1,t,r ≤ max(((t +

xn)/xn)r−2, ((t+ x1)/x1)r−2).
(v) For −1≤ s �= 1≤ 2,

xn
t+ xn

≥ ∆1,s,t ≥ x1

t+ x1
(3.1)

with equality holding if and only if t = 0 or x1 = ··· = xn.

Proof. (i) Let f (t)= |Mα
n,r,t −Mα

n,s,t|. Since x is arbitrary, ∆r,s,t,α ≤ 1 is then equivalent to
f ′(0)≤ 0 or the second inequality below:

M
β−r
n,r

M
β−s
n,s

≤ Mα−r
n,r

Mα−s
n,s

≤ M1−r
n,r−1

M1−s
n,s−1

. (3.2)

Now ∆r,s,t,β ≤ 1 follows from the first inequality above. This proves the first assertion and
the second assertion follows similarly.

(ii) We will prove the first assertion for 0 < α < 1 and the other proofs are similar. Let
f (t)= (t+ xn)2−α(Mα

n,r,t −Mα
n,s,t), then it suffices to show f ′(0)≤ 0, or equivalently,

(2−α)
(
Mα

n,r −Mα
n,s

)≤ αxn

(
Mα−1

n,s

(
Mn,s

Mn,s−1

)1−s
−Mα−1

n,r

(
Mn,r

Mn,r−1

)1−r)
. (3.3)

We also have

M1−α
n,s

α

(
Mα

n,r −Mα
n,s

)≤Mn,r −Mn,s ≤ xn

((
Mn,s

Mn,s−1

)1−s
−
(

Mn,r

Mn,r−1

)1−r)
, (3.4)
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where the first inequality above follows from the mean value theorem and the second
inequality follows from ∆r,s,t ≤ xn/(t + xn). Similarly, by using the mean value theorem,
we get

Mα
n,r −Mα

n,s

Mα−1
n,s −Mα−1

n,r
≤ α

1−α
Mn,r ≤ α

1−α
xn

(
Mn,r

Mn,r−1

)1−r
, (3.5)

where the last inequality follows from Mr
n,r =

∑n
i=1ωix

r
i ≤

∑n
i=1ωixnx

r−1
i = xnM

r−1
n,r−1. Now

(ii) follows by rewriting (3.4) and (3.5) as

Mα
n,r −Mα

n,s ≤ αMα−1
n,s xn

((
Mn,s

Mn,s−1

)1−s
−
(

Mn,r

Mn,r−1

)1−r)
,

(1−α)
(
Mα

n,r −Mα
n,s

)≤ αxn
(
Mα−1

n,s −Mα−1
n,r

)( Mn,r

Mn,r−1

)1−r (3.6)

and adding the above two inequalities.
(iii) ∆1,s,t,α ≤ 1, for s �= 1, α ≤ 1, follows from the result of Aczél and Páles [1] and

(i). Again by (i), in order to show ∆r,s,t,α ≤ 1 for α≤ 0, it suffices to show ∆r,s,t,0 ≤ 1. Let
f (t) = lnMn,r,t − lnMn,s,t, it then suffices to show f ′(0) ≤ 0 or Rn,s ≤ Rn,r , where Rn,r :=
Mr

n,r /M
r−1
n,r−1. The last inequality holds by a result of Beckenbach [6, Theorem 1].

(iv) This follows by applying Lemma 2.1 to f (x)= (t+ x)r ,g(x)= xr , r �= 0 and f (x)=
ln(t+ x), g(x)= lnx when r = 0.

(v) We will prove the left-hand side inequality of (3.1) and the other proofs are similar.
For 0≤ s < 1, let

Dn(x, t)= xn
(
An−Mn,s

)− (t+ xn
)(
An,t −Mn,s,t

)
. (3.7)

We want to show Dn ≥ 0 here. We can assume x1 < x2 < ··· < xn and prove by induction
that the case n = 1 is clear, so we will start with n > 1 variables assuming the inequality
holds for n− 1 variables. Then

∂Dn

∂xn
= (An−Mn,s

)− (An,t −Mn,s,t
)

+ωn
((
An−M1−s

n,s x
s
n

)− (An,t −M1−s
n,s,t

(
t+ xn

)s))
≥ ωn

((
An−Mn,s

)− (An,t −Mn,s,t
)

+
(
An−M1−s

n,s x
s
n

)− (An,t −M1−s
n,s,t

(
t+ xn

)s))
= ωn

(
M1−s

n,s,t

(
t+ xn

)s
+Mn,s,t − 2t−Mn,s−M1−s

n,s x
s
n

)
,

(3.8)

where the inequality follows from ∆1,s,t ≤ 1. Now we consider

g(t)=M1−s
n,s,t

(
t+ xn

)s
+Mn,s,t − 2t (3.9)
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and we have

g′(t)= (1− s)

(
t+ xn
Mn,s,t

)s(
Mn,s,t

Mn,s−1,t

)1−s
+ s

(
Mn,s,t

t+ xn

)1−s
+

(
Mn,s,t

Mn,s−1,t

)1−s
− 2

≥ (1− s)ys + sys−1− 1≥ y(1−s)s+s(s−1)− 1= 0,

(3.10)

where y = (t+ xn)/Mn,s,t ≥ 1 and the first inequality above follows from (Mn,s,t/Mn,s−1,t)1−s

≥ 1. The last inequality above follows from the arithmetic-geometric mean inequality.
Thus g′(t)≥ 0, hence g(t)≥ g(0)=Mn,s +M1−s

n,s x
s
n and it follows ∂Dn/∂xn ≥ 0 and by let-

ting xn tend to xn−1, we have Dn ≥ Dn−1 (with weights ω1, . . . ,ωn−2,ωn−1 +ωn) and thus
the right-hand side inequality of (3.1) holds by induction. It is easy to see that the equality
holds if and only if t = 0 or x1 = ··· = xn.

For −1≤ s < 0, we have

1
ω1

∂Dn

∂x1
=−t− xn

(
Mn,s

x1

)1−s
+
(
t+ xn

)(Mn,s,t

t+ x1

)1−s
:=−t− f

(
x1
)
. (3.11)

Consider

f ′
(
x1
)=−(1− s)

n∑
j=2

ωj

((
Mn,s

x1

)1−2s

· xnx
s
j

xs+1
1

−
(
Mn,s,t

t+ x1

)1−2s (
t+ xn

)(
t+ xj

)s
(
t+ x1

)s+1

)
≤ 0.

(3.12)

The last inequality holds, since when −1≤ s < 0, 2≤ j ≤ n, we have

xn
t+ xn

·
(

xj
t+ xj

)s

≥
(

xj
t+ xj

)1+s

≥
(

x1

t+ x1

)1+s

, (3.13)

and xj/x1 ≥ (t+ xj)/(t+ x1) so that

(
Mn,s

x1

)1−2s

≥
(
Mn,s,t

t+ x1

)1−2s

. (3.14)

Thus by a similar argument as above, we deduce that f (x1) ≥ −t and ∂Dn/∂x1 ≤ 0,
which further implies Dn ≥ 0 with equality holding if and only if t = 0 or x1 = ··· = xn.

For 1 < s≤ 2, it suffices to show ∂Dn/∂t ≤ 0 or, equivalently,

Ms−1
n,s

xn
≤
(
Ms−1

n,s −Ms−1
n,s−1

)
(
Mn,s−An

) . (3.15)

The above inequality certainly holds for s = 2, otherwise it follows from Ms−1
n,s /xn ≤ xs−2

n

and Lemma 2.2 with u= s− 1, v = s, w = 1. �
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We remark here that one cannot compare Mn,r,t −Mn,s,t and Mn,r −Mn,s in general. For
example, let f (t)=Gn,t −Hn,t. Then f ′(0)=Gn/Hn−H2

n/M
2
n,−2. By a change of variables

xi → 1/xn−i+1, we can rewrite this as f ′(0) = (A3
n −GnM

2
n,2)/(A2

nGn) and by considering
the case n = 2 with q1 = q2 = 1/2, x2 = 1, it is easy to see that f ′(0) < 0 if x1 = 1/2 and
f ′(0) > 0 if x1 = 0.

Corollary 3.2. Inequality (1.2) holds for r = 1, −1≤ s < 1 and 1 < r ≤ 2, s= 1.

Proof. This follows from Theorem 3.1 (v) and that (1.2) and (1.4) are equivalent. �

The above result was first proved by the author in [14, Theorem 3.2]; in fact it was
shown there that those are the only cases (1.2) can hold for r = 1 or s= 1. Thus by notic-
ing the equivalence of (1.2) and (1.4), we obtain the following.

Corollary 3.3. Inequality (3.1) holds for all t ≥ 0 if and only if −1≤ s �= 1≤ 2.

Corollary 3.4. For −1≤ s < 1,

xn
M1−s

n,s−1
≥

(
An−Mn,s

)
(
M1−s

n,s −M1−s
n,s−1

) ≥ x1

M1−s
n,s−1

. (3.16)

Proof. Theorem 3.1(v) implies f (t) = (t + xn)(An,t −Mn,s,t) is a decreasing function of t
and f ′(0)≤ 0 implies the left-hand side inequality of (3.16). The proof of the right-hand
side inequality of (3.16) is similar. �

By a change of variables xi → 1/xn−i+1, the left-hand side inequality of (3.16) when
s=−1 gives

An−Hn ≤ Hn

x1An
σn, (3.17)

a refinement of the left-hand side inequality of (1.2) for r = 1, s=−1.

4. Some equivalent inequalities

Theorem 4.1. The following inequalities are equivalent:
(i) An−Gn ≥ σn/2xn;

(ii) An−Gn ≤ σn/2x1;
(iii) An−Gn ≤ (xn/Hn)(Gn−Hn);
(iv) An−Gn ≥ (x1/Hn)(Gn−Hn);
(v) Gn−Hn ≥Hnσn/2x2

n;
(vi) Gn−Hn ≤Hnσn/2x2

1 .
In particular, inequalities (i)–(vi) are all valid since (i) holds by Corollary 3.2.

Proof. We first show (ii)⇒(iii)⇒(i) and similarly one can show (i)⇒(iv)⇒(ii).
(iii)⇒(i). Let f (t)= (xn + t)(An,t −Gn,t), t ≥ 0. It is easy to see that limt→∞ f (t)= σn/2.

Thus it suffices to show f (t) is a decreasing function of t in order to prove (i). Since x is
arbitrary, it suffices to have f ′(0)= An−Gn + xn(1−Gn/Hn)≤ 0, which is just (iii).

(ii)⇒(iii). Let f (t) = An,t −Gn,t + (xn + t)(1−Gn,t/Hn,t), t ≥ 0. It is easy to see that
limt→∞ f (t)= 0, so it suffices to show f ′(t)≥ 0 in order to prove (iii). Since x is arbitrary,
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it suffices to show f ′(0)≥ 0. Calculation yields

f ′(0)
Gn

= 2
(

1
Gn
− 1
Hn

)
+ xn

(
1

M2
n,−2

− 1
H2

n

)
. (4.1)

By a change of variables xi→ 1/xn−i+1, the right-hand side inequality of (4.1) becomes

2
(
Gn−An

)
+

1
x1
σn ≥ 0 (4.2)

by (ii).
Now we show that (i) and (v) are equivalent; similarly one can show that (i) and (vi)

are equivalent.
(i)⇒(v). We have shown that (i) and (iii) are equivalent, and hence (v) follows.
(v)⇒(i). Let f (t) = An,t −Gn,t − σn/2(xn + t). It is easy to see that limt→∞ f (t) = 0, so

it suffices to show f ′(t) ≤ 0 in order to prove (i). Since x is arbitrary, it suffices to show
f ′(0)≤ 0, which is just (v). �

Theorem 4.2. The following inequalities are equivalent:
(i) An−Hn ≥ (Hn/xnAn)σn;

(ii) An−Hn ≤ σn/x1.
In particular, An−Hn ≥ σn/xn implies An−Hn ≤ σn/x1. Moreover, it also holds that

An−Hn ≥
M2

n,2− 2AnHn +H2
n

xn
, (4.3)

with equality holding if and only if x1 = ··· = xn, which implies (3.17), and (3.17) further
implies An−Hn ≤ σn/x1.

Proof. We first show that inequality (i) is equivalent to (ii). Let f (t) = (x1 + t)(An,t −
Hn,t), g(t)= (xn + t)An,t(An,t −Hn,t)/Hn,t.

(i)⇒(ii). By using similar arguments as in the proof of Theorem 4.1, (ii) holds if f ′(0)
≥ 0; by a change of variables xi→ 1/xn−i+1, one checks that f ′(0)≥ 0 is equivalent to (i).

(ii)⇒(i). Similarly, (i) holds if g′(0) ≤ 0. By a change of variables xi → 1/xn−i+1, one
checks that g′(0)≤ 0 is equivalent to

An−Hn ≤
M2

n,2− 2AnHn +H2
n

x1
= σn

x1
+

(
An−Hn

)2

x1
. (4.4)

Thus (ii) implies (4.4), hence (i).
Similarly, one can show that (4.3) implies (3.17), and hence An −Hn ≤ σn/x1. It now

remains to show (4.3). In fact, both (4.3) and (3.17) follow from the following identity:

An−Hn =
n∑
i=1

ωi
(
xi−Hn

)2

xi
= Hn

An

n∑
i=1

ωi
(
xi−An

)2

xi
. (4.5)

�
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We note here that it follows from (4.5) that for t ≥ 0,

1
Hn,t

− 1
An,t

= 1
A2
n,t

n∑
i=1

ωi
(
xi−An

)2

xi,t
. (4.6)

Upon integration of both sides above from 0 to∞, we obtain an identity of Dinghas [12,
(9.9)]:

lnAn− lnGn =
(

lnGn,t − lnAn,t
) |∞0

=
∫∞

0

(
1

Hn,t
− 1
An,t

)
dt

=
∫∞

0

(
1

A2
n,t

n∑
i=1

ωi
(
xi−An

)2

xi + t

)
dt

=
(
−

n∑
i=1

ωi
(
xi−An

)2
J
(
xi + t,An,t

))∣∣∣∣
∞

0

=
n∑
i=1

ωi
(
xi−An

)2
J
(
xi,An

)
,

(4.7)

where, as given in [12, (9.8)],

J(x, y)=
∫∞

0

αdα

(1 +α)(x+αy)2
. (4.8)

We note here that (4.5) also improves Mercer’s proposition [20, Proposition 4], as one
checks directly. To end this section, we give a refinement of (1.2) based on the results in
[20].

Theorem 4.3. The following inequality

n∑
i=1

ωi
(
xi−Gn

)2

xi + min
(
xi,Gn

) ≥ An−Gn ≥
n∑
i=1

ωi
(
xi−An

)2

xi + max
(
xi,An

) , (4.9)

holds with equality holding if and only if x1 = ··· = xn.

Proof. The second inequality is [20, Proposition 1] and the first inequality follows from

An−Gn=exp
(

lnAn
)−exp

(
lnGn

)≤ An
(

lnAn−lnGn
)≤ n∑

i=1

ωi
(
xi−An

)2

xi + min
(
xi,An

) , (4.10)

where the first inequality above follows from the mean value theorem and the second
inequality follows from [20, Proposition 2]. �
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5. A sharpening of Sierpiński’s inequality

Theorem 5.1. For t ≥ 0, q =min{ωi} > 0,

(
xn

xn + t

)2

≥ (1− q) lnAn,t + q lnHn,t − lnGn,t

(1− q) lnAn + q lnHn− lnGn
≥
(

x1

x1 + t

)2

, (5.1)

(
xn

xn + t

)2

≥ lnGn,t − q lnAn,t − (1− q) lnHn,t

lnGn− q lnAn− (1− q) lnHn
≥
(

x1

x1 + t

)2

(5.2)

with equality holding if and only if t = 0, q = 1/2, or x1 = ··· = xn.

Proof. The proof uses the ideas in [5]. We will prove the left-hand side inequality of
(5.1) and the proofs for other inequalities are similar, we only point out that one needs
Lemma 2.4 in order to prove (5.2). We may assume t > 0 to be fixed and define

fn
(

xn,q
)= x2

n

(
(1− q) lnAn + q lnHn− lnGn

)
− (xn + t

)2(
(1− q) lnAn,t + q lnHn,t − lnGn,t

)
,

(5.3)

where we regard An, Gn, Hn, An,t, Gn,t, Hn,t as functions of xn = (x1, . . . ,xn). Then

gn
(
x2, . . . ,xn−1

)
:= 1

ω1

∂ fn
∂x1

= x2
n

(
1− q

An
+
qHn

x2
1
− 1
x1

)
− (xn + t

)2
(

1− q

An,t
+

qHn,t(
x1 + t

)2 −
1

x1 + t

)
.

(5.4)

By setting ωi/q = qi, it follows from Lemma 2.3 that gn = (1/ω1)(∂ fn/∂x1) ≤ 0 with
equality holding if and only if n= 1 or n= 2,q = 1/2. By letting x1 tend to x2, we have

fn
(

xn,q
)≥ fn−1

(
xn−1,q

)≥ fn−1
(

xn−1,q′
)
, (5.5)

where xn−1 = (x2, . . . ,xn) with weights ω1 +ω2, . . . ,ωn−1,ωn and q′ =min(ω1 +ω2, . . . ,ωn).
Here the second inequality above follows from ∆1,−1,t,0 ≤ (xn/(t+ xn))2, which is a conse-
quence of Theorem 3.1 (v) and (ii).

It then follows by induction that fn ≥ fn−1 ≥ ··· ≥ f2 = 0 when q = 1/2 in f2 or else
fn ≥ fn−1 ≥ ··· ≥ f1 = 0 and this completes the proof. �

By letting t→∞ in (5.1) and (5.2), we recover the following result of the author [14,
Theorem 5.1], which can be regarded as a sharpening of Sierpiński’s inequality [23] for
the weighted cases.
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Corollary 5.2. For q =min{ωi} > 0,

1− 2q
2x2

1
σn ≥ (1− q) lnAn + q lnHn− lnGn ≥ 1− 2q

2x2
n

σn, (5.6)

1− 2q
2x2

1
σn ≥ lnGn− q lnAn− (1− q) lnHn ≥ 1− 2q

2x2
n

σn (5.7)

with equality holding if and only if q = 1/2 or x1 = ··· = xn.

Corollary 5.3. For q =min{ωi} > 0,

qAnHn + (1− q)M2
n,2 ≥A2

n ≥ (1− q)AnHn + qM2
n,2, (5.8)

with equality holding if and only if q = 1/2 or x1 = ··· = xn.

Proof. We will prove the right-hand side inequality of (5.8) and the other proof is similar.
Theorem 5.1 implies that f (t) = (t + xn)2((1− q) lnAn,t + q lnHn,t − lnGn,t) is a decreas-
ing function of t and f ′(0)≤ 0 gives

x2
n

(
1− q

An
+

qHn

M2
n,−2

− 1
Hn

)
+ 2xn

(
(1− q) lnAn + q lnHn− lnGn

)≤ 0. (5.9)

Since (1 − q) lnAn + q lnHn − lnGn ≥ 0 by Corollary 5.2, we must have (1 − q)/An +
qHn/M

2
n,−2− 1/Hn ≤ 0 and (5.8) follows by a change of variables xi→ 1/xn−i+1. �

Corollary 5.4. For q =min{ωi}, t ≥ 0, ∆1,0,t,α ≤ 1 for α ≤ (1− q)−1 and ∆1,0,t,α ≥ 1 for
α≥ q−1.

Proof. We will show the first assertion and the proof for the other one is similar. By
Theorem 3.1(i), it suffices to prove the above result for α0 = (1− q)−1. Let f (t)= Aα0

n,t −
Gα0
n,t; by similar argument as in the proof of Theorem 3.1(i), it suffices to show f ′(0)≤ 0,

which is equivalent to A
q
nH

1−q
n ≤ Gn, and this last inequality follows from (5.7) and this

completes the proof. �

6. Some refinements of Ky Fan-type inequalities

Theorem 1.2 and Corollary 5.4 motivate the following two results.

Theorem 6.1. For 0 < q ≤min{ωi},

x
1/(1−q)−2
1 σn ≥ 2(1− q)

(
A

1/(1−q)
n −G

1/(1−q)
n

)
≥ x

1/(1−q)−2
n σn (6.1)

with equality holding if and only if n= 2, q = 1/2, or x1 = x2 = ··· = xn.

Proof. We prove the right-hand side inequality of (6.1) first. By homogeneity, we may
assume 0≤ x1 ≤ x2 ≤ ··· ≤ xn = 1 here and define

Dn
(
x1, . . . ,xn−1

)= 2(1− q)
(
A

1/(1−q)
n −G

1/(1−q)
n

)
− σn. (6.2)
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We want to show Dn ≥ 0. Let a = (a1, . . . ,an−1) ∈ [0,1]n−1 be the point in which the
absolute minimum of Dn is reached.

We may assume a1 ≤ a2 ≤ ··· ≤ an−1 and let an = 1. If ai = ai+1 for some 1≤ i≤ n− 1,
by combining ai with ai+1 and ωi with ωi+1, while noticing that increasing q will decrease

the value of (1− q)(A
1/(1−q)
n −G

1/(1−q)
n ) by Lemma 2.5, we can reduce the determination

of the absolute minimum of Dn to that of Dn−1 with different weights. Thus without loss
of generality, we may assume a1 < a2 < ··· < an−1 < 1. If a1 > 0, then a is an interior point
of [0,1]n−1, and we obtain

∇Dn
(
a1, . . . ,an−1

)= 0 (6.3)

such that a1, . . . ,an−1 solve the equation

x2−
(
An +A

q/(1−q)
n

)
x+G

1/(1−q)
n = 0. (6.4)

The above equation has at most two roots (regarding An, Gn as constants), so we are
reduced to the case n= 3. But if a1 < a2 < 1 both satisfy (6.4), we will have

a1a2 =G
1/(1−q)
3 = a

ω1/(1−q)
1 a

ω2/(1−q)
2 , (6.5)

which is impossible since ω1 + q ≤ 1, ω2 + q ≤ 1 and the two equalities cannot hold at the
same time. Thus if a1 > 0, we only need to prove D2 ≥ 0. In this case, by letting x = a1 > 0,
we get

D2(x)= 2(1− q)
((
ω1x+ω2

)1/(1−q)− xω1/(1−q)
)
−ω1ω2(x− 1)2. (6.6)

It is easy to check D2(1)=D′2(1)= 0 and

D′′(x)
2ω1

= qω1

1− q

(
ω1x+ω2

)(2q−1)/(1−q)−
(

ω1

1− q
− 1

)
xω1/(1−q)−2−ω2

≥ qω1

1− q
+ 1− ω1

1− q
−ω2 = 0,

(6.7)

with equality holding if and only if x = 1 or q = 1/2. Hence, by the Taylor expansion at 1,
D2(x)≥ 0 with equality holding if and only if x = 1 or q = 1/2.

If a is a boundary point of [0,1]n−1, then a1 = 0 and (6.2) is reduced to

En
(
x1 = 0, . . . ,xn−1

)= 2(1− q)A
1/(1−q)
n − σn. (6.8)

We now show En ≥ 0. Let (a2, . . . ,an−1) ∈ [0,1]n−2 be the point in which the absolute
minimum of En is reached. Similar to the argument above, we may assume 0= a1 < a2 <
··· < an−1 < 1 and it is easy to show by using the method above that we only need to
consider the case n= 3. When n= 3 and 0 < a2 < 1, we have

E′3
(
a2
)

2ω2
= A

q/(1−q)
3 − (a2−A3

)= 0. (6.9)
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Using this, we get

(1− q)A3

2ω2
E′′3 (a2)= qω2A

q/(1−q)
3 − (1− q)

(
1−ω2

)
A3

= qω2
(
a2−A3

)− (1− q)
(
1−ω2

)
A3

= qω2
((

1−ω2
)
a2−ω3

)− (1− q)
(
1−ω2

)(
ω2a2 +ω3

)
= ω2

(
1−ω2

)
(2q− 1)a2− qω2ω3− (1− q)

(
1−ω2

)
ω3 < 0.

(6.10)

This implies that E3(x) takes its local maximum at a2, so in order to show E3 ≥ 0, we only
need to show it for the cases a2 = 0 or a2 = 1 and we are then back to the case n= 2. In this
case, E2 ≥ 0 is equivalent to q1/(1−q) ≥ q/2 and g(q) = (1− q)1/(1−q) − q/2 ≥ 0. The first
inequality follows from Lemma 2.6 and one checks that g(q) is a decreasing function of q,
hence g(q)≥ g(1/2)= 0. This now completes the proof for the right-hand side inequality
of (6.1).

For the left-hand side inequality of (6.1), we may assume 1= x1 ≤ x2 ≤ ··· ≤ xn and
define

Fn
(
x2, . . . ,xn

)= σn− 2(1− q)
(
A

1/(1−q)
n −G

1/(1−q)
n

)
. (6.11)

We want to show Fn ≥ 0. Let a = (a2, . . . ,an) ∈ [1,∞)n−1 be the point in which the
absolute minimum of Fn is reached.

Again by Lemma 2.5 we may assume a1 = 1 < a2 < a3 < ··· < an. If an <∞, then a is
an interior point of [1,∞)n−1, and we obtain

∇Fn
(
a2, . . . ,an

)= 0 (6.12)

such that a2, . . . ,an solve (6.4), which has at most two roots (regarding An, Gn as con-
stants), so we are reduced to the case n = 3. But if 1 < a2 < a3, then we will have (6.5),
which is again impossible.

Thus we only need to consider the case n= 2 and F2 ≥ 0 can be proved similarly to our
treatment of D2 ≥ 0. One checks easily here F2(x2)= 0 if and only if x2 = 1 or q = 1/2.

So now we only need to consider the case an →∞. In this case, it is easy to see that if
q = 1/2, then n= 2 and F2 = 0. If q < 1/2, then 1/(1− q) < 2, hence

lim
an→∞

Fn = lim
an→∞

a2
n · lim

an→∞
σn
a2
n
> 0. (6.13)

This now completes the proof for the left-hand side inequality of (6.1) with the conditions
for equality readily checked. �

Theorem 6.2. For 0 < q ≤min{ωi},

x
1/q−2
n σn ≥ 2q

(
A

1/q
n −G

1/q
n

)
≥ x

1/q−2
1 σn (6.14)

with equality holding if and only if n= 2, q = 1/2, or x1 = x2 = ··· = xn.
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Proof. We prove the left-hand side inequality first. By homogeneity, we may assume 0≤
x1 ≤ x2 ≤ ··· ≤ xn = 1 here and define

Dn
(
x1, . . . ,xn−1

)= σn− 2q
(
A

1/q
n −G

1/q
n

)
. (6.15)

We want to show Dn ≥ 0. Let a = (a1, . . . ,an−1) ∈ [0,1]n−1 be the point in which the
absolute minimum of Dn is reached. As in the proof of Theorem 6.1 and again using
Lemma 2.5, we may assume a1 < a2 < ··· < an−1 < an = 1. If a1 > 0, then a is an interior
point of [0,1]n−1, and we obtain

∇Dn
(
a1, . . . ,an−1

)= 0 (6.16)

such that a1, . . . ,an−1 solve the equation

x2−
(
An +A

(1−q)/q
n

)
x+G

1/q
n = 0. (6.17)

The above equation has at most two roots (regarding An, Gn as constants), so we are
reduced to the case n= 3. But if a1 < a2 < 1 both satisfy (6.17), we will have

a1a2 =G
1/q
3 = a

ω1/q
1 a

ω2/q
2 , (6.18)

which is impossible since ω1 ≥ q, ω2 ≥ q and the two equalities cannot hold at the same
time. Thus if a1 > 0, we only need to prove D2 ≥ 0. In this case, set x=a1 > 0 and consider
first the case ω1 = 1− q, ω2 = q. Define

g(u) := u+
G

1/q
2

u
. (6.19)

We first observe that by (6.17),

g(x)=A
(1−q)/q
2 +A2. (6.20)

Note for u≥ x, q ≤ 1/3,

g′(u)= 1− G
1/q
2

u2
≥ 1− G

1/q
2

x2
≥ 0, (6.21)

since 0 < x < 1 and G2 = x1−q. As x < A2 in our case, we then have g(x) ≤ g(A2) = A2 +

G
1/q
2 /A2, a contradiction.

Now suppose q > 1/3, then

D′′2 (x)= 2(1− q)
q

(
q2− (1− q)2A

(1−2q)/q
2 + (1− 2q)x(1−3q)/q

)

≥ 2(1− q)
q

(
q2− (1− q)2 + (1− 2q)

)= 0,
(6.22)

with equality holding if and only if q = 1/2. As D2(1)=D′2(1)= 0, this shows D2(x)≥ 0
by considering the Taylor expansion of D2 at 1.
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Now consider the case ω1 = q, ω2 = 1− q, then D′′2 (x) = 2q(1− q)(1−A
(1−2q)/q
2 ) ≥ 0

with equality holding if and only if q = 1/2. As we also have D2(1)=D′2(1)= 0, this shows
D2(x)≥ 0.

Finally, we consider the case when Dn reaches its absolute minimum at a with a1 = 0.
Define

En
(
x1 = 0, . . . ,xn−1

)= σn− 2qA
1/q
n . (6.23)

We show now En ≥ 0. Let a = (a2, . . . ,an−1) ∈ [0,1]n−2, 0 < a2 < ··· < an−1 < 1, be the
point in which the absolute minimum of En is reached. Similar to the argument in the
proof of Theorem 6.1, we may assume 0= a1 < a2 < ··· < an−1 < 1 and it is easy to show
by using the method there that we only need to consider the case n= 3. When n= 3 and
0 < a2 < 1, then we have

E′
(
a2
)

2ω2
= a2−A3−A

(1−q)/q
3 = 0. (6.24)

Hence,

E3
(
a2
)=M2

3,2−A2
3− 2qA

1/q
3

=M2
3,2 + (1− 2q)A

1/q
3 − (A2

3 +A
1/q
3

)
=M2

3,2 + (1− 2q)A
1/q
3 − a2A3

= ω3
(
1− a2

)
+ (1− 2q)A

1/q
3 > 0.

(6.25)

So we only need to consider the case n = 2 and E2 ≥ 0 is equivalent to g(q) = (1−
q)/2− q1/q ≥ 0 and (1− q)/2− (1− q)1/q ≥ 0, the second inequality follows from Lemma
2.6 and one checks that g(q) is a decreasing function of q so that g(q)≥ g(1/2)= 0 with
equality holding if and only if q = 1/2. This completes the proof for the left-hand side
inequality of (6.14).

For the right-hand side inequality of (6.14), we may assume 1 ≤ x1 ≤ x2 ≤ ··· ≤ xn
and define

Fn
(
x2, . . . ,xn

)= 2q
(
A

1/q
n −G

1/q
n
)− σn. (6.26)

We want to show Fn ≥ 0. Let a = (a2, . . . ,an) ∈ [1,∞)n−1 be the point in which the
absolute minimum of Fn is reached.

Again by Lemma 2.5 we may assume 1 = a1 < a2 < ··· < an. If an <∞, then a is an
interior point of [0,1]n−1, and we obtain

∇Fn
(
a2, . . . ,an

)= 0 (6.27)

such that a2, . . . ,an solve (6.17), which has at most two roots (regarding An, Gn as con-
stants), so we are reduced to the case n = 3. But if 1 < a2 < a3, then we will have (6.18),
which is again impossible.

Thus we only need to consider the case n= 2 and F2 ≥ 0 follows similarly to our treat-
ment of D2 ≥ 0. One checks easily here F2(x2)= 0 if and only if x2 = 1 or q = 1/2.
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So now we only need to consider the case an →∞. In this case it is easy to see that if
q = 1/2, then n= 2 and F2 = 0. If q < 1/2, then 1/q > 2, hence

lim
an→∞

Fn = lim
an→∞

a
1/q
n · lim

an→∞
2qA

1/q
n

a
1/q
n

> 0. (6.28)

This now completes the proof for the right-hand side inequality of (6.1) with the condi-
tions for equality readily checked. �

7. Results on symmetric means

Our key tool in studying the symmetric means is Lemma 2.7. We remark here that it
follows from the proof of the lemma (see, e.g., [2, pages 317-318]) that for any t ≥ 0,
Pn,i(xt)= Pr,i(yt). For an application of the lemma, we note the following result (see [15,
Theorems 51 and 52], but be aware of the changes in notation).

Theorem 7.1. For n≥ 1,

Pn,1 ≥ Pn,2 ≥ ··· ≥ Pn,n−1 ≥ Pn,n, (7.1)

and, for n > r > 0,

P2r
n,r ≥ Pr−1

n,r−1P
r+1
n,r+1. (7.2)

In [15], it shows that (7.2) implies (7.1). We now use Lemma 2.7 to show that the two
are equivalent.

Theorem 7.2. Inequalities (7.1), (7.2), and Pn,1 ≥ Pn,n are equivalent.

Proof. Plainly (7.1) implies Pn,1 ≥ Pn,n and via a change of variables xi → 1/xn−i+1, Pn,1 ≥
Pn,n is equivalent to Pn,n−1 ≥ Pn,n and then Lemma 2.7 gives (7.1). To show (7.2) im-
plies (7.1), we let f (t)= ln(Pn,r(xt)/Pn,r+1(xt)) and note that f ′(t)≤ 0 implies (7.1) since
limt→∞ f (t) = 0. As x is arbitrary, it suffices to show f ′(0) ≤ 0, which is equivalent to
(7.2). Now we show that (7.2) follows from (7.1). For a given x = (x1, . . . ,xn), we define

x−1 = (1/x1, . . . ,1/xn). Note P
j
n, j(x−1)= P

n− j
n,n− j(x)/Pn

n,n(x). Hence, (7.1) implies Pn,1(x−1)≥
Pn,2(x−1) or P2(n−1)

n,n−1 ≥ Pn−2
n,n−2P

n
n,n. This combined with Lemma 2.7 gives (7.2). �

Our next result generalizes (1.8).

Theorem 7.3. For t ≥ 0, n≥ r ≥ 2,

σn
2(n− 1)x2

1
≥ lnPn,r−1− lnPn,r ≥ σn

2(n− 1)x2
n

, (7.3)

rσn

2(n− 1)x2−r/(r−1)
1

≥ Pr/(r−1)
n,1 −Pr/(r−1)

n,r ≥ rσn

2(n− 1)x2−r/(r−1)
n

, (7.4)

(
xn

t+ xn

)r−2(
Pr
n,1,t −Pr

n,r,t

)≥ Pr
n,1−Pr

n,r ≥
(

x1

t+ x1

)r−2(
Pr
n,1,t −Pr

n,r,t

)
, (7.5)

r(r− 1)xr−2
n

2(n− 1)
σn ≥ Pr

n,1−Pr
n,r ≥

r(r− 1)xr−2
1

2(n− 1)
σn. (7.6)
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Proof. We note first σn = (n− 1)(P2
n,1 − P2

n,2). By Lemma 2.7, there exists y = (y1, . . . , yr)
with x1 ≤ y1 ≤ ··· ≤ yr ≤ xn such that Pn,i(x) = Pr,i(y), 0 ≤ i ≤ r. Further note that

Pr,r(y) = Gr , Pr,r−1(y) = Gr/(r−1)
r /H1/(r−1)

r . By a result of the author [13, (3.5)] and using
the same method that shows that (1.2) and (1.3) are equivalent, one can show that

P2
r,1(y)−P2

r,2(y)

2y2
1

≥ lnPr,r−1(y)− lnPr,r(y)≥ P2
r,1(y)−P2

r,2(y)

2y2
r

. (7.7)

Inequality (7.3) then follows from this and Lemma 2.7. Similarly, (7.4) follows from
Theorem 6.1 and Lemma 2.7. To show (7.5), we use an identity of Dinghas [11, (3.3)]:

Ar
n−Pr

n,r =
1(
n
r

) n∑
k=2

k∑
i=2

(i− 1)

(
xk −Ak−1

)2

k2
Ei−2,k−i
n−2,r−2

(
Ak−1;Ak;xk+1, . . . ,xn

)
, (7.8)

where Ei−2,k−i
n−2,r−2(Ak−1;Ak;xk+1, . . . ,xn) denotes the (r− 2)th symmetric function of the n−

2 numbers Ak−1 (i− 2 times), Ak (k− i times) and xk+1, . . . ,xn.
Now use (7.8) for (Ar

n − Pr
n,r)/x

r−2
n and (Ar

n,t − Pr
n,r,t)/(xn + t)r−2 and consider their

differences, the left-hand side inequality of (7.5) follows from this and the observation

xi + t

xn + t
≥ xi

xn
, 1≤ i≤ n,

Ai + t

xn + t
≥ Ai

xn
, i= k− 1,k. (7.9)

The right-hand side inequality of (7.5) can be shown similarly. Now (7.6) follows from
(7.5). This can be seen by noticing limt→∞(x1 + t)2−r(Ar

n,t −Pr
n,r,t)= limt→∞(xn + t)2−r(Ar

n,t

−Pr
n,r,t)= r(r− 1)σn/2(n− 1) and this completes the proof. �

We note that (7.6) is a result of Dinghas [11, page 156], originally written as

r(r− 1)xr−2
n

2n(n− 1)

n∑
k=1

(
1− 1

k

)(
xk −Ak−1

)2

≥ Ar
n−Pr

n,r ≥
r(r− 1)xr−2

1

2n(n− 1)

n∑
k=1

(
1− 1

k

)(
xk −Ak−1

)2
.

(7.10)

By using the relation (k− 1)Ak−1 + xk = kAk, one shows easily by induction that
∑n

k=1(1−
1/k)(xk −Ak−1)2 = nσn and (7.6) then follows.

Corollary 7.4. For n≥ r ≥ 2,

rxn
(
Ar−1
n −Pr−1

n,r−1

)≥ (r− 2)
(
Ar
n−Pr

n,r

)≥ rx1
(
Ar−1
n −Pr−1

n,r−1

)
. (7.11)

Proof. Let f (t) = (xn + t)2−r(Ar
n,t − Pr

n,r,t). By (7.5), f is an increasing function of t and
f ′(0)≥ 0 gives the left-hand inequality of (7.11) and the right-hand inequality of (7.11)
follows similarly. �
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Theorem 7.5. For t ≥ 0, n− 1≥ r ≥ 1,

(
xn

t+ xn

)2r−2

≥ P2r
n,r −Pr−1

n,r−1P
r+1
n,r+1

P2r
n,r,t −Pr−1

n,r−1,tP
r+1
n,r+1,t

≥
(

x1

t+ x1

)2r−2

. (7.12)

Proof. The proof is similar to the proof of Theorem 7.3, once we note the following iden-
tity of Muirhead [21] (see also [15, Theorem 54]):

P2r
n,r −Pr−1

n,r−1P
r+1
n,r+1 =

(
r(r + 1)

(
n

r

)(
n

r + 1

))−1 r−1∑
i=0

(
2i
i

)
(r, i)
i+ 1

, (7.13)

where (r, i)=∑x2
1 ···x2

r−i−1xr−i ···xr+i−1(xr+i− xr+i+1)2, the summation extending over
all products formed from the x and of the type shown. �

We note here that by taking the limit as t→∞ in Theorem 7.5, we obtain

x2r−2
n

(n− 1)
σn ≥ P2r

n,r −Pr−1
n,r−1P

r+1
n,r+1 ≥

x2r−2
1

(n− 1)
σn. (7.14)

We leave the proof of the following corollary to the reader since it is similar to the proof
of Corollary 7.4.

Corollary 7.6. For n− 1≥ r ≥ 2,

xn
(
Pr
n,rP

r−1
n,r−1−Pr−2

n,r−2P
r+1
n,r+1

)≥ 2
(
P2r
n,r −Pr−1

n,r−1P
r+1
n,r+1

)
≥ x1

(
Pr
n,rP

r−1
n,r−1−Pr−2

n,r−2P
r+1
n,r+1

)
.

(7.15)

We now look at the following inequalities in the unweighted case (ωi = 1/n, n≥ 2):

(n− 1)
(
M2

n,2−A2
n

)≥ A2
n−G2

n ≥
1

n− 1

(
M2

n,2−A2
n

)
, (7.16)

(n− 1)
(
M2

n,2−A2
n

)≥ A2
n−AnHn ≥ 1

n− 1

(
M2

n,2−A2
n

)
. (7.17)

Inequality (7.16) is due to Diananda [10]. Inequality (7.17) follows from Corollary 5.3.
We note that the two left-hand side inequalities of (7.16) and (7.17) give refinements

of (7.2). Since M2
n,2 −A2

n = (n− 1)(P2
n,1 − P2

n,2), the left-hand side inequality of (7.16) is
equivalent to (n− 1)2P2

n,2 ≤ n(n− 2)P2
n,1 +P2

n,n. By a change of variables xi→ 1/xn−i+1, this
is

(n− 1)2Pn−2
n,n−2P

n
n,n ≤ n(n− 2)P2n−2

n,n−1 +P2n−2
n,n . (7.18)

It follows then from Lemma 2.7 that for 2≤ r ≤ n,

(r− 1)2Pr−2
n,r−2P

r
n,r ≤ r(r− 2)P2r−2

n,r−1 +P2r−2
n,r ≤ (r− 1)2P2r−2

n,r−1. (7.19)
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Similarly, the left-hand side inequality of (7.17) gives for 2≤ r ≤ n,

(r− 1)2Pr−2
n,r−2P

r
n,r ≤ r(r− 2)P2r−2

n,r−1 +Pr−1
n,r−1P

r
n,r /Pn,1 ≤ (r− 1)2P2r−2

n,r−1. (7.20)

The two right-hand inequalities of (7.16) and (7.17) are relatively easy. For example,
the right-hand side inequality of (7.16) is equivalent to Pn,2 ≥ Pn,n. We now give a uniform
treatment of the two right-hand side inequalities.

Theorem 7.7. For t ≥ 0, n ≥ r ≥ 2, f (t;α) = Pα
n,1,t −Pα

n,r,t is a decreasing function of t for
α ≤ r/(r − 1) and Pα

n,1,t − Pα
n,r,t is an increasing function for α ≥ r. In particular, for n ≥ 3,

ωi = 1/n, one has

(1− 1/n)
Gn/(n−2)
n A(n−3)/(n−2)

n

H1/(n−2)
n

+
M2

n,2

n
≤A2

n. (7.21)

Proof. The first assertion of the theorem follows from Corollary 5.4 and Lemma 2.7. Ap-
ply this to r = n− 1 so that f ′(0;(n− 1)/(n− 2))≤ 0; (7.21) follows from this by a change
of variables xi→ 1/xn−i+1. �

Note that when n≥ 3 and by the well-known Sierpiński inequality AnHn−1
n ≤Gn

n,

max
(
G2
n,AnHn

)≤ Gn/(n−2)
n A(n−3)/(n−2)

n

H1/(n−2)
n

. (7.22)

Hence, (7.21) gives a refinement of the right-hand side inequalities of (7.16) and (7.17).
Our next result generalizes Theorem 1.4 for k = 1.

Theorem 7.8. For n≥ r ≥ 1, inequality

(r + 1)

(
ln

(
Pn+1,1

Pn+1,1,t

)
− ln

(
Pn+1,r+1

Pn+1,r+1,t

))
≥ r

(
ln

(
Pn,1

Pn,1,t

)
− ln

(
Pn,r

Pn,r,t

))
(7.23)

holds with equality holding if and only if x1 = ··· = xn when r �= n and xn+1 = An when
r = n.

Proof. We use the idea in [8] and we may assume n > r. In this case, (7.23) is equivalent
to

(
Pr+1
n+1,r+1/P

r
n,r

Pr+1
n+1,r+1,t/P

r
n,r,t

)(
Pn,1

Pn,1,t

)r

≤
(
Pn+1,1

Pn+1,1,t

)r+1

. (7.24)

Using the relation

Pr+1
n+1,r+1 =

n− r

n+ 1
Pr+1
n,r+1 +

r + 1
n+ 1

xn+1P
r
n,r , (7.25)

we can express the first factor on the left-hand side of (7.24) as

(n− r)Pr+1
n,r+1/P

r
n,r + (r + 1)xn+1

(n− r)Pr+1
n,r+1,t/P

r
n,r,t + (r + 1)

(
xn+1 + t

) . (7.26)
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Similarly, by Theorem 7.7 with α= 0,

(
Pn+1,1

Pn+1,1,t

)r+1

=
(

Pn+1,1
(
xn+1,Pn,1, . . . ,Pn,1

)
Pn+1,1

(
xn+1 + t,Pn,1 + t, . . . ,Pn,1 + t

)
)r+1

≥
(

Pn+1,r+1
(
xn+1,Pn,1, . . . ,Pn,1

)
Pn+1,r+1,t

(
xn+1 + t,Pn,1 + t, . . . ,Pn,1 + t

)
)r+1

= (n− r)Pr+1
n,1 + (r + 1)xn+1P

r
n,1

(n− r)Pr+1
n,1,t + (r + 1)

(
xn+1 + t

)
Pr
n,1,t

.

(7.27)

Thus our conclusion will follow provided that

(n− r)Pr+1
n,r+1/P

r
n,r + (r + 1)xn+1

(n− r)Pr+1
n,r+1,t/P

r
n,r,t + (r + 1)

(
xn+1 + t

) ≤ (n− r)Pn,1 + (r + 1)xn+1

(n− r)Pn,1,t + (r + 1)
(
xn+1 + t

) . (7.28)

If x1 = ··· = xn, then equality holds above, otherwise little calculation shows that the
above is equivalent to

Pn,1−Pr+1
n,r+1/P

r
n,r

Pn,1,t −Pr+1
n,r+1,t/P

r
n,r,t

− 1≥ −t(n+ 1)
(n− r)Pn,1,t + (r + 1)

(
xn+1 + t

) . (7.29)

In order for the above inequality to hold, it suffices to show that the left-hand side above
≥ 0 and this last inequality follows by using the method in the proof of Theorem 7.3
combined with the case s=−1 in Corollary 3.3 and Lemma 2.7. �

Corollary 7.9. For n≥ r ≥ 1,

(r + 1)

(
Pr
n+1,r

Pr+1
n+1,r+1

− 1
An+1

)
≥ r

(
Pr−1
n,r−1

Pr
n,r

− 1
An

)
. (7.30)

Proof. It follows from Theorem 7.8 that the function f (t)= (r + 1)(lnAn+1,t−lnPn+1,r+1,t)
− r(lnAn,t − lnPn,r,t) is a decreasing function of t and the conclusion follows from f ′(0)≤
0. �

Our last result is analogous to Theorem 1.4 and the classical Rado inequality.

Theorem 7.10. For n≥ r ≥ 2,

n
(
Pn,1−Pn,r

)≥ (n− 1)
(
Pn−1,1−Pn−1,r−1

)
(7.31)

with equality holding in and only if r = n and xi = Pn−1,n−1(x1, . . . ,xi−1,xi+1, . . . ,xn) for some
1≤ i≤ n.

Proof. We assume here that xi > 0, 1≤ i≤ n, and they satisfy no other relations. Now fix
x1, . . . ,xn−1 and by using (7.25), consider

f
(
xn
)

:= n
(
Pn,1−Pn,r

)= xn + (n− 1)Pn−1,1−n
(
n− r

n
Pr
n−1,r +

r

n
xnP

r−1
n−1,r−1

)1/r

.

(7.32)
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On setting f ′(xn)= 0, we obtain

(
n− r

n
Pr
n−1,r +

r

n
xnP

r−1
n−1,r−1

)(1−r)/r

= P1−r
n−1,r−1. (7.33)

From this we solve that

xn = n

r
Pn−1,r−1− n− r

r

Pr
n−1,r

Pr−1
n−1,r−1

> 0. (7.34)

Since one checks easily that f ′′(xn) > 0 at the above point, it follows that for any xn > 0,

f
(
xn
)≥ f

(
n

r
Pn−1,r−1− n− r

r

Pr
n−1,r

Pr−1
n−1,r−1

)

= n

r
Pn−1,r−1− n− r

r

Pr
n−1,r

Pr−1
n−1,r−1

+ (n− 1)Pn−1,1−nPn−1,r−1

= (n− 1)
(
Pn−1,1−Pn−1,r−1

)
+
n− r

r

(
Pn−1,r−1−

Pr
n−1,r

Pr−1
n−1,r−1

)

≥ (n− 1)
(
Pn−1,1−Pn−1,r−1

)
,

(7.35)

where the last inequality above follows from (7.1) and this proves the assertion of the
lemma. One also checks the conditions for equality easily. �
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[15] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, 2nd ed., Cambridge University Press,
Cambridge, 1952.

[16] L. Hoehn and I. Niven, Averages on the move, Math. Mag. 58 (1985), no. 3, 151–156.
[17] A. McD. Mercer, Some new inequalities involving elementary mean values, J. Math. Anal. Appl.

229 (1999), no. 2, 677–681.
[18] , Bounds for A−G, A−H , G−H , and a family of inequalities of Ky Fan’s type, using a

general method, J. Math. Anal. Appl. 243 (2000), no. 1, 163–173.
[19] , Improved upper and lower bounds for the difference An−Gn, Rocky Mountain J. Math.

31 (2001), no. 2, 553–560.
[20] P. R. Mercer, Refined arithmetic, geometric and harmonic mean inequalities, Rocky Mountain J.

Math. 33 (2003), no. 4, 1459–1464.
[21] R. F. Muirhead, Inequalities relating to some algebraic means, Proc. Edinburgh Math. Soc. 19

(1901), 36–45.
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