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Several classes of second-order ordinary differential equations are characterized intrin-
sically by means of differential invariants. The method is proved to be computationally
feasible.

1. Introduction

The classical theory of differential invariants for second-order ODEs (e.g., see [24, 25, 36,
37, 39, 52, 53]) has experienced a notable development in the last decade. It is due to the
interest of its geometric applications (see [2, 14, 17, 18, 20, 21, 22, 23, 26, 27, 28, 34, 35,
42, 45, 49]) and, very specially, due to the new computational aspects of that theory in
applying it to a wide class problems, such as symmetries, conservation laws, order reduc-
tion; for example, see [3, 4, 5, 6, 9, 10, 15, 16, 29, 30, 31, 32, 38, 43, 44, 48, 50]. The goal
of this paper is to characterize several classes of second-order ODEs by using differen-
tial invariants with respect to the subgroups of horizontal and vertical transformations
of the plane, which are defined and studied in Sections 2.1, 2.2, and 2.3 below. Basically,
the method supplies a criterion to know whether a given second-order ordinary differen-
tial equation can be put, after a change of variables belonging to one of the two groups
under consideration, into a specific normal form. In each case, the criterion reduces to
check the vanishing of several algebraic expressions written in terms of differential in-
variants and, hence, we can recognize whether a concrete equation belongs to a specific
normal form by simply running an algorithm in polynomial time. The problem of char-
acterization of ordinary differential equations has been tackled by some authors in the
last decades (see, e.g., [5, 17, 18, 20, 22, 23, 26, 27, 34, 35]). All these works are based on
the Cartan’s equivalence method, as well as Tresse’s original papers, and their solutions
rely also on differential invariants, which derive from their own theory. Nevertheless, in
this paper we propose a rather different approximation to this problem: we calculate ex-
plicitly the basis of differential invariants (of each order), and starting from them we
obtain necessary and sufficient conditions for the reduction. The proposed method is
applied to five classes of second-order ODEs: autonomous differential equations, equa-
tions of the second homogeneous type (as defined in [33]), special equations, Painlevé
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transcendents, and linear equations. The first four classes are studied with respect to the
group of horizontal diffeomorphisms, whereas the fifth one is studied with respect to the
group of vertical diffeomorphisms. The horizontal group can be understood as the group
of changes of the independent x-variable, and the vertical group as the changes of the de-
pendent y-variable. Essentially, we have chosen such groups and normal forms in order
to illustrate the method of invariants since they are very well-known instances, but the
procedure works successfully in many other cases as well. The main results of this paper
are Propositions 3.2, 3.5, 3.7, 3.8, and 3.9, which correspond to the horizontal group and
Theorems 4.2, 4.4, which correspond to the vertical group. The results are explicit as, in
each case, the method provides not only a criterion for recognizing the type of a given
equation intrinsically, but also the change of variables reducing the equation to normal
form. The results in Propositions 3.2, 3.5, 3.7, 3.8, and 3.9 are new, to our knowledge.
The characterization of linearizable second-order equations has already been reached by
using different approaches; for example, see [22, 32, 34, 44]. Theorems 4.2 and 4.4 below
are a reformulation of linearization criteria in terms of differential invariants. Although
these theorems are equivalent to the criteria obtained in the aforementioned works, the
approach that we present here seems to be different. The algorithm to calculate the differ-
ential invariants introduced in [38] allows us to interpret the conditions for reduction in
terms of the function that defines the ordinary differential equation. Nevertheless, some-
times, when the function that defines a given ODE is rather long or complicated, these
explicit conditions for the reduction cannot be checked “by hand.” Fortunately, such ex-
plicit conditions can be implemented easily in any programmable computer algebra sys-
tem (CAS) such as Mathematica, Maple, MACSYMA, REDUCE, AXIOM, MuPAD, and
so forth. On the other hand, in the literature of the topic, there are several packages using
the symmetry groups of differential equations in order to carry out the reduction process;
for example, see [7, 8, 9, 10, 11, 12, 15, 16, 31, 50].

2. Theoretical background

2.1. The notion of an invariant. In order to be able to use the notion of a differential
invariant as a function on a jet bundle that is invariant under the induced action of a
certain group of transformations (see [1, 14, 36, 37, 44]), a second-order ODE is defined
to be a section σ of p21 : J2(p)→ J1(p), where p :R2 →R is the projection p(x, y)= x. If
(x, y, y′, y′′) is the natural coordinate system on J2(p), then σ is equivalent to giving the
function σ∗y′′ = F(x, y, y′)∈ C∞(J1(p)). Let Aut p be the group of automorphisms of p,
that is,

Aut p = {Φ∈DiffR2 : p ◦Φ= φ ◦ p, φ ∈DiffR
}
. (2.1)

This group acts on the space of sections of p21 in a natural way; precisely σ �→Φ(2) ◦ σ ◦
(Φ(1))−1, where Φ(k) denotes the k-jet prolongation of Φ to Jk(p); that is,

Φ(k)( jkx s)= jkφ(x)

(
Φ◦ s◦φ−1), (2.2)

for every section s :R→R2, s(x)= (x, f (x)), of p. The notion of invariance that we con-
sider is the one relative to the prolongation of this group action to Jr(p21). A function
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I : Jr(p21) → R is said to be a relative differential invariant with respect to a subgroup
� ⊆ Aut p (or a relative �-invariant) if for all jrz′σ ∈ Jr(p21), z′ = j1x s ∈ J1(p), and every
Φ ∈ �, there exists an invertible function η ∈ C∞(R2)∗—called the weight of I—such
that,

I
((
Φ(2))(r)(

jrz′σ
))= I( jrΦ(1)(z′)

(
Φ(2) ◦ σ ◦ (Φ(1))−1

))
= ηI( jrz′σ). (2.3)

If η = 1, then I is called an absolute invariant or simply a differential invariant. This
notion of invariance is not very efficient in order to calculate explicitly the differential
invariants. Consequently, we introduced the infinitesimal version of invariance which
allows us to use algebraic and analytic tools that provide a more operative algorithm,
which can be implemented easily by computer. Every differential invariant with respect
to � is also an invariant with respect to the Lie algebra g of p-projectable vector fields
whose local flow belongs to �; that is, (X (2))(r)I = 0 for all X ∈ g, as the flow of (X (2))(r)

is (Φ(2)
t )(r), Φt being the flow of X . In fact, both notions are equivalent; for example, see

[41]. Below, we deal with the cases

� = Auth p = {Φ∈ Aut p : p ◦Φ= p},
� = Autv p = {φ̄∈ Aut p : φ̄(x, y)= (φ(x), y

)
, φ ∈DiffR

}
,

(2.4)

which we refer to as the “horizontal” and “vertical” subgroups, respectively. Recall that
each element of the horizontal subgroup stands for a change of coordinates of the inde-
pendent variable, whereas each element of the vertical subgroup stands for a change of
coordinates of the dependent variable.

2.2. The horizontal group. In [41], the number of functionally independent r-order
differential invariants for the group Auth p is proved to be equal to (1/6)r(r + 1)(r + 5) + 1
on the dense open subset defined by y′ 	= 0. A basic question is how to obtain invariants
of order r + 1 starting from invariants of order ≤ r. The standard procedure goes back to
Lie’s ideas (see [36, 37, 39]). If we denote by Dx, Dy , and Dy′ the total derivatives on jet
bundles with respect to the variables x, y, and y′, respectively (cf. [44]), then, for every
r ∈N, the operators

Y1 =Dy , Y2 = y′Dy′ , Y3 = 1
y′
(
Dx + y′′Dy′

)
(2.5)

transform rth order differential invariants into (r + 1)th order differential invariants for
the horizontal subgroup. For the proof, we refer the reader to [41]. Then, the algebra
of Auth p-invariants are generated by algebraic operations and derivations with respect
to the operators Dx, Dy , and Dy′ above. Precisely, a system of functionally independent
generators of the ring of rth order is given by

y,

Iabc =
(
Ya

1 ◦Yb
2 ◦Yc

3

)
(I), 0≤ a+ b+ c ≤ r− 1,

Jβγ =
(
Y
β
2 ◦Yγ

3

)
(J), 0≤ β+ γ ≤ r− 1,

(2.6)
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where I and J are given below. One can efficiently implement an algorithm by using any
computer algebra system (see [38] and the appendix of this paper) to obtain the invariants
in the formula (2.6) recursively. As an example, for r = 3, we have

y,

I = y′′010

y′2
,

I001 = y′
(
y′′110 + y′′y′′011

)− 2y′′y′′010

y′4
,

I010 =−2y′′010 + y′y′′011

y′2
,

I100 = y′′020

y′2
,

I020 = 4y′′010− 3y′y′′011 + y′2y′′012

y′2
,

I200 = y′′030

y′2
,

I002 = 8y′′2y′′010− y′
(
2y′′y′′010y

′′
001− 2y′′100y

′′
010− 5y′′2y′′011− 5y′′y′′110

)
y′6

+
y′′210 + 2y′′y′′111 + y′′y′′001y

′′
011 + y′′100y

′′
011 + y′′2y′′012

y′4
,

I101 = y′
(
y′′120 + y′′010y

′′
011 + y′′y′′021

)− 2
(
y′′2010 + y′′y′′020

)
y′4

,

I011 = 8y′′y′′010− y′
(
3y′′110 + 2y′′010y

′′
001 + 5y′′y′′011

)
y′4

+
y′′111 + y′′001y

′′
011 + y′′y′′012

y′2
,

J = y′′ − y′y′′001

y′2
,

J10 =−2y′′ + 2y′y′′001− y′2y′′002

y′2
,

J01 =−2y′′2 + y′
(
2y′′y′′001 + y′′100

)− y′2
(
y′′y′′002 + y′′101

)
y′4

,

J20 = 4y′′ − 4y′y′′001 + 2y′2y′′002− y′3y′′003

y′2
,

J11 = 8y′′2− y′
(
3y′′100− 10y′′y′′001

)
+ y′2

(
3y′′101 + 2y′′2001 + 4y′′y′′002

)
y′4

−
(
y′′102 + y′′y′′003 + y′′001y

′′
002

)
y′

,
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J02 = 8y′′3− y′
(
10y′′2y′′001 + 7y′′y′′001

)
y′6

+
y′′200 + 2y′′y′′2001 + 4y′′2y′′002 + 5y′′y′′101 + 2y′′100y

′′
001

y′4

− 2y′′y′′102 + y′′100y
′′
002 + y′′2y′′003 + y′′y′′001y

′′
002 + y′′201

y′3
.

(2.7)

In these formulas, we denote by y′′abc, 0≤ a+ b+ c ≤ r, the coordinates induced on Jr(p21);
that is,

y′′abc
(
jrz′σ

)= ∂a+b+cF

∂xa∂yb∂y′c
(z′), (2.8)

where σ : J1(p) → J2(p) is the section associated with the differential equation y′′ =
F(x, y, y′).

2.3. The vertical group. For the group Autv p, the number of functionally independent
r-order invariants is given as follows (see [40]):

1, if r = 0,1,

2, if r = 2,

1
6
r(r− 2)(r + 5) + 1, if r ≥ 3.

(2.9)

As in the horizontal case, there exist three operators,

Z1 =
Dy′√
y′′003

, Z2 =Dx + y′Dy + y′′Dy′ , Z3 =
2Dy + y′′001Dy′√

y′′003

, (2.10)

and two functions, K and V , which are vertical invariants of order 2 and 4, respectively,
such that a system of functionally independent generators of the ring of rth order differ-
ential invariants is given by

x,

Kabc =
(
Za1 ◦Zb2 ◦Zc3

)
(K), 0≤ a+ b+ c ≤ r− 2,

Kγβ =
(
Z
γ
3 ◦Zβ2 ◦Z1

)
(K), 1≤ β+ γ ≤ r− 3, γ 	= 0,

Zα1 (V), 0≤ α≤ r− 4,

(2.11)

where V = y′′004/y
′′3/2
003 , and K is defined below. Again, by using the algorithm explained in
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the appendix, we obtain the following basis for the third order:

x,

K = y′′2001

2
− y′′y′′002 + 2y′′010− y′y′′011− y′′101,

K001 = 1√
y′′003

(− y′′y′′001y
′′
003− 2y′′010y

′′
002 + 3y′′001y

′′
011− 2y′′y′′012

− y′y′′001y
′′
012 + 4y′′020− 2y′y′′021− y′′001y

′′
102− 2y′′111

)
,

K010 = y′
(
y′′001y

′′
011 + 2y′′020− y′′010y

′′
002− 2y′′111− 2y′′y′′012

)
− y′2y′′021− y′′100y

′′
002 + y′′001y

′′
101 + y′′y′′011− 2y′′y′′102 + 2y′′110− y′′201− y′′2y′′003,

K100 = 1√
y′′003

(− y′′y′′003 + y′′011− y′y′′012− y′′102

)
.

(2.12)

Moreover, it is easily checked that R1 = y′′003 is a relative Autv(p)-invariant of weight ψ−2
y

(where x̄ = x, ȳ = ψ(x, y) is the change of variables), so that the numerators of K001 and
K100 are relative invariants as well:

R2 =
√
y′′003K100, R3 =

√
y′′003K001. (2.13)

Notation 2.1. In what follows, we use the following notation: f σ = f ◦ jrσ , where σ is
a section of p21 and f ∈ C∞(Jr(p21)). For example, if y′′ = F(x, y, y′) is the differential
equation associated with σ , then from (2.12) we obtain Kσ = (1/2)F2

y′ − FFy′ y′ + 2Fy −
y′Fyy′ −Fxy′ .

3. Four classes of equations for Auth p

As mentioned in Section 1, differential invariants are a powerful tool in order to classify
ODEs. The aim of this section is to show how to apply this method in four concrete ex-
amples: autonomous differential equations, second homogeneous-type equations, special
equations, and Painlevé transcendents. Moreover, the criteria obtained for characteriza-
tion are easily implemented by any computer algebra system as it is shown in Section 5.

3.1. Autonomous, special, and second homogeneous-type second-order ODEs. Let us
consider an arbitrary ordinary differential equation of second order,

σ ≡ (y′′ = F(x, y, y′)
)
, (3.1)

and a horizontal change of variables,

x̄ = φ(x), φ′ 	= 0,

ȳ = y.
(3.2)
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Then, taking the formulas

dy

dx
= φ′ dy

dx̄
,

d2y

dx2
= φ′′ dy

dx̄
+φ′2

d2y

dx̄2
(3.3)

into account, a straightforward argument yields.

Lemma 3.1. Equation (3.1) can be reduced to an autonomous differential equation

d2y

dx̄2
= f

(
y,
dy

dx̄

)
(3.4)

under the change of variables (3.2) if and only if the following PDE holds:

0= φ′′

φ′3
y′Fy′ +

1
φ′2

Fx − 2
φ′′

φ′3
F +

1
φ′

(
1
φ′

)′′
y′. (3.5)

This result allows us to obtain the criterion for the reduction of an arbitrary second-
order ODE to a particular type in terms of differential invariants. Consequently, the fol-
lowing results hold.

Proposition 3.2. Equation (3.1) can be reduced to an autonomous differential equation by
means of (3.2) on the open subset y′ 	= 0 if and only if the following conditions hold:

(1) if Iσ010 	= 0, then

0= Iσ101I
σ
010− Iσ110I

σ
001− Iσ

(
Iσ010

)2
, (3.6)

0= Iσ010I
σ
011 + Jσ

(
Iσ010

)2− Iσ001I
σ
020 + Iσ010I

σ
001, (3.7)

0= Iσ002I
σ
010− Iσ001I

σ
011. (3.8)

In this case, the change of variables is given by

x̄ =
∫

exp
(
−
∫

Fxy
y′Fyy′ − 2Fy

dx
)
dx+α, α∈R,

ȳ = y,
(3.9)

(2) if Iσ010 = 0, then F(x, y, y′)= ξ(y)y′2 +ϕ(y′), where ϕ,ξ ∈ C∞(R).

Proof. Set G= y′Fyy′ − 2Fy . Then, using the algorithm implemented to calculate invari-
ants (see [38]), we have G = y′2Iσ010, and the formulas (3.6)–(3.8) are equivalent to the
following:

0=
(
Fxy
G

)
y
, (3.10)

0=
(
Fxy
G

)
y′

, (3.11)

0= y′
(
Fxy
G

)
x

+ y′
(
Fxy
G

)2

+
(
Fxy
G

)(
2F − y′Fy′

)
+Fx. (3.12)
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In fact, it is readily checked that the following equation holds:

r.h.s.(3.6)=G2y′−5 r.h.s.(3.10), r.h.s.(3.7)=G2y′−4 r.h.s.(3.11), (3.13)

where “r.h.s.” means “right-hand side of.” The formula (3.8) needs an explanation. We
have

y′
(
Fxy
G

)
x

+ y′
(
Fxy
G

)2

+
Fxy
G

(
2F − y′Fy′

)
+Fx = y′3

r.h.s.(3.8)(
Iσ010

)2 − y′F
r.h.s.(3.7)(
Iσ010

)2 .

(3.14)

If τ ≡ (y′′ = f (y, y′)) is an autonomous equation, as fx = 0, we have

y′3
(
Iτ010

)−2
r.h.s.(3.8)= 0. (3.15)

(1) As a simple calculation shows, the conditions (3.6)–(3.8) hold for the equation
d2y/dx̄2 = f (y,dy/dx̄). Since these conditions are written in terms of invariants, they also
hold for any differential equation obtained from the autonomous equation by a change
of the form (3.2). Conversely, assume the conditions (3.6)–(3.8) hold true (and conse-
quently (3.10)–(3.12) also hold true). Consequently, taking into account the conditions
(3.10) and (3.11), it is easy to check that the function Fxy/G depends only on the variable
x. Consequently, if we use the following change of variables:

x̄ = φ(x)=
∫

exp
(
−
∫
Fxy
G
dx
)
dx+α, α∈R,

ȳ = y,
(3.16)

(3.12) is written as follows:

0=
(

2φ′′2−φ′φ′′′
φ′2

)
y′ − 2

φ′′

φ′
F +

φ′′

φ′
y′Fy′ +Fx. (3.17)

Now, multiplying by 1/φ′2, we obtain

0= 1
φ′

(
1
φ′

)′′
y′ − 2

φ′′

φ′3
F +

φ′′

φ′3
y′Fy′ +

1
φ′2

Fx. (3.18)

As a consequence, Lemma 3.1 holds true. (2) Next, assume G = y′Fyy′ − 2Fy = 0. The
general solution to this PDE is

F(x, y, y′)=A(x, y)y′2 +B(x, y′), A,B ∈ C∞(R2). (3.19)

Using formulas (3.3) and (3.19), a simple computation shows

A(x, y)y′2 +B(x, y′)= φ′′(x)
φ′(x)

y′ +φ′(x)2 f
(
y,

y′

φ′(x)

)
. (3.20)
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Substituting φ′(x)y′ for y′, we obtain

A(x, y)φ′(x)2y′2 +B
(
x,φ′(x)y′

)= φ′′(x)y′ +φ′(x)2 f (y, y′). (3.21)

Letting y′ = 0, (3.21) yields B(x,0)= g(x)2 f (y,0), and we distinguish two subcases:
(2.1) If b(x)= B(x,0) 	= 0, then f (y,0)= λ∈R∗; hence φ′(x)= √b(x)/λ. Letting y′ =

0 in (3.19), we have F(x, y,0) = b(x). The change of variable is thus explicitly

given by φ(x)=
√
F(x, y,0)/λ. Substituting φ′ into (3.21), we deduce

f (y, y′)= A(x, y)y′2 +
1

b(x)

(
λB

(
x, y′

√
b(x)
λ

)
− y′

b′(x)
2
√
b(x)/λ

)
. (3.22)

Rescaling, we can assume λ= 1. Hence,

f (y, y′)=A(x, y)y′2 +
B
(
x, y′

√
b(x)

)
b(x)

− 1
2
y′b(x)−3/2b′(x), (3.23)

and consequently,

(
A(x, y)y′2 +

B
(
x, y′

√
b(x)

)
b(x)

− 1
2
y′b(x)−3/2b′(x)

)
x
= 0. (3.24)

Expanding the latter equation and substituting y′/
√
b(x) for y′, we obtain

0= Ax(x, y)b(x)y′2 + b(x)Bx(x, y′) +
1
2
b′(x)y′By′(x, y′)

− b′(x)B(x, y′)− 1
2
b′′(x)y′ +

3
4
b′(x)2b(x)−1y′.

(3.25)

By taking derivatives with respect to y in (3.25), we conclude Axy = 0. Accord-
ingly, A(x, y) = a1(x) + a2(y). Moreover, the quasi-linear differential equation
(3.25) can be integrated elementarily, and its general solution is

B(x, y′)= 1
2
b′(x)
b(x)

y′ +
3
2
y′
√
b(x)

∫
b′(x)2b(x)−5/2dx

+ a1(x)y′2 + b(x)ϕ
(
y′b(x)−1/2). (3.26)

Hence, F(x, y, y′)= (a1(x) + a2(y))y′2 +B(x, y′) and by imposing that this func-
tion satisfies (3.5) with φ′(x) = √b(x), we deduce that the functions a1, b are
constant thus concluding.

(2.2) If b(x) = B(x,0) = 0, then f (y,0) = 0; hence f (y, y′) = y′ f̄ (y, y′), B(x, y′) =
y′B̄(x, y′). Substituting both expressions in (3.21), we have

f̄ (y, y′)= 1
φ′(x)2

(
A(x, y)φ′(x)2y′ + B̄

(
x,φ′(x)y′

)−φ′′(x)
)
. (3.27)
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Hence,

(
A(x, y)φ′(x)2y′ + B̄(x,φ′(x)y′)−φ′′(x)

φ′(x)2

)
x
= 0. (3.28)

Expanding the equation above and substituting y′/φ′(x) for y′, it yields

0= Ax(x, y)φ′(x)2y′ + B̄x(x, y′)φ′(x)3 + B̄y′(x, y′)φ′′(x)φ′(x)y′

− B̄(x, y′)φ′′(x)φ′(x)2−φ′′′(x)φ′(x)2 + 2φ′(x)φ′′(x)2.
(3.29)

As above, we have A(x, y)= a1(x) + a2(y) and letting y′ = 0 in (3.29), we obtain

(
φ′′(x)
φ′(x)

)′
+ B̄(x,0)

φ′′(x)
φ′(x)

−
(
φ′′(x)
φ′(x)

)2

= B̄x(x,0), (3.30)

which is a Riccati equation in φ′′(x)/φ′(x), whose solution is

φ′′(x)
φ′(x)

= b̄(x)− exp
(∫
b̄(x)dx

)
∫

exp
(∫
b̄(x)dx

)
dx

, b̄(x)= B̄(x,0), (3.31)

or equivalently, φ(x) = log[
∫

exp(
∫
b̄(x)dx)dx]. Substituting this expression into

(3.29), we have

0= φ′B̄x + y′(b̄−φ′)B̄y′ +
(
φ′2−φ′b̄)B̄

+
(
φ′ −φ′2)b̄2− (φ′ +φ′2

)
b̄′ + a′1y

′.
(3.32)

As above, this quasi-linear differential equation can be integrated elementarily
and its general solution is

B̄ = φ′
∫
b̄′(1 +φ′)− b̄2(1−φ′)

φ′
dx− φ′

u
y′
∫
a′1u
φ′

dx+ϕ
(
y′u−1), (3.33)

where u= exp(1/φ′). Hence, F(x, y, y′)= (a1(x) + a2(y))y′2 + y′B̄(x, y′). By im-
posing that F satisfies the condition (3.5), we deduce that φ′ = b̄ = 1, and a1 is a
constant, thus finishing the proof. �

Remark 3.3. The ODE y′′ = f (y, y′) admits the point symmetry X = d/dx, which is
mapped by the transformation (3.2) into X = φ′(φ−1(x))(d/dx). Thus, the problem of
reducing (3.1) to an autonomous equation is equivalent to finding a point symmetry of
the form X = ξ(x)(d/dx). Such problem is easily solvable using the classical algorithm for
finding point symmetries (see, e.g., references [6, 43]) and it yields the same solvability
conditions (3.10)–(3.12) above.

Remark 3.4. The conditions in Proposition 3.2 also allow one to reduce (3.1) to an equa-
tion of second homogeneous type (cf. [33]),

d2y

dx̄2
= x̄−2 f

(
y, x̄

dy

dx̄

)
, (3.34)
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as the change of variable x̃ = φ(x̄)= ln(x̄) transforms (3.34) into the autonomous equa-
tion:

d2y

dx̃2
= f

(
y,
dy

dx̃

)
+
dy

dx̃
. (3.35)

Proposition 3.5. The ODE (3.1) can be reduced to

d2y

dx̄2
= f (x̄, y) (3.36)

by means of (3.2) if and only if

0= Iσ010 + 2Iσ ,

0= Jσ01 + 2Jσ .
(3.37)

In this case, the change of variables is

x̄ =
∫

exp
(∫

Fy′dx
)
dx,

ȳ = y.
(3.38)

Proof. It is easy to check that (3.1) is reducible to the form of the statement under the
change of variable (3.2) if and only if

F(x, y,z)= zφ
′′(x)
φ′(x)

+φ′(x)2 f
(
φ(x), y

)
. (3.39)

Moreover, a simple computation shows that Iσ010 + 2Iσ = 0 if and only if Fyy′ = 0, Jσ01 +
2Jσ = 0 if and only if Fy′ y′ = 0. It is obvious that (3.39) implies Fyy′ = Fy′ y′ = 0. Con-
versely, if these conditions hold, then, F(x, y, y′)= h(x)y′ +φ′(x)2g(φ(x), y), with φ(x)=∫

exp(
∫
h(x)dx)dx. �

3.2. Painlevé transcendents. The search for nonlinear ordinary differential equations
with solutions without moving critical points (critical points, the location of which de-
pends on the initial conditions to the differential equation)—so named equations with
Painlevé property—was an important mathematical problem in 19th century. For the
equations of the form y′′ = F(x, y, y′), which are rational in y′, algebraic in y and analytic
in x, Painlevé and Gambier found fifty types of differential equations satisfying Painlevé
property (see [13, 19, 46, 47]), six of them have solutions in terms of the Painlevé tran-
scendents. The first three of these equations were due to Painlevé:

y′′ = 6y2 + x, (3.40)

y′′ = 2y3 + xy +α, (3.41)

y′′ = y′2

y
− y′

x
+

(
αy2 +β

)
x

+ γy3 +
δ

y
. (3.42)
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The role of such equations in several aspects of physics (statistical mechanics, theory of
solitons, and integrable dynamical systems, etc.) is fundamental. In order to characterize
(3.40)–(3.42), a similar result to Lemma 3.1 is obtained.

Lemma 3.6. An arbitrary second-order ODE (3.1) can be reduced to the first Painlevé tran-
scendent (3.40) by means of a change of coordinates of the independent variable (3.2) if and
only if

F(x, y, y′)= ϕ(x)ϕ′(x)2 + 6ϕ′(x)2y2 +
ϕ′′(x)
ϕ′(x)

y′. (3.43)

The condition for the second Painlevé transcendent is

F(x, y, y′)= 2ϕ′(x)2y3 +ϕ(x)ϕ′(x)2y +αϕ′(x)2 +
ϕ′′(x)
ϕ′(x)

y′, (3.44)

and, finally, the necessary and sufficient condition for the third Painlevé transcendent is as
follows:

F(x, y, y′)= βϕ
′(x)2

ϕ(x)
+
δϕ′(x)2

y
+α

ϕ′(x)2

ϕ(x)
y2 + γϕ′(x)2y3

+
(
ϕ′′(x)
ϕ′(x)

− ϕ′(x)
ϕ(x)

)
y′ +

y′2

y
.

(3.45)

Consequently, the following characterization criteria for first, second, and third
Painlevé transcendents are obtained.

Proposition 3.7. An arbitrary second-order ODE (3.1) is reducible to the first Painlevé
transcendent under a change of coordinates of the independent variable (3.2) if and only if
the following relations hold:

(1) 2Iσ Jσ + Iσ001 = 0,
(2) 2Iσ + Iσ010 = 0,
(3) 2Jσ + Jσ10 = 0,
(4) Iσ200 = 0,
(5) Jσ02 + 6Jσ ,3 + 7Jσ Jσ01 = 0.

Proof. Suppose that σ ≡ (y′′ = F(x, y, y′)) is reduced to the first Painlevé transcendent
(3.40) by means of the change of coordinates (3.2), then applying Lemma 3.6, we obtain

F(x, y, y′)= ϕ(x)ϕ′(x)2 + 6ϕ′(x)2y2 +
ϕ′′(x)
ϕ′(x)

y′. (3.46)
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Consequently, it yields

Iσ = 12ϕ′(x)y2

y′2
, Jσ = ϕ′(x)2

(
ϕ(x) + 6y2

)
y′2

,

Iσ010 =−
24ϕ′(x)2y

y′2
, Iσ001 =−

24ϕ′(x)4y
(
6y2 +ϕ(x)

)
y′4

,

Jσ01 =
ϕ′(x)3

[
y′ − 2ϕ′(x)2

(
6y2 +ϕ(x)

)]
y′4

,

Iσ200 = 0, Jσ10 =−
2ϕ′(x)2

(
6y2 +ϕ(x)

)
y′2

,

Jσ02 =
(
6y2 +ϕ(x)

)
ϕ′(x)5

[
8
(
6y2 +ϕ(x)

)2
ϕ′(x)− 7y′

]
y′6

,

(3.47)

and, as a simple calculation shows, the conditions (2.5)–(2.12) of the statement hold. On
the other hand, if (2.5)–(2.12) hold, then, for σ ≡ (y′′ = F(x, y, y′)), it is

0= Fxy − 2FyFy′ , (3.48)

0= Fyy′ , (3.49)

0= Fy′ y′ , (3.50)

0= Fyyy , (3.51)

0= Fxx +F
(
6F2

y′ − 2Fxy′
)− 5FxFy′ − y′

(
6F3

y′ − 7Fy′Fxy′ +Fxxy′
)
. (3.52)

Now, using (3.49)-(3.50), we obtain

F(x, y, y′)= f (x)y′ + g(x, y), f ∈ C∞(R), g ∈ C∞(R2), (3.53)

and, for (3.51)–(3.53), it yields

F(x, y, y′)= f (x)y′ +α(x)y2 +β(x)y + γ(x), α,β,γ ∈ C∞(R). (3.54)

For (3.48)–(3.54), it is easy to obtain the explicit expression for coefficient f (x),

f (x)= α′(x)
2α(x)

= β′(x)
2β(x)

=⇒ β(x)= λα(x), λ∈R, (3.55)

and, consequently,

F(x, y, y′)= α′(x)
2α(x)

y′ +α(x)y2 + λα(x)y + γ(x). (3.56)

Finally, taking (3.52)–(3.56) into account, we obtain a linear second-order ODE, which
must satisfy the coefficient γ(x),

γ′′(x)− 5
2
α′(x)
α(x)

γ′(x) +
5α′(x)2− 2α(x)α′′(x)

2α(x)2
γ(x)= 0, (3.57)
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thus,

γ(x)= α(x)
6
√

6

∫
α(x)1/2dx. (3.58)

As a consequence, the explicit expression for the function that defines the second-order
ODE satisfies Lemma 3.6, since

F(x, y, y′)= α′(x)
2α(x)

y′ +α(x)y2 + λα(x)y +
α(x)
6
√

6

∫
α(x)1/2dx, (3.59)

where α∈ C∞(R), λ∈R, thus finishing. �

Similar arguments prove the following two results regarding second and third Painlevé
transcendents.

Proposition 3.8. An arbitrary second-order ODE (3.1) is reducible to the second Painlevé
transcendent under a change of coordinates of the independent variable (3.2) if and only if
the following equations hold:

(1) 2Iσ + Iσ010 = 0,
(2) 2Jσ + Jσ10 = 0,
(3) Iσ100− yIσ200 = 0,
(4) 2Jσ Iσ100 + 2Iσ ,2 + Iσ101 = 0,
(5) y(Iσ001 + 2Iσ Jσ)− 2Jσ ,2− Jσ01 = 0,
(6) 1728y3(Iσ001 + 2Iσ Jσ)2− Iσ ,2

100 = 0.

Proposition 3.9. An arbitrary second-order ODE (3.1) is reducible to the third Painlevé
transcendent under a change of coordinates of the independent variable (3.2) if and only if
the following equations hold:

(1) Jσ20 + 2Jσ10 = 0,
(2) Jσ11 + 3Jσ01 + Jσ Jσ10 = 0,
(3) 2Iσ110 + 4Iσ100 + (2Jσ + Jσ10)3 = 0,
(4) 4Iσ + (2Jσ + Jσ10)2− Iσ020 = 0,
(5) y3Iσ300 + 4Iσ − 4yIσ100 + 2y2Iσ200 = 0,
(6)

0=144 + 168yJσ + 24y2Iσ + 60y2Jσ ,2 + 36y3Iσ Jσ − 8y4Iσ ,2− 24y3Iσ100− 18y4Iσ100J
σ

+ 10y5Iσ Iσ100− 18y6Iσ Jσ Iσ100 + 6y7Iσ ,2Iσ100− 2y6Iσ ,2
100− 6y8Iσ Iσ ,2

100 + 24y4Iσ200

+ 28y5Iσ200J
σ + 4y6Iσ Iσ200 + 10y6Iσ200J

σ ,2 + 2y7Iσ Iσ200J
σ − 4y7Iσ100I

σ
200

− 3y6Iσ201J
σ + y7Iσ Iσ201− y8Iσ100I

σ
201− 12y2Jσ11− 2y6Iσ200J

σ
11,

(3.60)

(7) 3Jσ − yIσ + y2Iσ100 	= 0.

4. Linearizable equations for Autv p

The problem of linearization of second-order ODEs has extensively been dealt with in the
literature. Two methods have been used by the authors to solve it: Cartan’s equivalence
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method (see [2, 17, 18, 20, 21, 23, 26, 27, 34, 35, 44, 48]), and the theory of symmetries
(see [21, 22, 23, 27, 44, 48, 49]). As in the previous section, we propose an alternative
way: the use of differential invariants. Let us consider an arbitrary second-order ordinary
differential equation (3.1) and the vertical change of variables

x̄ = x,

ȳ = ψ(x, y), ψy 	= 0.
(4.1)

A straightforward calculation yields the following known result.

Lemma 4.1 ([32, Chapter 12],[44, Chapter 12],[51, Chapter 14]). The second-order ODE
(3.1) can be reduced to a linear ODE under the change of variables (4.1) if and only if there
exist A,B,C ∈ C∞(R) such that,

F(x, y,z)= f (x, y) + g(x, y)y′ +h(x, y)y′2, (4.2)

f (x, y)= 1
ψy

(
A(x)ψx +B(x)ψ +C(x)−ψxx

)
,

g(x, y)= A(x)− 2
ψxy
ψy

,

h(x, y)=−ψyy
ψy

.

(4.3)

As a consequence, we obtain the following criterion for linearization in terms of rela-
tive invariants.

Theorem 4.2. A second-order ODE (3.1) can be reduced to a linear one under (4.1) if and
only if the following three conditions hold:

Rσ1 = 0, Rσ2 = 0, Rσ3 = 0. (4.4)

In this case, the change of variables is given by

x̄ = x,

ȳ =
∫

exp
(
− 1

2

∫
Fy′ y′dy

)
dy.

(4.5)

Proof. If y′′ = F(x, y, y′) reduces to a linear ODE under (4.1), then it is readily checked
that (4.2) and (4.3) hold. Furthermore, if F(x, y, y′) is a polynomial of degree two in y′,
then Rσ1 = 0. Now, taking (4.3) into account and the expressions for K100 and K001 given
in (2.12), we have

Rσ2 = gy − 2hx = 0,

Rσ3 =−4 fyh+ 2y′gyh+ 2y′2hhy + 3ggy + 2y′ghy − 2 f hy

+ 4 fyy + 2y′gyy − 2ghx− 4y′hhx − 2gxy − 4y′hxy = 0.

(4.6)

Moreover, if y′′ = F(x, y, y′) satisfies (4.4), then, as a simple calculation shows, we have

F(x, y, y′)= α(x, y) +β(x, y)y′ + γ(x, y)y′2, (4.7)
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where α,β,γ ∈ C(R2), and

0= βy − 2γx,

0= (γα−αy)y + γxx −βγx. (4.8)

If we take the change of coordinates

x̄ = x,

ȳ = ψ(x, y)=
∫

exp
(
−
∫
γdy

)
dy,

(4.9)

then it is easy to check that

γ =−ψyy
ψy

. (4.10)

Substituting this result in (4.8), we obtain, respectively,

β =−2
ψyy
ψy

+ ξ(x), ξ ∈ C∞(R),

α= ξ(x)ψx +η(x)ψ + τ(x)−ψxx
ψy

, η,τ ∈ C∞(R).
(4.11)

Accordingly, (4.7) can be written as follows:

F(x, y, y′)= ξ(x)ψx +η(x)ψ + τ(x)−ψxx
ψy

+
(
ξ(x)− 2

ψxy
ψy

)
y′ − ψyy

ψy
y′2, (4.12)

and Lemma 4.1 is applied. �

This result allows us to characterize the ordinary differential equations which reduce
to y′′ = 0. A first known result in this direction is the following.

Lemma 4.3 ([32, Chapter 12], [44, Chapter 12], [51, Chapter 14]). A linear second-order
ODE y′′ = A(x)y′ +B(x)y +C(x) can be reduced to

d2 ȳ

dx2
= 0 (4.13)

under (4.1) if and only if Kσ = 0. In this case, the change of variables is

x̄ = x,

ȳ = y exp
(
− 1

2

∫
A(x)dx

)
+h(x), h∈ C∞(R).

(4.14)

As a consequence, we can state the following criterion.

Theorem 4.4. A second-order ODE (3.1) is reducible to

d2 ȳ

dx2
= 0 (4.15)
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under (4.1) if and only if

Rσ1 = 0, Kσ = 0. (4.16)

Proof. Let us consider the ODE (3.1). By Theorem 4.2, this equation can be reduced to a
linear ODE under (4.1) if and only if Rσi = 0 for i = 1,2,3. Furthermore, by Lemma 4.3,
every second-order ODE σ can be reduced to d2 ȳ/dx2 = 0 under (4.1) if and only if Kσ =
0. As a consequence, (3.1) can be reduced to d2 ȳ/dx2 = 0 by means of (4.1) if and only if
Kσ = Rσi = 0 for i= 1,2,3. Now, it is easily checked that Kσ = 0 if and only if Rσ2 = Rσ3 = 0.
Hence, the statement follows. �

5. Computational implementation

As it is mentioned above, the criteria for characterization of different types of second-
order ODEs studied can be implemented easily in most computer algebra systems. In this
work, we will use the computational package Mathematica. Note that the characterization
conditions stated above can be written in terms of the differential function F, which de-
fines the second-order ODE, as follows: for autonomous and second homogeneous-type
differential equations,

0=
(
Fxy
G

)
y
,

0=
(
Fxy
G

)
y′

,

0= y′
((

Fxy
G

)
x

+
(
Fxy
G

)2
)

+
Fxy

(
2F − y′Fy′

)
G

+Fx,

(5.1)

where G= y′Fyy′ − 2Fy . For special differential equations, these conditions are

0= Fyy′ , 0= Fy′ y′ . (5.2)

For the first Painlevé transcendent, they are

0= Fxy − 2FyFy′ , 0= Fyy′ , 0= Fy′ y′ , 0= Fyyy ,
0= Fxx +F

(
6F2

y′ − 2Fxy′
)− 5FxFy′ − y′

(
6F3

y′ − 7Fy′Fxy′ +Fxxy′
)
.

(5.3)

For the second Painlevé transcendent, they are

0= Fyy′ , 0= Fy′ y′ , 0= Fyy − yFyyy , 0= Fxyy − 2Fy′Fyy ,

0= 2FFy′ − 2y′F2
y′ − 2yFyFy′ −Fx + y′Fxy′ + yFxy ,

0= 1728y3(Fxy − 2FyFy′
)2−F2

yy.

(5.4)
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For the third Painlevé transcendent, they are

0= Fy′ y′ y′ , 0= Fxy′ y′ , 0= 2Fyyy′ − y′F3
y′ y′ ,

0= y′F2
y′ y′ + 3Fyy′ − y′Fyy′ y′ , 0= y3Fyyyy + 4Fy − 4yFyy + 2y2Fyyy ,

0= 144y′5− 8y′5y4 + 24y′3y2Fy + y′Fy2− 24y′3y3Fyy + 10y′y5FyFyy

+ y7FyFyy′Fyy − 2y′y6F2
yy − y8Fyy′F + 2y7F2

yFyyy′

− 2y8FyFyyFyyy′ + 24y′3y4Fyyy + 4y′y6FyFyyy − 4y′y7FyyFyyy

+ 6F2
y′
(
6y′3y2 + y′y6Fyyy

)− 3F2(12y′y2 + y6Fyyyy′
)

+ 36y′2y2Fx + 6y6FyyyFx − 36y′3y2Fxy′

− 6y′y6FyyyFxy′ + y7FyFxyyy − y8FyyFxyyy

+ yF
(
168y′3 + 36y′y2Fy − 18y′y3Fyy − 3y5Fyy′Fyy − 6y5FyFyyy′

+ 28y′y4Fyyy − 6y5Fy′Fyyy − 8Fy′ y′
(
6y′3y + y′y5Fyyy

)
+ 3y′y5Fy′Fyyyy′ + y6FyFyyyy′ − y7FyyFyyyy′ − 3y5Fxyyy

)
+ yFy′

(− 168y′4 + 18y′2y3Fyy + 3y′y5Fyy′Fyy

− 28y′2y4Fyyy + 2y7FyyFyyy + 2Fy′ y′
(
6y′4y + y′2y5Fyyy

)
− 2Fy

(
18y′2y2− 3y′y5Fyyy′ + y6Fyyy

)
+ 3y′y5Fxyyy

)
,

0 	= 3F − 3y′Fy′ − yFy + y2Fyy.

(5.5)

For linear differential equations, the following conditions are

0= Fy′ y′ y′ , 0=−FFy′ y′ y′ +Fyy′ − y′Fyy′ y′ −Fxy′ y′ ,
0=−FFy′Fy′ y′ y′ − 2FyFy′ y′ + 3Fy′Fyy′ − 2FFyy′ y′

− y′Fy′Fyy′ y′ + 4Fyy − 2y′Fyyy′ −Fy′Fxy′ y′ − 2Fxyy′ .

(5.6)

And, finally, for y′′ = 0, the conditions are

0= Fy′ y′ y′ , 0= F2
y′

2
−FFy′ y′ + 2Fy − y′Fyy′ −Fxy′ . (5.7)

As an example, we implement the characterization conditions for autonomous and sec-
ond homogeneous-type differential equations. The notation used in the Mathematica
code is as follows: the variables x, y, and p stand for the coordinates x, y, and y′, respec-
tively. So, first of all, we have to input the function that defines the differential equation
by means of

In[1] := F=Input[‘‘ODE to study’’]. (5.8)

Subsequently, we must input in the variable G the function G,

In[2] := G=p∗D
[
F,{y,1},{p,1}]−2∗D[F,y]. (5.9)
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Finally, we are ready to check the vanishing of the three conditions (5.1):

In [3] := Simplify
[
Expand

[
D
[
D
[
F,{x,1},{y,1}]/G,y]]],

In [4] := Simplify
[
Expand

[
D
[
D
[
F,{x,1},{y,1}]/G,p]]],

In [5] := Simplify
[
Expand

[
p*
(
D
[
D
[
F,{x,1},{y,1}]/ G,x

]
+
(
D
[
F,{x,1},{y,1}]/G)^2)+

(
D
[
F,{x,1},{y,1}]/G)

∗ (2∗F − p∗D[F, p]
)

+D[F,x]
]]
.

(5.10)

Appendix

In this appendix, the computational implementation of the algorithms generating hor-
izontal and vertical invariants (see [38]) is described. As it is mentioned in Section 5,
the computer algebra system used is Mathematica. If the variables x, y, p, and k[a,b,c]
stands for x, y, y′, and y′′abc, respectively, then the total derivatives Dx, Dy , and Dy′ can be
implemented as the functions dtx, dty, and dtp as follows:

In[1] := dtx[w ] := D[w,x]

+Sum
[
k[a+1,b,c]∗D

[
w,k[a,b,c]

]
,{a,0,r+2},{b,0,r+2},{c,0,r+2}],

In[2] := dty[w ] := D[w,y]

+Sum
[
k[a,b+1,c]∗D

[
w,k[a,b,c]

]
,{a,0,r+2},{b,0,r+2},{c,0,r+2}],

In[3] := dtp[w ] := D[w,p]

+Sum
[
k[a,b,c+1]∗D

[
w,k[a,b,c]

]
,{a,0,r+2},{b,0,r+2},{c,0,r+2}],

(A.1)

where r is the maximum order of the differential invariants to be calculated. As a conse-
quence, the operators, given in (2.5) and (2.10), are easily implemented

In[4] := Y[1][w ] := dty[w],

In[5] := Y[2][w ] := p∗dtp[w],

In[6] := Y[3]
[
w
]

:= dtx[w]/p+
(
k[0,0,0]/p

)∗dtp[w],

In[7] := Z[1]
[
w
]

:= dtp[w]/Sqrt
[
k[0,0,3]

]
,

In[8] := Z[2]
[
w
]

:= dtx[w] +p∗dty[w] +k[0,0,0]∗dtp[w],

In[9] := Z[3]
[
w
]

:= (2∗dty[w] +k[0,0,1]∗dtp[w]
)
/Sqrt

[
k[0,0,3]

]
.

(A.2)
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Moreover, the horizontal invariants, I , J , and the vertical invariants, K , V , needed to
calculate the corresponding base are introduced as follows:

In[10] := Inv[0,0,0]= k[0,1,0]/pˆ2,

In[11] := Jnv[0,0]= (k[0,0,0]−p∗k[0,0,1]
)
/pˆ2,

In[12] := Knv[0,0,0]

= k[0,0,1]ˆ2/2−k[0,0,0]∗k[0,0,2] +2∗k[0,1,0]-p*k[0,1,1]-k[1,0,1],

In[13] := V= k[0,0,4]/k[0,0,3]ˆ(3/2).
(A.3)

Consequently, the basis for rth order horizontal differential invariants can be calculated
as follows:

In[14] := Do
[
Inv[a,b,c]

= Nest
[
Y[1],Nest

[
Y[2],Nest

[
Y[3],Inv[0,0,0],c

]
,b
]
,a
]
,

{a,0,r−1},{b,0,r−1−a},{c,0,r−1−a−b}],
Do
[
Jnv[b,c]= Nest

[
Y[2],Nest

[
Y[3],Jnv[0,0],c

]
,b
]
,

{b,0,r−1},{c,0,r−1−b}],
(A.4)

where Inv[a,b,c] and Jnv[b,c] stand for the invariants Iabc and Jbc, respectively. Fur-
thermore, the basis for vertical differential invariants is calculated as follows:

In[15] := Do
[
Knv[a,b,c]Nest

[
Z[1],Nest

[
Z[2],Nest

[
Z[3],Knv[0,0,0],c

]
,b
]
,a
]
,

{a,0,r−2},{b,0,r−2−a},{c,0,r−2−a−b}],
Do
[
KKnv[t,s]= Nest

[
Z[3],Nest

[
Z[2],Z[1]

[
Knv[0,0,0]

]
,s
]
,t
]
,

{s,0,n−3},{t,1,n−3−s}],
(A.5)

where Knv[a,b,c] and KKnv[t,s] stand for the invariants Kabc and Kts, respectively.
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