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Some of the properties of the completely regular fuzzifying topological spaces are inves-
tigated. It is shown that a fuzzifying topology τ is completely regular if and only if it is
induced by some fuzzy uniformity or equivalently by some fuzzifying proximity. Also, τ is
completely regular if and only if it is generated by a family of probabilistic pseudometrics.

1. Introduction

The concept of a fuzzifying topology was given in [1] under the name L-fuzzy topology.
Ying studied in [9, 10, 11] the fuzzifying topologies in the case of L = [0,1]. A classical
topology is a special case of a fuzzifying topology. In a fuzzifying topology τ on a set X ,
every subset A of X has a degree τ(A) of belonging to τ, 0 ≤ τ(A) ≤ 1. In [4], we de-
fined the degrees of compactness, of local compactness, Hausdorffnes, and so forth in a
fuzzifying topological space (X ,τ). We also introduced the fuzzifying proximities. Every
fuzzifying proximity δ induces a fuzzifying topology τδ . In [6], we studied the level classi-
cal topologies τθ , 0≤ θ < 1, corresponding to a fuzzifying topology τ. In the same paper,
we studied connectedness and local connectedness in fuzzifying topological spaces as well
as the so-called sequential fuzzifying topologies. In [5], we introduced the fuzzifying syn-
topogenous structures. We also proved that every fuzzy uniformity �, as it is defined by
Lowen in [7], induces a fuzzifying proximity δ�, and that for every fuzzifying proximity
δ, there exists at least one fuzzy uniformity � with δ = δ�. Some of the results contained
in papers [4, 6] are closely related to those which appeared in the papers [12, 13].

In this paper, we continue with the investigation of fuzzifying topologies. In particular,
we study the completely regular fuzzifying topologies, that is, those fuzzifying topologies
τ for which each level topology τθ is completely regular. As in the classical case, we prove
that for a fuzzifying topology τ on X , the following properties are equivalent: (1) τ is
completely regular; (2) τ is uniformizable, that is, it is induced by some fuzzy uniformity;
(3) τ is proximizable, that is, it is induced by some fuzzifying proximity; and (4) τ is gen-
erated by a family of so-called probabilistic pseudometrics on X . We also give a charac-
terization of completely regular fuzzifying spaces in terms of continuous functions. Many
Theorems on classical topologies follow as special cases of results obtained in the paper.

Copyright © 2005 Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences 2005:23 (2005) 3781–3797
DOI: 10.1155/IJMMS.2005.3781

http://dx.doi.org/10.1155/S0161171205503685


3782 Completely regular fuzzifying topological spaces

2. Preliminaries

A fuzzifying topology on a set X (see [1, 9, 10, 11]) is a map τ : 2X → [0,1] (where 2X is
the power set of X) satisfying the following conditions:

(FT1) τ(X)= τ(∅)= 1;
(FT2) τ(A1∩A2)≥ τ(A1)∧ τ(A2);
(FT3) τ(

⋃
Ai)≥ inf i τ(Ai).

If τ is a fuzzifying topology on X and x ∈ X , then the τ-neighborhood system of x is
the function

Nx =Nτ
x : 2X −→ [0,1], Nx(A)= sup

{
τ(B) : x ∈ B ⊂ A

}
. (2.1)

By [9, Theorem 3.2], we have that τ(A)= infx∈ANx(A).
The following theorem is contained in [9] (see also [3, 13]).

Theorem 2.1. If τ is a fuzzifying topology on a set X , then the map x→Nx =Nτ
x , from X

to the fuzzy power set �(2X) of 2X , has the following properties:
(FN1) Nx(X)= 1 and Nx(A)= 0 if x /∈ A;
(FN2) Nx(A1∩A2)=Nx(A1)∧Nx(A2);
(FN3) Nx(A)≤ supx∈D⊂A inf y∈DNy(D).

Conversely, if a map x→Nx, from X to �(2X), satisfies (FN1)–(FN3), then the map

τ : 2X −→ [0,1], τ(A)= inf
x∈A

Nx(A), (2.2)

is a fuzzifying topology and Nx =Nτ
x for every x ∈ X .

Let now (X ,τ) be a fuzzifying topological space. To every subset A of X corrersponds
a fuzzy subset Ā = Āτ of X defined by Ā(x) = 1−Nx(Ac) (see [13, Remark 3.16]). A
function f , from a fuzzifying topological space (X ,τ1) to another one (Y ,τ2), is said to
be continuous at some x ∈ X (see [4, 13]) if Nx( f −1(A)) ≥ Nf (x)(A) for every subset A
of Y . If f is continuous at every point of X , then it is said that (τ1,τ2)-continuous. As
it is shown in [4], f is continuous if and only if τ2(A) ≤ τ1( f −1(A)) for every subset
A of Y . For f : X → Y a function and τ a fuzzifying topology on Y , f −1(τ) is defined
to be the weakest fuzzifying topology on X for which f is continuous. By [4], f −1(τ)
is given by the neighborhood structure Nx(A) = Nf (x)(Y \ f (Ac)). If (τi)i∈I is a family
of fuzzifying topologies on X , we will denote by

∨
i∈I τi, or by supτi, the weakest of all

fuzzifying topologies on X which are finer than each τi. As it is proved in [4],
∨

i∈I τi is
given by the neighborhood structure

Nx(A)= sup

{
inf
i∈J

Nτi
x

(
Ai
)

: x ∈
⋂
i∈J

Ai ⊂A

}
, (2.3)

where the infimum is taken over the family of all finite subsets J of I and all Ai ⊂ X ,
i ∈ J . For Y a subset of a fuzzifying topological space (X ,τ), τ|Y will be the fuzzifying
topology induced on Y by τ, that is, the fuzzifying topology f −1(τ), where f : Y → X is
the inclusion map. For a family (Xi,τi)i∈I of fuzzifying topological spaces, the product
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fuzzifying topology τ =∏τi on X =∏Xi is the weakest fuzzifying topology on X for
which each projection πi : X → Xi is continuous. Thus, τ = ∨i π

−1
i (τi) and it is given by

the neighborhood structure

Nx(A)= sup

{
inf
i∈J

Nxi

(
Ai
)

: x ∈
⋂
i∈J

π−1
i

(
Ai
)⊂A

}
, (2.4)

where the supremum is taken over the family of all finite subsets J of I and Ai ⊂ Xi, for
i∈ J (see [4]).

The degree of convergence to an x ∈ X , of a net (xδ) in a fuzzifying topological space
(X ,τ), is the number c(xδ → x)= cτ(xδ → x) defined by

c
(
xδ −→ x

)= inf
{

1−Nx(A) : A⊂ X ,
(
xδ
)

frequently in Ac
}
. (2.5)

As it is shown in [6], for A⊂ X and x ∈ X , we have

Ā(x)=max
{
c
(
xδ −→ x

)
:
(
xδ
)

net in A
}
. (2.6)

The degree of Hausdorffness of X (see [4]) is defined by

T2(X)= 1− sup
x 	=y

sup
{
c
(
xδ −→ x

)∧ c
(
xδ −→ y

)
:
(
xδ
)

net in X
}
. (2.7)

Also, the degree of X being T1 is defined by

T1(X)= inf
x

inf
y 	=x

sup
{
Nx(B) : y /∈ B

}
. (2.8)

Let now (X ,τ) be a fuzzifying topological space. For each 0≤ θ < 1, the family Bτ
θ = {A⊂

X : τ(A) > θ} is a base for a classical topology τθ on X (see [5]). It is easy to see that
a subset B of X is a τθ-neighborhood of x if and only if Nx(B) > θ. By [6], T2(X) (resp.,
T1(X)) is the supremum of all 0≤ θ < 1 for which τθ is T2 (resp., T1). Also, for τ =∨τi, we
have that τθ = supi τ

θ
i (see [6, Theorem 3.5]). If τ =∏τi is a product fuzzifying topology,

then τθ =∏τθi (see [6, Theorem 3.5]). If Y is a subspace of (X ,τ) and τ1 = τ|Y , then
τθ1 = τθ|Y . By [6, Theorem 3.10], for a fuzzifying topological space (X ,τ), co(X) coincides
with the supremum of all 0 < θ < 1 for which τ1−θ is compact.

Next, we will recall the notion of a fuzzifying proximity given in [4]. A fuzzifying
proximity on a set X is a map δ : 2X × 2X → [0,1] satisfying the following conditions:

(FP1) δ(A,B)= 1 if the A, B are not disjoint;
(FP2) δ(A,B)= δ(B,A);
(FP3) δ(∅,B)= 0;
(FP4) δ(A1∪A2,B)= δ(A1,B)∨ δ(A2,B);
(FP5) δ(A,B)= inf{δ(A,D)∨ δ(Dc,B) : D ⊂ X}.
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Every fuzzifying proximity δ induces a fuzzifying topology τδ given by the neighborhood
structure Nx(A)= 1− δ(x,Ac). A fuzzifying proximity δ1 is said to be finer than another
one δ2 if δ1(A,B) ≤ δ2(A,B) for all subsets A, B of X . For f : X → Y a function and δ a
fuzzifying proximity on Y , the function

f −1(δ) : 2X × 2X −→ [0,1], f −1(δ)(A,B)= δ
(
f (A), f (B)

)
, (2.9)

is a fuzzifying proximity on X (see [4]) and it is the weakest of all fuzzifying proximi-
ties δ1 on X for which f is (δ1,δ)-proximally continuous, that is, it satisfies δ1(A,B) ≤
δ( f (A), f (B)) for all subsets A, B of X . As it is shown in [4], τ f −1(δ) = f −1(τδ).

Let now (δλ)λ∈Λ be a family of fuzzifying proximities on a set X . We will denote by
δ =∨λ δλ, or by supδλ, the weakest fuzzifying proximity on X which is finer than each δλ.
By [4, Theorem 8.10], δ is given by

δ(A,B)= inf

{
sup
i, j

inf
λ∈Λ

δλ
(
Ai,Bj

)}
, (2.10)

where the infimum is taken over all finite collections (Ai), (Bj) of subsets of X with A=⋃
Ai, B =

⋃
Bj . Moreover, τδ =

∨
τδλ (see [4]).

Finally, we will recall the definition of a fuzzy uniformity introduced by Lowen in
[7]. For a set X , let ΩX be the collection of all functions α : X × X → [0,1] such that
α(x,x)= 1 for all x ∈ X . For α,β∈ΩX , the α∧β, α◦β and α−1 are defined by α∧β(x, y)=
α(x, y)∧β(x, y), α ◦β(x, y)= supz β(x,z)∧α(z, y), α−1(x, y)= α(y,x). If α= α−1, then α
is called symmetric. A fuzzy uniformity on X is a nonempty subset � of ΩX satisfying the
following conditions.

(FU1) If α,β ∈�, then α∧β ∈�.
(FU2) If α ∈� is such that, for every ε > 0, there exists a β ∈� with β ≤ α+ ε, then

α∈�.
(FU3) For each α∈� and each ε > 0, there exists a β ∈� with β ◦β≤ α+ ε.
(FU4) If α∈�, then α−1 ∈�.

A subset �, of a fuzzy uniformity �, is a base for � if for each α ∈� and each ε > 0,
there exists β ∈� with β ≤ α+ ε. It is easy to see that for a subset � of ΩX , the following
are equivalent.

(1) � is a base for a fuzzy uniformity on X .
(2) (a) If α,β ∈� and ε > 0, then there exists γ ∈� with γ ≤ α∧β+ ε.

(b) For each α∈� and each ε > 0, there exists β ∈� with β ◦β ≤ α+ ε.
(c) For each α∈� and each ε > 0, there exists β ∈� with β ≤ α−1 + ε.

In case (2) is satisfied, the fuzzy uniformity � for which � is a base consists of all α∈ΩX

such that for each ε > 0, there exists a β ∈� with β ≤ α+ ε.
By [5], every fuzzy uniformity � on X induces a fuzzifying proximity δ� defined by

δ�(A,B)= inf
α∈�

sup
x∈A, y∈B

α(x, y). (2.11)
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In case � is a base for �, then

δ�(A,B)= inf
α∈�

sup
x∈A, y∈B

α(x, y). (2.12)

Every fuzzy uniformity � induces a fuzzifying topology τ� given by the neighborhood
structure

Nx(A)= 1− δ�
(
x,Ac

)= 1− inf
α∈�

sup
y /∈A

α(x, y). (2.13)

For every fuzzifying proximity δ, there exists at least one compatible fuzzy uniformity,
that is, a fuzzy uniformity � with δ� = δ (see [5, Theorem 11.4]).

3. Probabilistic pseudometrics

A fuzzy real number is a fuzzy subset u of the real numbers R which is increasing, left
continuous, and such that limt→+∞u(t) = 1, limt→−∞u(t) = 0. A fuzzy real number u is
said to be nonnegative if u(t) = 0 if t ≤ 0. We will denote by R+

φ the collection of all
nonnegative fuzzy real numbers. To every real number r corresponds a fuzzy real number
r̄, where r̄(t) = 0 if t ≤ r and r̄(t) = 1 if t > r. For u,v ∈ R+

φ , we define u � v if and only
if v(t) ≤ u(t) for all t ∈ R. If � is a nonempty subset of R+

φ and if uo ∈ R+
φ is defined

by uo(t) = supv∈� v(t), then uo is the biggest of all u ∈ R+
φ with u � v for all v ∈�. We

will denote uo by inf � or by
∧

�. For u1,u2 ∈R+
φ , we define u= u1⊕u2 ∈R+

φ by u(t)=
sup{u1(t1)∧ u2(t2) : t = t1 + t2}. Also, for u ∈ R+

φ and λ > 0, we define λu by (λu)(t) =
u(λ−1t). It is easy to see that for u∈R+

φ and λ > 0, we have (λ̄⊕u)(t)= u(t− λ).

Definition 3.1. A probabilistic pseudometric on a set X (see [2]) is a mapping F : X ×X →
R+

φ such that for all x, y, z∈X ,

F(x,x)= 0̄, F(x, y)= F(y,x), F(x,z)� F(x, y)⊕F(y,z). (3.1)

If in addition F(x, y)(0+)= 0 when x 	= y, then F is called a probabilistic metric.

If r1, r2 are nonnegative real numbers, then r1 � r2 if and only if r1 ≤ r2. Also, for
r = |r1− r2|, we have that

r =∧{u∈R+
φ : r̄2 � u⊕ r1, r1 � u⊕ r̄2

}
. (3.2)

In fact, let uo =∧{u∈R+
φ : r̄2 � u⊕ r1 and r1 � u⊕ r2} and assume that (say) r1 ≥ r2.

Let u∈�+
φ be such that r̄2 � u⊕ r1, r1 � u⊕ r2. Then r1(t)≥ (u⊕ r2)(t)= u(t− r2) for all

t. If s < r1, then 0= r1(s)≥ u(s− r2) and so u(r1− r2)= sups<r1
u(s− r2)= 0 which implies

that r � u. Thus r � uo. On the other hand, we have r⊕ r2 = r1 and r⊕ r1 = 2r1− r2. Since
r2 � 2r1− r2, it follows that uo � r, and hence r = uo. Motivated by the above, we define
the following distance function on �+

φ :

D : �+
φ ×�+

φ −→�+
φ , D

(
u1,u2

)=∧{u∈�+
φ : u1 � u2⊕u, u2 � u⊕u1

}
. (3.3)
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Then D is a probabilistic pseudometric on �+
φ . In fact, it is clear that D(u1,u2) =

D(u2,u1). Also, since u = u ⊕ 0̄, when u ∈ �+
φ , we have that D(u,u) = 0̄. Finally, let

D(u1,u2)(t1)∧D(u2,u3)(t2) > θ > 0. There are v1,v2 ∈�+
φ with u1 � v1 ⊕ u2, u2 � v1 ⊕

u1, u3 � v2⊕ u2, u2 � v2⊕ u3, v1(t1) > θ, v2(t2) > θ. Now u1 � v1⊕ u2 � v1⊕ (v2⊕ u3)=
(v1 ⊕ v2)⊕ u3 and u3 � v2 ⊕ u2 � v2 ⊕ (v1 ⊕ u1) = (v1 ⊕ v2)⊕ u1. Thus, D(u1,u3) � v1 ⊕
v2 and D(u1,u3)(t1 + t2) ≥ v1(t1)∧ v2(t2) > θ. This proves that D(u1,u3) � D(u1,u2)⊕
D(u2,u3) and the claim follows. We will refer to D as the usual probabilistic pseudomet-
ric on �+

φ .
Let now F be a probabilistic pseudometric on X . For t > 0, let uF,t be defined on X2 by

uF,t(x, y)= F(x, y)(t). The family �F = {uF,t : t > 0} is a base for a fuzzy uniformity �F

on X . Let τF be the fuzzifying topology induced by �F .
In the rest of the paper, we will consider on �+

φ the fuzzifying topology induced by the
usual probabilistic pseudometric D.

Theorem 3.2. A probabilistic pseudometric F, on a fuzzifying topological space (X ,τ), is
τ × τ continuous if and only if τF ≤ τ.

Proof. Assume that τF ≤ τ and let G be a subset of R+
φ and u= F(xo, yo) with Nu(G) > θ >

0. There exists a t > 0 such that 1− supv /∈GD(v,u)(t) > θ. For x, y∈X , we have

F(x, y)� F
(
x,xo

)⊕ (xo, yo
)⊕F

(
yo, y

)= [F(x,xo
)⊕F

(
y, yo

)]⊕F
(
xo, yo

)
. (3.4)

Similarly, F(xo, yo)� [F(x,xo)⊕F(y, yo)]⊕F(x, y). Thus,

D
(
F(x, y),F

(
xo, yo

))� F
(
x,xo

)⊕F
(
y, yo

)
. (3.5)

Let

A1 =
{
x ∈ X : F

(
x,xo

)( t
2

)
≥ 1− θ

}
, A2 =

{
x ∈ X : F

(
y, yo

)( t
2

)
≥ 1− θ

}
. (3.6)

If x ∈A1, y ∈A2, then

D
(
F(x, y),F

(
xo, yo

))
(t)≥ F

(
x,xo

)( t
2

)
∧F

(
y, yo

)( t
2

)
≥ 1− θ, (3.7)

and so F(x, y)∈ G. Also, Nτ
xo(A1)≥NτF

xo (A1)≥ 1− supx /∈A1
F(x,xo)(t/2)≥ θ and Nτ

yo(A2)
≥ θ. Therefore,

Nτ×τ
(xo,yo)

(
F−1(G)

)≥Nτ
xo

(
A1
)∧Nτ

yo

(
A1
)≥ θ, (3.8)

which proves that Nτ×τ
(xo,yo)(F

−1(G)) ≥ NF(xo,yo)(G) and so F is τ × τ continuous. Con-
versely, assume that F is τ × τ continuous and let NτF

xo (A) > θ > 0. Choose ε > 0 such
that NτF

xo (A) > θ + ε. There exists a t > 0 such that 1− supx /∈AF(x,xo)(t) > θ + ε. If

Z = {u∈R+
φ : D(u, 0̄)(t)= u(t) > 1− θ− ε}, (3.9)

then

N0̄(Z)≥ 1− sup
u /∈Z

D(u, 0̄)(t)≥ θ + ε > θ. (3.10)
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Since F is τ × τ continuous and F(xo,xo) = 0̄, there exists a subset A1 of X contain-
ing xo such that A1 ×A1 ⊂ F−1(Z) and Nxo(A1) > θ. If x ∈ A1, then F(x,xo) ∈ Z and so
F(x,xo)(t) > 1− θ− ε, which implies that x ∈ A. Thus, A1 ⊂ A and so Nxo(A) ≥ NτF

xo (A)
for every subset A of X and every xo ∈ X . Hence, τF ≤ τ and the result follows. �

Theorem 3.3. Let F be a probabilistic pseudometric on a set X , τ = τF , (xδ)δ∈∆ a net in X ,
and x ∈ X . Then

c
(
xδ −→ x

)= inf
t>0

liminf
δ

F
(
xδ ,x

)
(t). (3.11)

Proof. Let d = inf t>0 liminfδ F(xδ ,x)(t) and assume that d < θ < 1. There exists a t > 0
such that liminfδ F(xδ ,x)(t) < θ. Let A= {y : F(y,x)(t) > θ}. Then (xδ) is not eventually
in A, and so c(xδ → x) ≤ 1−Nx(A) ≤ supy /∈AF(y,x)(t) ≤ θ, which proves that c(xδ →
x)≤ d. On the other hand, let c(xδ → x) < r < 1. There exists a subset B of X such that (xδ)
is not eventually in B and 1−Nx(B) < r. Let s > 0 be such that 1− supy /∈B F(y,x)(s) > 1−
r. For each δ ∈ ∆, there exists δ′ ≥ δ with xδ′ /∈ B, and so F(xδ′ ,x)(s)≤ supy /∈B F(y,x)(s).
Thus, d ≤ liminfδ F(xδ ,x)(s) < r, which proves that d ≤ c(xδ → x) and the result follows.

�

Theorem 3.4. Let F1,F2, . . . ,Fn be probabilistic pseudometrics on X and define F by

F(x, y)(t)= min
1≤k≤n

Fk(x, y)(t). (3.12)

Then F is a probabilistic pseudometric and τF =
∨n

k+1 τFk .

Proof. Using induction on n, it suffices to prove the result in the case of n= 2. It follows
easily that F is a probabilistic pseudometric. Since F1, F2 � F, it follows that τF1 , τF2 ≤ τF
and so τo = τF1 ∨ τF2 ≤ τF . On the other hand, let NτF

x (A) > θ > 0. There exists a t > 0 such
that 1− supy /∈AF(y,x)(t) > θ. Let Bi = {y ∈ Ac : Fi(y,x)(t) < 1− θ}, i = 1,2. Then Ac =
B1∪B2 and so A= A1∩A2, Ai = Bc

i . Moreover N
τFi
x (Ai)≥ 1− supy∈Bi

Fi(y,x)(t)≥ θ, and
thus

Nτo
x (A)≥Nτo

x

(
A1
)∧

Nτo
x

(
A2
)≥N

τF1
x
(
A1
)∧

N
τF2
x
(
A2
)≥ θ. (3.13)

This proves that Nτo
x (A)≥NτF

x (A) and the result follows. �

For � a family of probabilistic pseudometrics on a set X , we will denote by τ� the
supremum of the fuzzifying topologies τF , F ∈�, that is, τ� =

∨
F∈� τF .

Theorem 3.5. If τ = τ�, where � is a family of probabilistic pseudometrics on a set X , then
T2(X)= T1(X)= 1− supy 	=x infF∈�F(x, y)(0+).

Proof. Let d = 1− supy 	=x infF∈�F(x, y)(0+). It is always true that T2(X) ≤ T1(X). Sup-
pose that T1(X) > r > 0 and let x 	= y. Since τr is T1, there exists a τr-neighborhood A
of x not containing y. Now Nx(A) > r, and hence there are subsets A1, . . . ,An of X and
F1, . . . ,Fn∈� such that

⋂
Ak ⊂ A, N

τFk
x (Ak) > r. Since y is not in A, there exists a k with
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y /∈Ak. Let t > 0 be such that

1− sup
z /∈Ak

Fk(z,x)(t) > r and so inf
F∈�

F(x, y)(t)(0+)≤ Fk(x, y)(t) < 1− r, (3.14)

which proves that d ≥ r. Thus d ≥ T1(X). On the other hand, assume that d > θ > 0 and
let x 	= y. Choose ε > 0 such that d > θ + ε. There exists F ∈� with F(x, y)(0+) < 1− θ−
ε, and hence F(x, y)(t) < 1− θ− ε for some t > 0. Let

A=
{
z : F(z,x)

(
t

2

)
> 1− θ− ε

}
, B =

{
z : F(z, y)

(
t

2

)
> 1− θ− ε

}
. (3.15)

Clearly x ∈A, y ∈ B. If z ∈A∩B, then

F(x, y)(t)≥ F(x,z)
(
t

2

)
∧F(z, y)

(
t

2

)
> 1− θ− ε, (3.16)

a contradiction. Thus A∩B =∅. Moreover

Nx(A)≥NτF
x (A)≥ 1− sup

z /∈A
F(x,z)

(
t

2

)
≥ θ + ε > θ, Ny(A) > θ. (3.17)

It follows that T2(X)≥ d and the proof is complete. �

Let us say that a fuzzifying topology τ on a set X is pseudometrizable if there exists a
probabilistic pseudometric F on X with τ = τF .

Theorem 3.6. A fuzzifying topology τ on X is pseudometrizable if and only if each level
topology τθ , 0≤ θ < 1, is pseudometrizable.

Proof. Assume that τ = τF for some probabilistic pseudometric F and let 0 ≤ θ < 1. For
each positive integer n, with n > 1/(1− θ), let

An =
{

(x, y)∈ X2 : F(x, y)
(

1
n

)
> 1− θ− 1

n

}
. (3.18)

Then An+1 ⊂An and the family �= {An : n∈N, n > 1/(1− θ)} is a base for a uniformity
� on X . The topology σθ induced by � is pseudometrizable since � is countable. More-
over σθ = τθ . Indeed, let A be a σθ-neighborhood of x. There exists n∈N, n > 1/(1− θ),
such that B = {y : F(x, y)(1/n) > 1− θ− 1/n} ⊂ A. Now

Nτ
x (A)≥Nτ

x (B)≥ 1− sup
y /∈B

F(x, y)
(

1
n

)
≥ θ +

1
n
> θ, (3.19)

and so A is a τθ-neighborhood of x. Conversely, assume that A is a τθ-neighborhood of
x. There exists ε > 0 with Nx(A) > θ + ε. Now there exists a positive integer n > 1/ε such
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that 1− supy /∈AF(x, y)(1/n) > θ + 1/n. Hence

{
y : F(x, y)

(
1
n

)
> 1− θ− 1

n

}
⊂ A, (3.20)

which implies that A is a σθ-neighborhood of x. Thus τθ = σθ , and therefore each τθ

is pseudometrizable. Conversely, suppose that each τθ is pseudometrizable. By an argu-
ment analogous to the one used in the proof of [6, Theorem 3.3], we show that there
exists a family {dθ : 0≤ θ < 1} of pseudometrics on X such that dθ = supθ1>θ dθ1 , for each
0 ≤ θ < 1, and τθ coincides with the topology induced by the pseudometric dθ . Now,
for x, y∈X , define F(x, y) : R→ [0,1] by F(x, y)(t) = 0 if t ≤ 0 and F(x, y)(t) = sup{θ :
0 < θ ≤ 1, d1−θ(x, y) < t} if t > 0. It is clear that F(x, y) is increasing and left continuous.
For 0 < r < 1 and t > d1−r(x, y), we have that F(x, y)(t)≥ r, and so limt→∞F(x, y)(t)= 1.
Also F(x,x)(t) = 1 for every x and every t > 0. To show that F is a probabilistic pseudo-
metric on X , we must prove that it satisfies the triangle inequality. So, let F(x, y)(t1)∧
F(y,z)(t2) > θ > 0. Then d1−θ(x, y) < t1, d1−θ(y,z) < t2, and so d1−θ(x,z) < t1 + t2, which
implies that F(x,z)(t1 + t2)≥ θ. Thus the triangle inequality is satisfied and F is a proba-
bilistic pseudometric. We will finish the proof by showing that τF = τ. So let NτF

x > θ > 0
and choose t > 0 such that 1− supy /∈AF(y,x)(t) > θ. If now dθ(x, y) < t, then F(x, y)(t)≥
1− θ, and thus y ∈A, which proves that A is a σθ = τθ neighborhood of x. Hence τ ≥ τF .
On the other hand, let B be a τθ-neighborhood of x. There exists θ1 > θ such that Nx(B) >
θ1. Now B is a τθ1 -neighborhood of x, and so there exists t > 0 such that {y : dθ1 (x, y) <
t} ⊂ B. If F(x, y)(t) > 1− θ1, then there exists α > 1− θ1 such that d1−α(x, y) < t and so
dθ1 (x, y) < t. Thus {y : F(x, y)(t) > 1− θ1} ⊂ B, and therefore

NτF
x (B)≥ 1− sup

y /∈B
F(x, y)(t)≥ θ1 > θ. (3.21)

Thus, τF ≥ τ and the result follows. �

Theorem 3.7. Let (X ,F) be a probabilistic pseudometric space, A⊂ X , and x ∈ X .
Let

α= sup
{

inf
t>0

liminf
n

F
(
xn,x

)
(t) :

(
xn
)

sequence in A
}

,

β = sup
{

liminf
n

F
(
xn,x

)(
tn
)

: tn −→ 0+,
(
xn
)

sequence in A
}

,

γ = sup
{

liminf
n

F
(
xn,x

)
(1/n) :

(
xn
)

sequence in A
}
.

(3.22)

Then α= β = γ = Ā(x).

Proof. If (xn)⊂A, then

Ā(x)≥ c
(
xn −→ x

)= inf
t>0

liminf
n

F
(
xn,x

)
(t), (3.23)

and so Ā(x) ≥ α. Assume that β > θ > 0. There exist a sequence (xn)∈A and a sequence
(tn) of positive real numbers, with tn → 0+, such that liminfn F(xn,x)(tn) > θ. Let t > 0
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and choose k such that tn < t when n ≥ k. For m ≥ k, we have infn>mF(xn,x)(t) ≥
infn≥mF(xn,x)(tn) > θ. Thus liminfn F(xn,x)(t) > θ for each t > 0 and so α ≥ θ, which
proves that α ≥ β. Clearly β ≥ γ. Finally, Nx(Ac) ≥ 1 − supy∈AF(y,x)(1/n), and so
supy∈AF(y,x)(1/n) ≥ 1−Nx(Ac) = Ā(x) > Ā(x)− 1/n. Hence, for each n ∈N, there ex-

ists xn ∈A with F(xn,x)(1/n) > Ā(x)− 1/n. Consequently,

γ ≥ liminf
n

F
(
xn,x

)(1
n

)
≥ liminf

n

(
Ā(x)− 1

n

)
= Ā(x), (3.24)

and so γ ≥ Ā(x)≥ α≥ β ≥ γ, which completes the proof. �

In view of [6, Theorem 4.14], we have the following corollary.

Corollary 3.8. Every pseudometrizable fuzzifying topological space is N-sequential and
hence sequential.

Theorem 3.9. If (Fn) is a sequence of probabilistic pseudometrics on a set X , then there
exists a probabilistic pseudometric F such that τF =

∨
n τFn .

Proof. If F is a probabilistic pseudometric on X and if F̄ is defined by F̄(x, y)(t) =
F(x, y)(t) if t ≤ 1 and F̄(x, y)(t)= 1 if t > 1, then F̄ is a probabilistic pseudometric on X
and τF̄ = τF . Hence, we may assume that Fn(x, y)(t)= 1, for all n, if t > 1. For x, y∈X , de-
fine F(x, y) on R by F(x, y)(t)= 0 if t ≤ 0 and F(x, y)(t)= infn[(1/n)Fn(x, y)](t) if t > 0.
Clearly, F(x, y) is increasing and F(x, y)(t) = 1 if t > 1. Also, F(x, y) is left continuous.
In fact, let F(x, y)(t) > θ > 0 and choose n such that (n+ 1)t > 1. There exists 0 < s1 < t
such that Fk(x, y)(ks1) > θ for k = 1, . . . ,n. Choose s1 < s < t such that (n+ 1)s > 1. Now,
Fm(x, y)(ms)= 1 if m> n. Thus

F(x, y)(s)= min
1≤k≤n

[
1
k
Fk(x, y)

]
(s) > θ, (3.25)

which proves that F(x, y) is in R+
φ . It is clear that F(x,x) = 0̄. We need to prove that F

satisfies the triangle inequality. So assume that F(x, y)(t1)∧ F(y,z)(t2) > θ > 0. If m is
such that (m+ 1)(t1 + t2) > 1, then

F(x,z)
(
t1 + t2

)= min
1≤k≤m

Fk(x,z)
(
k
(
t1 + t2

))
. (3.26)

Since

Fk(x,z)
(
k
(
t1 + t2

))≥ Fk(x, y)
(
kt1
)∧Fk(y,z)

(
kt2
)
> θ, (3.27)

it follows that F(x,z)(t1 + t2) > θ, and so F satisfies the triangle inequality. We will fin-
ish the proof by showing that τF =

∨
τFn . To see this, we first observe that (1/n)Fn � F,

which implies that τFn = τ(1/n)Fn ≤ τF , and so τo =
∨

n τ(1/n)Fn ≤ τF . On the other hand,
let NτF

x (A) > θ and choose ε > 0 such that NτF
x (A) > θ + ε. Let t > 0 be such that 1−

supy /∈AF(y,x)(t) > θ + ε. If (m+ 1)t > 1, then

F(y,z)(t)= min
1≤k≤m

Fk(y,z)(kt). (3.28)
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Let Ak = {y : Fk(y,x)(kt)≥ 1− θ− ε}. Then

Nτo
x

(
Ak
)≥N

τFk
x
(
Ak
)≥ 1− sup

z /∈Ak

Fk(z,x)(kt)≥ θ + ε > θ (3.29)

and
⋂m

k=1Ak ⊂ A. Hence, Nτo
x (A) ≥min1≤k≤mN

τo
x (Ak) > θ. This proves that τF ≤ τo and

the result follows. �

Theorem 3.10. Let f : X → Y be a function and let F be a probabilistic pseudometric on Y .
Then the function

f −1(F) : X2 −→R+1
φ , f −1(F)(x, y)= F

(
f (x), f (y)

)
, (3.30)

is a probabilistic pseudometric on X and τ f −1(F) = f −1(τF).

Proof. It follows easily that f 1(F) is a probabilistic pseudometric on X . Let x ∈ X and
B ⊂ X . If D = Y \ f (Bc), then

N
τf−1(F)
x (B)= inf

t>0

[
1− sup

y /∈B
F
(
f (y), f (x)

)
(t)

]

= inf
t>0

[
1− sup

z∈Dc

F
(
z, f (x)

)
(t)

]

=NτF
f (x)(D)=N

f −1(τF )
x (B),

(3.31)

which clearly completes the proof. �

Corollary 3.11. If F is a probabilistic pseudometric on a set X and Y ⊂ X , then τF|Y is
induced by the probabilistic pseudometric G= F|Y×Y , G(x, y)= F(x, y).

Corollary 3.12. If (Xn,τn) is a sequence of pseudometrizable fuzzifying topological spaces,
then the Cartesian product (X ,τ)= (

∏
Xn,
∏
τn) is pseudometrizable.

Proof. Let Fn be a probabilistic pseudometric on Xn inducing τn. If Gn = π−1
n (Fn), then

τGn = π−1
n (τn), and so τ =∨n π

−1
n (τn) is pseudometrizable. �

4. Level proximities

Let δ be a fuzzifying proximity on a set X . For each 0 < d ≤ 1, let δd be the binary relation
on 2X defined by AδdB if and only if δ(A,B) ≥ d. It is easy to see that δd is a classical
proximity on X . We will show that the classical topology σd induced by δd coincides
with τ1−d. In fact, let x ∈ A ∈ σd. Then, x is not in the σd-closure of Ac, which implies
that x 	 δdAc, that is, δ(x,Ac) < d, and so Nτ

x (A) = 1− δ(x,Ac) > 1− d. This proves that
A ∈ τ1−d. Conversely, if x ∈ B ∈ τ1−d, then Nτ

x (A) > 1− d, and thus δ(x,Ac) < d, which
implies that x is not in the σd-closure of Bc. Hence Bc is σd-closed, and so B is σd-open.
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Theorem 4.1. If δ is a fuzzifying proximity on a set X and 0 < d ≤ 1, then

δd =
∨

0<θ<d

δθ. (4.1)

Proof. If 0 < θ < d, then δθ is coarser than δd, and so δo =
∨

0<θ<d δ
θ is coarser than δd.

On the other hand, let AδoB. Since δo is finer than δθ (for 0 < θ < d), we have that AδθB
and so δ(A,B)≥ θ, for each 0 < θ < d, which implies that δ(A,B)≥ d, that is, AδdB. So δo
is finer than δd and the result follows. �

Theorem 4.2. For a family {γd : 0 < d ≤ 1} of classical proximities on a set X , the following
are equivalent.

(1) There exists a fuzzifying proximity δ on X such that δd = γd for all d.
(2) γd =

∨
0<θ<d γθ for each 0 < d ≤ 1.

Proof. In view of the preceding theorem, (1) implies (2). Assume now that (2) is satis-
fied and define δ on 2X × 2X by δ(A,B)= sup{d : AγdB} (the supremum over the empty
family is taken to be zero). It is clear that δ(A,B) = 1 if the A,B are not disjoint. Also,
δ(A,B)= δ(A,B) and δ(A,B ≥ δ(A1,B1) if A1 ⊂ A, B1 ⊂ B. Let now δ(A,B) < d < 1. Then
A 	 γdB, and so there exists a subset D of X such that A 	 γdD and Dc 	 γdB. Since A 	 γdD, we
have that δ(A,D) ≤ d. Similarly δ(Dc,B) ≤ d, and so inf{δ(A,D)∧ δ(Dc,B)} ≤ δ(A,B).
On the other hand, if δ(A,D)∧ δ(Dc,B) < θ < 1, then A⊂Dc, and so δ(A,B)≤ δ(Dc,B) <
θ. This proves that δ is a fuzzifying proximity on X . We will finish the proof by showing
that δd = γd for all d. Indeed, if AγdB, then δ(A,B) ≥ d, that is, AδdB. On the other
hand, let AδdB and let (Ai), (Bj) be finite families of subsets of X with A=⋃i, B =

⋃
Bj .

Since δ(A,B)=∨i, j δ(Ai,Bj)≥ d, there exists a pair (i, j) such that δ(Ai,Bj)≥ d. If now
0 < θ < d, then there exists r > θ with AiγrBj , and so AiγθBj . This proves that AγdB since
γd =

∨
0<θ<d γθ . This completes the proof. �

Theorem 4.3. Let (X ,δ1), (Yδ2) be fuzzifying proximity spaces and let f : X → Y be a
function. Then f is proximally continuous if and only if f : (X ,δd1 )→ (Y ,δd2 ) is proximally
continuous for each 0 < d ≤ 1.

Proof. It follows immediately from the definitions. �
Theorem 4.4. Let (Xλ,δλ)λ∈Λ be a family of fuzzifying proximity spaces and let (X ,δ) =
(
∏
Xλ,
∏
δλ) be the product fuzzifying proximity space. Then δd =∏δdλ for all 0 < d ≤ 1.

Proof. Since each projection πλ : (X ,δd)→ (Xλ,δdλ ) is proximally continuous, it follows
that δd is finer than σ =∏δdλ . On the other hand, letAσB. We need to show that δ(A,B)≥
d. In fact, let (Ai), (Bj) be finite families of subsets of X such that A =⋃Ai, B =

⋃
Bj .

Since AσB and σ = ∨λ π
−1
λ (δdλ ), there exists a pair (i, j) such that Aiπ

−1
λ (δd)Bj , that is,

δλ(πλ(Ai),πλ(Bj))≥ d. In view of [4, Theorem 8.9], we conclude that δ(A,B)≥ d. Hence,
σ = δd and the proof is complete. �

We have the following easily established theorem.

Theorem 4.5. Let (Y ,δ) be a fuzzifying proximity space and let f : X → Y . Then f −1(δ)d =
f −1(δd) for each 0 < d ≤ 1.
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Theorem 4.6. Let (δλ)λ∈Λ be a family of fuzzifying proximities on a set X and δ = ∨λδλ.
Then δd =∨λ δ

d
λ for each 0 < d ≤ 1.

Proof. Let σ =∨λ δ
d
λ . Since δ is finer than each δλ, it follows that δd is finer than each δdλ ,

and so δd is finer than σ . On the other hand, let AσB and let (Ai), (Bj) be finite families
of subsets of X such that A =⋃Ai, B =

⋃
Bj . There exists a pair (i, j) such that AiσBj .

Since σ is finer than each δdλ , we have that Aiδ
d
λBj , that is, δλ(Ai,Bj) ≥ d. In view of [4,

Theorem 8.10], we get that δ(A,B)≥ d, that is, AδdB. So σ is finer than δd and the proof
is complete. �

5. Completely regular fuzzifying spaces

Definition 5.1. A fuzzifying topological space (X ,τ) is called completely regular if each of
the classical level topologies τd, 0≤ d < 1, is completely regular.

Definition 5.2. A fuzzifying proximity δ on a set X is said to be compatible with a fuzzi-
fying topology τ if τ coincides with the fuzzifying topology τδ induced by δ.

We have the following easily established theorem.

Theorem 5.3. Subspaces and Cartesian products of completely regular fuzzifying spaces are
completely regular.

Theorem 5.4. Let (X ,τ) be a completely regular fuzzifying topological space and define
δ = δ(τ) : 2X × 2X → [0,1] by

δ(A,B)= 1− sup
{
d : 0≤ d < 1, ∃ f :

(
X ,τd

)−→ [0,1] continuous f (A)= 0, f (B)= 1
}
.

(5.1)

Then, (1) δ is a fuzzifying proximity on X compatible with τ;
(2) if δ1 is any fuzzifying proximity on X compatible with τ, then δ is finer than δ1.

Proof. It is easy to see that δ satisfies (FP1), (FP2), (FP3), and (FP5). We will prove that
δ satisfies (FP4). Let

α= inf
{
δ(A,D)∨ δ

(
Dc,B

)
: D ⊂ X

}
. (5.2)

If δ(A,D)∨ δ(Dc,B) < θ, then A ⊂ Dc, and so δ(A,B) ≤ δ(Dc,B) < θ, which proves that
δ(A,B)≤ α. On the other hand, assume that δ(A,B) < r < 1. There exist a d, 1− r < d < 1,
and f : X → [0,1]τd-continuous such that f (A) = 0, f (B) = 1. Let D = {x ∈ X : 1/2 ≤
f (x)≤ 1} and define h1, h2 : [0,1]→ [0,1], h1(t)= 2t, h2(t)= 0 if 0≤ t ≤ 1/2 and h1(t)=
1, h2(t)= 2t− 1 if 1/2 < t ≤ 1. If gi = hi ◦ f , i= 1,2, then g1(A)= 0, g1(D)= 1, g2(Dc)= 0,
g2(B)= 1. Thus, δ(A,D)≤ 1− d < r, δ(Dc,B) < r, which proves that α≤ δ(A,B). Hence,
δ is a fuzzifying proximity on X . We need to show that τ = τδ . So, let τ(A) > θ > 0. Since
τθ is completely regular, given x ∈ A, there exist fx : X → [0,1], τθ-continuous, fx(x) =
0, fx(Ac) = 1. Thus δ(x,Ac) ≤ 1− θ, and so Nτδ

x (A) = 1− δ(x,Ac) ≥ θ. It follows that
τδ(A) = infx∈AN

τδ
x (A) ≥ θ, which proves that τδ ≥ τ. On the other hand, assume that

τδ(A) > r > 0. If x ∈ A, then δ(x,Ac) = 1−Nτδ
x (A) < 1− r, and therefore there exist a d,

0 < 1− d < 1− r and f : X → [0,1]τd-continuous such that f (x)= 0, f (Ac)= 1. The set
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G= {y : f (y) < 1/2} is in τd and x ∈G⊂ A. Thus,

Nτ
x (A)≥Nτ

x (G)≥ d > r. (5.3)

This proves that τ(A)≥ r and so τ ≥ τδ , which completes the proof of (1).
Let δ1 be a fuzzifying proximity on X compatible with τ and let A, B be subsets of X

with δ1(A,B) < θ < 1. If d = 1− θ, then δθ1 is compatible with τd. Since A 	 δθ1B, there exists
(by [8, Remark 3.15]) an f : X → [0,1]τd-continuous, with f (A) = 0, f (B) = 1, and so
δ(A,B)≤ 1−d = θ, which proves that δ(A,B)≤ δ1(A,B), and therefore δ is finer than δ1.
This completes the proof. �

Theorem 5.5. For a fuzzifying topological space (X ,τ), the following are equivalent.
(1) (X ,τ) is completely regular.
(2) There exists a fuzzifying proximity δ on X compatible with τ.
(3) (X ,τ) is fuzzy uniformizable, that is, there exists a fuzzy uniformity � on X such that

τ coincides with the fuzzifying topology τ� induced by �.

Proof. By [5], (2) is equivalent to (3). Also (1) implies (2) in view of the preceding the-
orem. Assume now that τ = τδ for some fuzzifying proximity δ. For each 0 < d ≤ 1, δd is
a classical proximity compatible with τ1−d, and so τ1−d is completely regular. This com-
pletes the proof. �

Theorem 5.6. Every pseudometrizable fuzzy topological space (X ,τ) is completely regular.

Proof. If τ is pseudometrizable, then each τd, 0≤ d < 1, is pseudometrizable, and hence
τd is completely regular. �

Theorem 5.7. For a fuzzifying topological space (X ,τ), the following are equivalent.
(1) (X ,τ) is completely regular.
(2) If � =�τ is the family of all probabilistic pseudometrics on X which are τ × τ con-

tinuous as functions from X2 to R+
φ , then τ = τ�τ .

(3) There exists a family � of probabilistic pseudometrics on X such that τ = τ�.

Proof. (1)⇒(2). For each F ∈�τ , we have that τF ≤ τ (by Theorem 3.2), and so τ�τ ≤ τ.
Let now A⊂ X and xo ∈ X with Nτ

xo(A) > θ > 0. Since τθ is completely regular, there exists
a τθ-continuous function f from X to [0,1] such that f (xo)= 0, f (Ac)= 1. For x, y ∈ X ,
define F(x, y) on R by

F(x, y)(t)=




0 if t ≤ 0,

1− θ if
∣∣ f (x)− f (y)

∣∣≥ t > 0,

1 if
∣∣ f (x)− f (y)

∣∣ < t.

(5.4)

Clearly, F(x, y) = F(y,x) ∈ R+
φ and F(x,x) = 0̄. We will prove that F satisfies the trian-

gle inequality. So, assume that F(x, y)(t1)∧ F(y,z)(t2) > F(x,z)(t1 + t2). Then, t1, t2 > 0,
F(x,z)(t1 + t2) = 1 − θ, F(x, y)(t1) = F(y,z)(t2) = 1. Thus, t1 > | f (x) − f (y)|, t2 >
| f (y)− f (z)|, and hence | f (x)− f (z)| < t1 + t2, which implies that F(x,z)(t1 + t2) = 1,
a contradiction. So F is a probabilistic pseudometric on X . Next we show that F is τ × τ
continuous, or equivalently that τF ≤ τ. So assume that NτF

x (B) > r > 0. Let θ1 > r be such



A. K. Katsaras 3795

that NτF
x (B) > θ1. Choose t > 0 such that 1− supy /∈B F(x, y)(t) > θ1, and so F(x, y)(t) =

1− θ and | f (x)− f (y)| ≥ t if y /∈ B. Thus, {y : | f (x)− f (y)| < t} ⊂ B. This shows that B
is a τθ-neighborhood of x. As r < θ, B is a τr-neighborhood of x, that is, Nτ

x (B) > r, and
so τF ≤ τ. Finally if y /∈ A, then | f (y)− f (xo)| = 1, and so F(y,xo)(1/2) = 1− θ, which
implies that

Nτ�
xo (A)≥NτF

xo (A)≥ 1− sup
y /∈A

F
(
y,xo

)(1
2

)
≥ θ. (5.5)

This shows that Nτ�
xo ≥Nτ

xo , and so τ ≤ τ�, which completes the proof of the implica-
tion (1)⇒(2).

(3)⇒(1). Assume that τ = τ� for some family � of probabilistic pseudometrics on
X . For each F ∈�, τF is completely regular and so τ� is completely regular since τd� =∨

F∈� τdF for each 0≤ d < 1. Hence the result follows. �

We will denote by [0,1]φ the subspace of R+
φ consisting of all u ∈ R+

φ with u(t) = 1 if
t > 1.

Theorem 5.8. A fuzzifying topological space (X ,τ) is completely regular if and only if the
following condition is satisfied. If Nxo(A) > θ > 0, then there exists f : X → [0,1]φ continuous
such that f (xo)= 0̄ and f (y)(t)= 1− θ if y /∈ A and 0 < t < 1.

Proof. Assume that (X ,τ) is completely regular and let Nxo(A) > θ > 0. Since τθ is com-
pletely regular, there exists h : (X ,τθ)→ [0,1] continuous, h(xo) = 0, h(y) = 1 if y /∈ A.
For x, y∈X , define F(x, y) on R by

F(x, y)(t)=




0 if t ≤ 0,

1− θ if
∣∣h(x)−h

(
xo
)∣∣≥ t > 0,

1 if
∣∣h(x)−h

(
xo
)∣∣ < t.

(5.6)

Clearly, F(x, y) ∈ [0,1]φ. Also, F(x,z) � F(x, y)⊕ F(y,z). In fact, assume that F(x, y)
(t1)∧ F(y,z)(t2) > r > F(x,z)(t1 + t2). Then t1, t2 > 0, F(x, y)(t1) = F(y,z)(t2) = 1. Now,
|h(x)− h(y)| < t1, |h(y)− h(z)| < t2, and so |h(x)− h(z)| < t1 + t2, which implies that
F(x,z)(t1 + t2)= 1, a contradiction. So F is a probabilistic pseudometric. Moreover, F is
τ × τ continuous, or equivalently τF ≤ τ. In fact, let NτF

x (B) > r > 0. There exists a t > 0
such that 1− supz /∈B F(z,x)(t) > r. If z /∈ B, then F(z,x)(t) < 1− r < 1, and so F(z,x)(t)=
1− θ < 1− r, that is, r < θ, and |h(z)−h(x)| ≥ t. Hence

M = {z :
∣∣h(z)−h(x)

∣∣ < t
}⊂ B. (5.7)

The set M is a τθ-neighborhood of x, and hence a τr-neighborhood, that is, Nτ
x (B) > r.

Thus τ ≥ τF . Finally, define f : X → [0,1]φ, f (y) = F(y,xo). Then f is τ-continuous,
f (xo) = 0̄. For y /∈ A and 0 < t < 1, we have that f (y)(t) = F(y,xo)(t) = 1− θ (since
|h(x)−h(xo| = 1≥ t). Conversely, assume that the condition is satisfied and let � be the
family of all τ × τ continuous pseudometrics on X . Then τ� ≤ τ. Let Nτ

xo(A) > θ. There
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exists a θ1 > θ such that Nτ
xo(A) > θ1. By our hypothesis, there exists f : X → [0,1]φ con-

tinuous such that f (xo) = 0̄ and f (y)(t) = 1− θ1 if y /∈ A and 0 < t < 1. Define F(x, y)
=D( f (x), f (y)). Then F is τ × τ continuous and

Nτ�
xo (A)≥NτF

xo (A)≥ 1− sup
y /∈A

F
(
xo, y

)
(1)

= 1− sup
y /∈A

D
(
0̄, f (y)

)
(1)

= 1− sup
y /∈A

f (y)(1)≥ θ1 > θ.

(5.8)

Thus Nτ�
xo (A)≥Nτ

xo(A), for every subset A of X , and so τ ≤ τ�. Therefore, τ = τ�, and
so τ is completely regular. �

For a fuzzifying topological space X , we will denote by C(X , [0,1]φ) the family of all
continuous functions from X to [0,1]φ.

Theorem 5.9. A fuzzifying topological space (X ,τ) is completely regular if and only if τ co-
incides with the weakest of all fuzzifying topologies τ1 on X for which each f ∈ C(X , [0,1]φ)
is continuous.

Proof. Assume that (X ,τ) is completely regular and let τ1 be the weakest of all fuzzify-
ing topologies on X for which each f ∈ C(X , [0,1]φ) is continuous. Clearly τ1 ≤ τ. On
the other hand, let τ2 be a fuzzifying topology on X for which each f ∈ C(X , [0,1]φ) is
continuous. Let Nτ

x (A) > θ > 0. In view of the preceding theorem, there exists an f ∈
C(X , [0,1]φ) such that f (x)= 0̄, f (y)(t)= 1− θ if y /∈A and 0 < t < 1. Let

G=
{
u∈R+

φ : D
(
f (x),u

)(1
2

)
= u

(
1
2

)
> 1− θ

}
. (5.9)

Then

N0̄(G)≥ 1− sup
u /∈G

D
(
f (x),u

)(1
2

)
≥ θ. (5.10)

Since f is τ2-continuous, we have that Nτ2
x ( f −1(G))≥ θ. But f −1(G)⊂ A since, for y /∈A,

we have that f (y)(1/2)= 1− θ. Thus Nτ2
x (A)≥ θ. This proves that Nτ2

x (A)≥ Nτ
x (A), for

every subset A of X , and so τ2 ≥ τ. This clearly proves that τ1 = τ. Conversely, assume
that τ1 = τ. If σ is the usual fuzzifying topology of R+

φ , then

τ = τ1 =
∨

f∈C(X ,[0,1]φ)

f −1(σ). (5.11)

Since σ is completely regular, each f −1(σ) is completely regular, and so τ is completely
regular. This completes the proof. �
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