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The number of local maxima (resp., local minima) in a tree T ∈�n rooted at r ∈ [n] is
denoted by Mr(T) (resp., by mr(T)). We find exact formulas as rational functions of n
for the expectation and variance of M1(T) and mn(T) when T ∈�n is chosen randomly
according to a uniform distribution. As a consequence, a.a.s. M1(T) and mn(T) belong
to a relatively small interval when T ∈�n.

1. Introduction

The extension of permutation statistics to labelled trees is the subject of a number of
articles. Generating functions for the number of labelled trees of several types according
to the number of ascents and descents are given in [4]. A functional equation satisfied
by the generating function for the number of labelled trees according to the number of
descents and leaves is given in [5]. Central and local limit theorems for the number of
ascents or of descents in uniformly random labelled trees are given in [1]. A functional
equation satisfied by the generating function for the number of labelled trees according
to the number of inversions is given in [7]. Related results are contained in [6]. A formula
for the expected number of inversions of a uniformly random labelled tree is given in [9].
Formulas for the expectation and variance of the number of inversions of a uniformly
random labelled tree are given in [2].

Local extrema (in the literature as local maxima and local minima; peaks and troughs;
collectively turning points; related to phases) in permutations have a long history; see
[10] and references there in. The examination of local maxima (equivalently, local min-
ima) in permutations is more recent. A recurrence relation and a generating function
for the number of permutations according to the number of local maxima are given in
[10]. A central limit theorem for the number of local maxima in a uniformly random
permutation also is given in [10]. In this note, we extend local extrema in permutations
to labelled trees and examine local maxima (equivalently, local minima) in uniformly
random labelled trees.

For n≥ 2, let �n denote the set of trees with vertex set [n] := {1, . . . ,n}. When T1,T2 ∈
�n, T1 = T2 if and only if T1 and T2 have the same edge set. Let T ∈�n, r ∈ [n], and
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Table 1.1

T1(n,k)= tn(n,k)
k

0 1 2 3 4 ···

n

2 1 0 0 0 0 ···
3 2 1 0 0 0 ···
4 6 9 1 0 0 ···
5 24 73 27 1 0 ···

distinct i, j,k ∈ [n]. We say T rooted at r has a local maximum at path i jk if and only if
j > i,k and the path in T from r to k contains the path i jk. Similarly, T rooted at r has
a local minimum at path i jk if and only if j < i,k and the path in T from r to k contains
the path i jk. Let Mr(T) =Mr,n(T) (resp., mr(T) =mr,n(T)) denote the number of local
maxima (resp., local minima) of T ∈�n rooted at r. Then Mr(T),mr(T)∈ {0, . . . ,n− 2}.
Let Tr(n,k) (resp., tr(n,k)) denote the number of trees in �n rooted at r with precisely
k local maxima (resp., k local minima). Then Tr(n,k)= tr(n,k)= 0 for k �∈ {0, . . . ,n− 2}
and

∑n−2
k=0 Tr(n,k)=∑n−2

k=0 tr(n,k)= nn−2. As with the other statistics extended to labelled
trees, roots r = 1,n are appropriate. The values of T1(n,k)= tn(n,k) (see Lemma 2.1) are
given in Table 1.1 for 2≤ n≤ 5 and 0≤ k ≤ n− 2.

We work in the probability space Ωn consisting of all trees in �n, where each tree is
chosen randomly according to a uniform distribution. Hence, Pr(T)= 1/nn−2 forT ∈�n.
A property Q of trees in {�n} holds asymptotically almost surely (a.a.s.) on {Ωn} if and
only if limn→∞Pr(T ∈�n : T has property Q)→ 1 as n→∞.

The parameters Mr and mr are then random variables on Ωn whose exact expectations
E(Mr), E(mr) and variances σ2(Mr), σ2(mr) we find as rational functions of n (r = 1,n).
From Theorem 2.5,

E
(
M1
)= E

(
mn
)= 2n3− 3n2− 5n+ 6

6n2
,

σ2(M1
)= σ2(mn

)= 7n5− 20n4 + 75n3− 40n2− 322n+ 300
60n4

.

(1.1)

As a consequence, a.a.s. on {Ωn},

E
(
M1
)−ω(n)σ

(
M1
)
<M1,mn < E

(
M1
)

+ω(n)σ
(
M1
)
, (1.2)

where ω(n)→∞ arbitrarily slowly as n→∞. (See Corollary 2.6 for this and further re-
sults.)

We mention that should (M1−E(M1))/σ(M1)
d−→N(0,1), we could only conclude the

above inequality for M1, mn a.a.s. on {Ωn}. Of course, asymptotic normality of M1, mn

gives more information about the distribution of M1, mn than their a.a.s. properties.
Let N denote the nonnegative integers and let R denote the real numbers. The expec-

tation of a random variable X is denoted by E(X) and its variance by Var(X). We refer the
reader to Moon [8] for trees and Durrett [3] for probability.
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2. Results

We first show that local maxima in trees rooted at r and local minima in trees rooted at
n+ 1− r are equidistributed.

Lemma 2.1. For r ∈ [n],

Tr(n,k)= tn+1−r(n,k) (0≤ k ≤ n− 2). (2.1)

Proof. The bijection i �→ n+ 1− i (i∈ [n]) induces a bijection T ∈�n �→ T′ ∈�n, where
T 	 T′. Then r, . . . , i, j,k (with j > i,k) is a path in T if and only if n+ 1− r, . . . ,n+ 1−
i,n+ 1− j,n+ 1− k (with n+ 1− j < n+ 1− i, n+ 1− k) is a path in T′. Hence, Mr(T)=
mn+1−r(T′). Consequently, Tr(n,k)= tn+1−r(n,k) for 0≤ k ≤ n− 2. �

In view of Lemma 2.1, we consider only M1.
Let (x)0 = x0 = 1 (x ∈R) and (x)k = (x)···(x− k + 1) (k ≥ 1, x ∈R). For n∈N and

a,x ∈R, let

En(x)=
n∑

k=0

xk

k!
, Pn(x)=

n∑
k=0

(n)kxk, Qn,a(x)=
n∑

k=0

(n)k(k+ a)xk,

Rn(x)=
n∑

k=0

(n)k(k+ 1)(k+ 7)xk.

(2.2)

We require the following technical result which allows us to calculate the exact expecta-
tion and variance of M1 as rational functions of n.

Lemma 2.2. For n,m− 1∈N,

Pn

(
1
m

)
= n!

mn
En(m), (2.3)

for n− 1,m− 1∈N, and a∈R,

Qn,a

(
1
m

)
= n!

mn
(n+ a)En(m)− n!

mn−1
En−1(m), (2.4)

and for n− 2,m− 1∈N,

Rn

(
1
m

)
= n!

mn

(
n2 + 8n+ 7

)
En(m)− n!

mn−1
(2n+ 7)En−1(m) +

n!
mn−2

En−2(m). (2.5)

Proof. (All derivatives are with respect to real x). First,

xnPn
(
x−1
)

n!
=

n∑
k=0

xn−k

(n− k)!
= En(x) (2.6)

so that

Pn(x)= n!xnEn
(
x−1), (2.7)
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and hence

Pn

(
1
m

)
= n!

mn
En(m). (2.8)

Next, (2.7) gives

Qn,a(x)= xP′n(x) + aPn(x)

= n!xn(n+ a)En
(
x−1)−n!xn−1En−1

(
x−1), (2.9)

and hence

Qn,a

(
1
m

)
= n!

mn
(n+ a)En(m)− n!

mn−1
En−1(m). (2.10)

Finally, (2.7) gives

Rn(x)= x2P′′n (x) + 9xP′n(x) + 7Pn(x)

= n!xn
(
n2 + 8n+ 7

)
En
(
x−1)−n!xn−1(2n+ 7)En−1

(
x−1)

+n!xn−2En−2
(
x−1),

(2.11)

and hence

Rn

(
1
m

)
= n!

mn

(
n2 + 8n+ 7

)
En(m)− n!

mn−1
(2n+ 7)En−1(m) +

n!
mn−2

En−2(m). (2.12)
�

Corollary 2.3. For j,n− 1∈N with 0≤ j ≤ n,

Qn− j, j

(
1
n

)
= n. (2.13)

Proof. For 0≤ j ≤ n− 1, our result follows from Lemma 2.2. For j = n, our result follows
from the definition of Qn− j, j(x). �

We require the following result of Moon [8].

Theorem 2.4 (Moon [8]). Let F be a forest with vertex set [n] having ω components of
orders p1, . . . , pω. Then the number of distinct trees in �n containing F is pnω−2, where
p = p1 . . . pω.

We now give our main result. Here M1 =M1,n.

Theorem 2.5. For Ωn (n≥ 2),

E
(
M1
)= 2n3− 3n2− 5n+ 6

6n2
,

E
(
M2

1

)= 20n6− 39n5− 115n4 + 495n3− 175n2− 1266n+ 1080
180n4

,
(2.14)

hence,

σ2(M1
)=Var

(
M1
)= 7n5− 20n4 + 75n3− 40n2− 322n+ 300

60n4
. (2.15)
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Proof. The theorem can be seen to be true for 2≤ n≤ 5 using Table 1.1. Assume n≥ 6. Let
In,1 = {(i, j,k) : 1 ≤ k < i < j ≤ n}, In,2 = {(i, j,k) : 1 ≤ i < k < j ≤ n}, and In = In,1 ∪ In,2.
For (i, j,k)∈ In and T ∈�n, let

X(i, j,k)(T)=

1, i jk is a local maximum in T rooted at 1;

0, otherwise;
(2.16)

hence,

M1 =
∑

(i, j,k)∈In
X(i, j,k). (2.17)

We remind the reader that i j, jk are always edges in a tree by using thick lines in our
diagrams.

Expectation of M1. We consider the following two cases according to the path S of T from
1 through i jk. Only E(X(i, j,k)) �= 0 need to be considered.
Case 1 (i �= 1). Here

S :
1 i j k︸ ︷︷ ︸

a≥0
internal
vertices

There are (a+ 4)nn−a−5 trees in �n containing a specific tree S by Theorem 2.4; there are

(n− 4)a specific trees containing a vertices between 1, i; and there are 2
(
n−1

3

)
choices for

(i, j,k). Hence,

∑
(i, j,k)∈In

1�=i

E
(
X(i, j,k)

)= (n− 1)3

3n3

n−4∑
a=0

(n− 4)a
a+ 4
na

= (n− 1)3

3n2
(2.18)

by Lemma 2.2.
Case 2 (i= 1). Here

S :
1= i j k

There are 3nn−4 trees in �n containing a specific tree S by Theorem 2.4; and there are(
n−1

2

)
choices for ( j,k). Hence,

∑
(1, j,k)∈In

E
(
X(i, j,k)

)= 3(n− 1)2

2n2
. (2.19)
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From (2.18), (2.19),

E
(
M1
)= (n− 1)3

3n2
+

3(n− 1)2

2n2
= 2n3− 3n2− 5n+ 6

6n2
. (2.20)

Variance of M1. Here

M2
1 =


 ∑

(i, j,k)∈In
X(i, j,k)


2

=M1 +
∑

((i1, j1,k1),(i2, j2,k2))∈I∗n
X(i1, j1,k1)X(i2, j2,k2), (2.21)

where I∗n = {((i1, j1,k1),(i2, j2,k2))∈ In× In : (i1, j1,k1) �= (i2, j2,k2)}.
First, we describe how we calculate E(M2

1)−E(M1).
We first consider 3 · 2 = 6 cases according to #{i1, j1,k1, i2, j2,k2} = 6, 5, or 4, and,

whether 1 �∈ {i1, j1,k1, i2, j2,k2} or 1 ∈ {i1, j1,k1, i2, j2,k2}. In each of these six cases, we
further partition as described below.

For ((i1, j1,k1),(i2, j2,k2))∈ I∗n , we consider the possible subtrees S= S((i1, j1,k1),(i2, j2,k2))

of [n] determined by the path from 1 to the second coordinate i2 j2k2 relative to the path
from 1 to the first coordinate i1 j1k1. The possible subtrees S′ = S′((i2, j2,k2),(i1, j1,k1)) are in-
cluded above by definition. Only E(X(i1, j1,k1)X(i2, j2,k2)) �= 0 need to be considered. This
gives nine types of subtrees of [n] total among these six cases.

For the symmetric types 1, 3, 5, 7, and 9, S “looks like” S′. We count the number tS
of trees T ∈ �n containing S = S((i1, j1,k1),(i2, j2,k2)) and the number iS of such ((i1, j1,k1),
(i2, j2,k2)). The product iStS counts each tree T ∈�n containing S twice; once for S and
once for S′. For each such tree T , X(i1, j1,k1)(T)X(i2, j2,k2)(T)= 1= X(i2, j2,k2)(T)X(i1, j1,k1)(T).

For the asymmetric types 2, 4, 6, and 8, S “looks different” than S′. We introduce sub-
types Sx((i1, j1,k1),(i2, j2,k2)) and S

y
((i1, j1,k1),(i2, j2,k2)) so thatT ∈�n contains Sx = Sx((i1, j1,k1),(i2, j2,k2)) if

and only if T contains Sy = S
y
((i2, j2,k2),(i1, j1,k1)); note the different orders. We count the num-

ber tSz of trees T ∈�n containing Sz and the number iSz of such ((i1, j1,k1),(i2, j2,k2)) for
z = x, y. The sum iSx tSx + iSy tSy counts each tree T ∈�n containing Sx and Sy ; once for Sx

and once for Sy . For each such treeT ,X(i1, j1,k1)(T)X(i2, j2,k2)(T)=1=X(i2, j2,k2)(T)X(i1, j1,k1)(T).
For each type, the above count(s) are divided by nn−2 then simplified using Lemma 2.2

and Corollary 2.3. Summing over the types of a particular case i (1≤ i≤ 6) gives

∑
((i1, j1,k1),(i2, j2,k2))∈I∗n

case i

E
(
X(i1, j1,k1)X(i2, j2,k2)

)
. (2.22)

The sum over all six cases is then E(M2
1)−E(M1).

In what follows, (n− 1)6 = En−7(n) = 0 for n = 6 and En−9(n) = 0 for n = 6,7,8 as
usual. All cases appear for n≥ 9.
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Case 3 (#{i1, j1,k1, i2, j2,k2} = 6, 1 �∈ {i1, j1,k1, i2, j2,k2}).
Type 1. Here

S1
((i1, j1,k1),(i2, j2,k2))

x �=i1, j1,k1

:
1 x i1

i2

j1

j2

k1

k2

︸ ︷︷ ︸
a≥0

internal
vertices

︷ ︸︸ ︷b≥0
internal
vertices

There are (a + b + 7)nn−a−b−8 trees in �n containing a specific tree S1 by Theorem 2.4;
there are (n− 7)a+b specific trees containing a vertices between 1, i1 and b vertices between

x, i2; there are a + 1 choices for x; and there are 2
(
n−1

3

)
· 2
(
n−4

3

)
such pairs ((i1, j1,k1),

(i2, j2,k2)). Observe that T contains S1
((i1, j1,k1),(i2, j2,k2)) for a, b, x if and only if T contains

S1
((i2, j2,k2),(i1, j1,k1)) for a′, b′, x. Hence, (each such pair appears once)

∑
((i1, j1,k1),(i2, j2,k2))∈I∗n

T Type 1

E
(
X(i1, j1,k1)X(i2, j2,k2)

)= (n− 1)6

9n6

∑
(a,b)∈N2

0≤a+b≤n−7

(n− 7)a+b
(a+ 1)(a+ b+ 7)

na+b

= (n−1)6

9n6

n−7∑
a=0

(n−7)a
a+1
na

n−a−7∑
b=0

(n−a− 7)b
a+b+7
nb

= (n− 1)6

9n5

n−7∑
a=0

(n− 7)a
a+ 1
na

= (n− 1)6

9n5

{
n− 6(n− 7)!

nn−7
En−7(n)

}

= (n− 1)6

9n4
− 2(n− 1)!

3nn−2
En−7(n)

(2.23)

by Lemma 2.2, and Corollary 2.3.
Type 2. First subtypes 21, 22, 23 are

S21
((i1, j1,k1),(i2, j2,k2))

i2 �=1,i1

:
1 x = i2 i1 j1 k1

j2

k2

︸ ︷︷ ︸
a≥0 other
internal
vertices
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S22
((i1, j1,k1),(i2, j2,k2))

i2, j2 �=1,i1

:
1 i2 x = j2 i1 j1 k1

k2

︸ ︷︷ ︸
a≥0 other
internal
vertices

S23
((i1, j1,k1),(i2, j2,k2))

i2, j2,k2 �=1,i1

:
1 i2 j2 x = k2 i1 j1 k1︸ ︷︷ ︸

a≥0 other
internal
vertices

In each of the subcases, we have replaced one of the a+ 1 edges uv between 1, i1, with
the path ux = i2v, ui2x = j2v or ui2 j2x = k2v, where the rest of the path i2 j2k2 is as in-
dicated. In each of these three subcases, there are (a+ 7)nn−a−8 trees in �n containing
a specific tree S21 , S22 , S23 by Theorem 2.4; there are (n− 7)a specific trees containing a
other vertices between 1, i1; there are a+ 1 choices for x, equivalently, uv; and there are

2
(
n−1

3

)
· 2
(
n−4

3

)
such pairs ((i1, j1,k1),(i2, j2,k2)). Next, subtype 24 is

S24
((i1, j1,k1),(i2, j2,k2))

x=i1, j1 or k1

:
1 i1

i2

j1

j2

k1

k2

x

︸ ︷︷ ︸
a≥0

internal
vertices

︷︸︸
︷b≥0

internal
vertices

There are (a+ b + 7)nn−a−b−8 trees in �n containing a specific tree S24 by Theorem 2.4;
there are (n− 7)a+b specific trees containing a vertices between 1, i1 and b vertices between

x, i2; there are 3 choices for x = i1, j1, or k1; and there are 2
(
n−1

3

)
· 2
(
n−4

3

)
such pairs

((i1, j1,k1),(i2, j2,k2)). Observe that T contains S
21,2 or 3

((i1, j1,k1),(i2, j2,k2)) for a, x if and only if T

contains S24
((i2, j2,k2),(i1, j1,k1)) for a′, b′, x. Hence, (each such pair appears once)

∑
((i1, j1,k1),(i2, j2,k2))∈I∗n

T Type 2

E
(
X(i1, j1,k1)X(i2, j2,k2)

)

= (n− 1)6

9n6


3

n−7∑
a=0

(n− 7)a
(a+ 1)(a+ 7)

na
+ 3

∑
(a,b)∈N2

0≤a+b≤n−7

(n− 7)a+b
a+ b+ 7
na+b
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= (n− 1)6

3n6

{n−7∑
a=0

(n− 7)a
(a+ 1)(a+ 7)

na
+

n−7∑
a=0

(n− 7)a
na

n−a−7∑
b=0

(n− a− 7)b
a+ b+ 7

nb

}

= (n− 1)6

3n6

{
(n− 7)!
nn−8

(n− 5)En−7(n)− (n− 7)!
nn−8

(2n− 7)En−8(n) +
(n− 7)!
nn−9

En−9(n)
}

= (n− 1)6

3n6

{
2(n− 7)!
nn−8

En−9(n) + 4n− 14
}

= 2(n− 1)!
3nn−2

En−9(n) + (4n− 14)
(n− 1)6

3n6

(2.24)

by Lemma 2.2 and Corollary 2.3. (The first 3 above is number of subcases and the second
3 is the number of choices for x.)

Summing (2.23), (2.24) gives the following equation:

∑
((i1, j1,k1),(i2, j2,k2))∈I∗n

#{i1, j1,k1,i2, j2,k2}=6,1�∈{i1, j1,k1,i2, j2,k2}

E
(
X(i1, j1,k1)X(i2, j2,k2)

)

= (n− 1)6

9n4
− 2(n− 1)!

3nn−2
En−7(n) +

2(n− 1)!
3nn−2

En−9(n) + (4n− 14)
(n− 1)6

3n6

= (n− 1)6

9n4
− 2

3

{
(n− 1)6

n5
+

(n− 1)7

n6
− (2n− 7)

(n− 1)6

n6

}

= (n− 1)6

9n4
.

(2.25)

Case 4 (#{i1, j1,k1, i2, j2,k2} = 5, 1 �∈ {i1, j1,k1, i2, j2,k2}).
Type 3. Here

S3
((i1, j1,k1),(i2, j2,k2)) :

1 i1 = i2 j1 k1

j2

k2

︸ ︷︷ ︸
a≥0

internal
vertices

There are (a+ 6)nn−a−7 trees in �n containing a specific tree S3 by Theorem 2.4; there are

(n− 6)a specific trees containing a vertices between 1, i1; and there are 16
(
n−1

5

)
such pairs

((i1, j1,k1),(i2, j2,k2)) (for 5 elements in {2, . . . ,n}, there are 2 · 6 = 12 pairs with largest
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elements j1, j2, and there are 2 · 2= 4 pairs with j1 > k1 > j2 or j2 > k2 > j1). Observe that
T contains S3

((i1, j1,k1),(i2, j2,k2)) if and only if T contains S3
((i2, j2,k2),(i1, j1,k1)). Hence, (each such

pair appears once)

∑
((i1, j1,k1),(i2, j2,k2))∈I∗n

T Type 3

E
(
X(i1, j1,k1)X(i2, j2,k2)

)= 2(n− 1)5

15n5

n−6∑
a=0

(n− 6)a
a+ 6
na

= 2(n− 1)5

15n4

(2.26)

by Corollary 2.3.
Type 4. First subtypes 41, 42 are

S41
((i1, j1,k1),(i2, j2,k2)) :

1 i1 j1 = i2 k1

j2

k2

︸ ︷︷ ︸
a≥0

internal
vertices

S42
((i1, j1,k1),(i2, j2,k2)) :

1 i1 j1 k1 = i2

j2

k2

︸ ︷︷ ︸
a≥0

internal
vertices

In either subcase, there are (a+ 6)nn−a−7 trees in �n containing a specific tree S41 , S42 by
Theorem 2.4; there are (n− 6)a specific trees containing a vertices between 1, i1; there

are 24
(
n−1

5

)
such pairs ((i1, j1,k1),(i2, j2,k2)) total (for 5 elements in {2, . . . ,n}; there are

6 + 2 = 8 pairs with j2 > i2 = j1 or j2 > k2 > i2 = j1 for 41; there are 2 · 6 = 12 pairs with
largest elements j1, j2; and there are 2 · 2= 4 pairs with j1 > i1 > j2 or j2 > k2 > j1 for 42).
Next subtypes 43, 44 are

S43
((i1, j1,k1),(i2, j2,k2)) :

1 i2 i1 = j2 j1 k1

k2

︸ ︷︷ ︸
a≥0

internal
vertices
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S44
((i1, j1,k1),(i2, j2,k2)) :

1 i2 j2 i1 = k2 j1 k1︸ ︷︷ ︸
a≥0

internal
vertices

In either subcase, there are (a + 6)nn−a−7 trees in �n containing a specific tree S43 , S44

by Theorem 2.4; there are (n− 6)a specific trees containing a vertices between 1, i2; and

there are 24
(
n−1

5

)
such pairs ((i1, j1,k1),(i2, j2,k2)) total (for 5 elements in {2, . . . ,n}, there

are 6 + 2 = 8 pairs with j1 > i1 = j2 or j1 > k1 > i1 = j2 for 43; there are 2 · 6 = 12 pairs
with largest elements j1, j2, and there are 2 · 2 = 4 pairs with j2 > i2 > j1 or j1 > k1 > j2
for 44). Observe that T contains S4i

((i1, j1,k1),(i2, j2,k2)) if and only if T contains S4i+2
((i2, j2,k2),(i1, j1,k1))

for i= 1,2. Hence, (each such pair appears once)

∑
((i1, j1,k1),(i2, j2,k2))∈I∗n

T Type 4

E
(
X(i1, j1,k1)X(i2, j2,k2)

)= 2(n− 1)5

5n5

n−6∑
a=0

(n− 6)a
a+ 6
na

= 2(n− 1)5

5n4

(2.27)

by Corollary 2.3. (The number of subcases has been accounted for.) Summing (2.26),
(2.27) gives the following equation:

∑
((i1, j1,k1),(i2, j2,k2))∈I∗n

#{i1, j1,k1,i2, j2,k2}=5,1�∈{i1, j1,k1,i2, j2,k2}

E
(
X(i1, j1,k1)X(i2, j2,k2)

)= 2(n− 1)5

15n4
+

2(n− 1)5

5n4
= 8(n− 1)5

15n4
.

(2.28)

Case 5 (#{i1, j1,k1, i2, j2,k2} = 4, 1 �∈ {i1, j1,k1, i2, j2,k2}).
Type 5. Here

S5
((i1, j1,k1),(i2, j2,k2)) :

1 i1 = i2 j1 = j2 k1

k2

︸ ︷︷ ︸
a≥0

internal
vertices

There are (a+ 5)nn−a−6 trees in �n containing a specific tree S5 by Theorem 2.4; there are

(n− 5)a specific trees containing a vertices between 1, i1; and there are 6
(
n−1

4

)
such pairs
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((i1, j1,k1),(i2, j2,k2)). Observe that T contains S5
((i1, j1,k1),(i2, j2,k2)) if and only if T contains

S5
((i2, j2,k2),(i1, j1,k1)). Hence, (each such pair appears once)

∑
((i1, j1,k1),(i2, j2,k2))∈I∗n

#{i1, j1,k1,i2, j2,k2}=4,1�∈{i1, j1,k1,i2, j2,k2}

E
(
X(i1, j1,k1)X(i2, j2,k2)

)= (n−1)4

4n4

n−5∑
a=0

(n−5)a
a+5
na

= (n−1)4

4n3

(2.29)

by Corollary 2.3.
Case 6 (#{i1, j1,k1, i2, j2,k2} = 6, 1∈ {i1, j1,k1, i2, j2,k3}).
Type 6. First subtypes 61, 62, 63 are

S61
((i1, j1,k1),(1, j2,k2)) :

x = 1= i2 i1 j1 k1

j2

k2

︸ ︷︷ ︸
a≥0

internal
vertices

S62
((i1, j1,k1),(1, j2,k2)) :

1= i2 x = j2 i1 j1 k1

k2

︸ ︷︷ ︸
a≥0

internal
vertices

S63
((i1, j1,k1),(1, j2,k2)) :

1= i2 j2 x = k2 i1 j1 k1︸ ︷︷ ︸
a≥0

internal
vertices

In each of these three subcases, there are (a + 6)nn−a−7 trees in �n containing a spe-
cific tree S61 , S62 , S63 by Theorem 2.4; there are (n− 6)a specific trees containing a ver-

tices between x, i1; and there are
(
n−1

2

)
· 2
(
n−3

3

)
such pairs ((i1, j1,k1),(1, i2, j2)). Next
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subtype 64 is

S64
((1, j1,k1),(i2, j2,k2))

x=1, j1 or k1

:

1= i1 j1 k1

i2 j2 k2

x︷︸︸
︷a≥0

internal
vertices

There are (a+ 6)nn−a−7 trees in �n containing a specific tree S64 by Theorem 2.4; there
are (n− 6)a specific trees containing a vertices between x, i2; there are 3 choices for x =
1, j1, or k1; and there are

(
n−1

2

)
· 2
(
n−3

3

)
such pairs ((1, j1,k1),(i2, j2,k2)). Observe that T

contains S
61,2,3

((i1, j1,k1),(1, j2,k2)) for a, x if and only if T contains S64
((1, j2,k2),(i1, j1,k1)) for a, x. Hence,

(each such pair appears once)

∑
((i1, j1,k1),(i2, j2,k2))∈I∗n

#{i1, j1,k1,i2, j2,k2}=6,1∈{i1, j1,k1,i2, j2,k2}

E
(
X(i1, j1,k1)X(i2, j2,k2)

)

= (n− 1)5

6n5

{
3
n−6∑
a=0

(n− 6)a
a+ 6
na

+ 3
n−6∑
a=0

(n− 6)a
a+ 6
na

}

= (n− 1)5

n4

(2.30)

by Corollary 2.3. (The first 3 and second 3 above are the number of subcases, i.e., choices
for x.)
Case 7 (#{i1, j1,k1, i2, j2,k2} = 5, 1∈ {i1, j1,k1, i2, j2,k2}).
Type 7. Here

S7
((1, j1,k1),(1, j2,k2)) :

1= i1 = i2 j1 k1

j2

k2

There are 5nn−6 trees in �n containing a specific tree S7 by Theorem 2.4; and there are(
n−1

2

)
·
(
n−3

2

)
such pairs ((1, j1,k1),(1, j2,k2)). Observe that T contains S7

((1, j1,k1),(1, j2,k2)) if

and only if T contains S7
((1, j2,k2),(1, j1,k1)). Hence, (each such pair occurs once)

∑
((1, j1,k1),(1, j2,k2))∈I∗n

T Type 7

E
(
X(1, j1,k1)X(1, j2,k2)

)= 5(n− 1)4

4n4
. (2.31)
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Type 8. First subtypes 81, 82 are

S81
((1, j1,k1),(i2, j2,k2)) :

1= i1 j1 = i2 k1

j2

k2

S82
((1, j1,k1),(i2, j2,k2)) :

1= i1 j1 k1 = i2

j2

k2

In either subcase, there are 5nn−6 trees in �n containing a specific tree S81 , S82 by Theorem

2.4; and there are 8
(
n−1

4

)
such pairs ((1, j1,k1),(i2, j2,k2)) total (for 4 elements in {2, . . . ,n},

there are 2 + 1 = 3 pairs with j2 > j1 = i2 or j2 > k2 > i2 = j1 for 81; and there are 2 + 2 +
1= 5 pairs with largest elements j1, j2 or j2 > k2 > j1 for 82). Next subtypes 83, 84 are

S83
((i1, j1,k1),(1, j2,k2)) :

1= i2 j2 = i1 j1 k1

k2

S84
((i1, j1,k1),(1, j2,k2)) :

1= i2 j2 k2 = i1 j1 k1

In either subcase, there are 5nn−6 trees in �n containing a specific tree S83 , S84 by Theorem

2.4; and there are 8
(
n−1

4

)
such pairs ((i1, j1,k1),(1, j2,k2)) total (for 4 elements in {2, . . . ,n},

there are 2 + 1 = 3 pairs with j1 > j2 = i1 or j1 > k1 > i1 = j2 for 83; and there are 2 + 2 +
1 = 5 pairs with largest elements j1, j2 or j1 > k1 > j2 for 84). Observe that T contains
S8i

((1, j1,k1),(i2, j2,k2)) if and only if T contains S8i+2
((i2, j2,k2),(1, j1,k1)) for i = 1,2. Hence, (each such

pair occurs once)

∑
((i1, j1,k1),(i2, j2,k2))∈I∗n

T Type 8

E
(
X(i1, j1,k1)X(i2, j2,k2)

)= 5(n− 1)4

3n4
+

5(n− 1)4

3n4
= 10(n− 1)4

3n4
. (2.32)
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(The number of subcases has been accounted for.) Summing (2.31), (2.32) gives the fol-
lowing equation:

∑
((i1, j1,k1),(i2, j2,k2))∈I∗n

#{i1, j1,k1,i2, j2,k2}=5,1∈{i1, j1,k1,i2, j2,k2}

E
(
X(i1, j1,k1)X(i2, j2,k2)

)

= 5(n− 1)4

4n4
+

10(n− 1)4

3n4
= 55(n− 1)4

12n4
.

(2.33)

Case 8 (#{i1, j1,k1, i2, j2,k2} = 4, 1∈ {i1, j1,k1, i2, j2,k2}).
Type 9. Here

S9
((1, j1,k1),(1, j2,k2)) :

1= i1 = i2 j1 = j2 k1

k2

There are 4nn−5 trees in �n containing a specific tree S9 by Theorem 2.4; and there are

2
(
n−1

3

)
such pairs ((1, j1,k1),(1, j2,k2)). Observe that T contains S9

((1, j1,k1),(1, j2,k2)) if and

only if T contains S9
((1, j2,k2),(1, j1,k1)). Hence, (each such pair occurs once)

∑
((i1, j1,k1),(i2, j2,k2))∈I∗n

#{i1, j1,k1,i2, j2,k2}=4,1∈{i1, j1,k1,i2, j2,k2}

E
(
X(i1, j1,k1)X(i2, j2,k2)

)= 4(n− 1)3

3n3
. (2.34)

After all this preparation, we are now able to find the second moment and the variance
of M1. From (2.21), summing (2.20), (2.25), (2.28)–(2.30), (2.33), (2.34) gives

E
(
M2

1

)= 2n3− 3n2− 5n+ 6
6n2

+
(n− 1)6

9n4
+

8(n− 1)5

15n4
+

(n− 1)4

4n3

+
(n− 1)5

n4
+

55(n− 1)4

12n4
+

4(n− 1)3

3n3

= 20n6− 39n5− 115n4 + 495n3− 175n2− 1266n+ 1080
180n4

.

(2.35)

Hence, (2.20), (2.35) give

σ2(M1
)=Var

(
M1
)= 7n5− 20n4 + 75n3− 40n2− 322n+ 300

60n4
. (2.36)

�

As a consequence of Theorem 2.5, a.a.s. on {Ωn}, M1(T) and mn(T) belong to a rela-
tively small interval for T ∈�n. Again, M1 =M1,n.

Corollary 2.6. For {Ωn},

Pr
(∣∣M1−E

(
M1
)∣∣ < ω(n)σ

(
M1
))−→ 1 as n−→∞, (2.37)
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where ω(n)→∞ arbitarily slowly as n→∞. Hence, a.a.s. on {Ωn},
n

3
−ω(n)n0.5 <M1 <

n

3
+ω(n)n0.5, (2.38)

where ω(n)→∞ arbitarily slowly as n→∞.

Proof. By Chebyshev’s inequality,

Pr
(∣∣M1−E

(
M1
)∣∣≥ ω(n)σ

(
M1
))≤ 1

ω2(n)
−→ 0 as n−→∞, (2.39)

provided that ω(n)→∞ as n→∞. This implies our result. �
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