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Effect of an axially applied magnetic field on the stability of a ferrofluid flow in an annular
space between two coaxially rotating cylinders with nonaxisymmetric disturbances has
been investigated numerically. The critical value of the ratio Ω∗ of angular speeds of the
two cylinders, at the onset of the first nonaxisymmetric mode of disturbance, has been
observed to be affected by the applied magnetic field.

1. Introduction

The problem of a viscous flow in between two coaxially rotating cylinders has been of
wide interest since Taylor’s classical work [15]. He found experimentally that the first
instability occurred via a stationary, axisymmetric disturbance of the Couette flow in
the form of cellular toroidal vortices, spaced regularly along the axis of the cylinders.
His theoretical findings were in excellent agreement with his experimental observations.
Since then, this problem has been greatly studied, both experimentally and theoretically.
A rich variety of patterns occur when the relative velocity of inner cylinder is increased.
The attractive feature of this experiment to exhibit a large number of different flows has
made this problem important.

This kind of flow has been used in many practical applications such as in viscosity
measurements and in modelling of jet streams. The linear stability of the Couette flow
with axisymmetric disturbance has been studied extensively by Chandrasekhar [3], Har-
ris and Reid [9], Di Prima [6], Donnelly [8], Coles [5], and many others.

Recently, the problem of stability of magnetic fluid in Taylor-Couette system has gain-
ed popularity. The Couette flow in ferrofluids has given rise to numerous applications
in making high-quality ferrofluid seals for rotary shafts in engineering and in producing
high-speed silent printers [12]. The magnetic properties of ferrofluids [2, 12] and features
of the Couette flow have made the problem interesting for further investigation. The sta-
bility of a ferrofluid flow in Taylor-Couette system in the presence of magnetic field has
been studied by Niklas et al. [11]. They have studied the problem linearly and have found
the explicit finite-difference numerical solution of the full nonlinear time-dependent
field equations in the presence of general magnetic field with small-gap approximations.
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Singh and Bajaj [14] have discussed the stability of Couette flow of ferrofluid in the pres-
ence of an axially applied magnetic field. They have taken into account the axisymmetric
perturbations of magnetic field in the ferrofluid in the gap between two uniformly ro-
tating cylinders. They have found that magnetic field perturbations cause the delay of
the onset of instability in the Couette flow. When the cylinders are counter-rotating, the
onset of instability can occur via a nonaxisymmetric mode.

The stability of Couette flow with nonaxisymmetric disturbance was first considered
by Di Prima [7]. Using Galerkin method, he solved the problem linearly with narrow-
gap approximations and for nonnegative values of the ratio Ω∗ of angular speed of outer
cylinder to that of inner cylinder. He found that the critical speed increases on increasing
the azimuthal wave number. Krueger et al. [10] carried out the complete linear stability
analysis of the Couette flow with nonaxisymmetric disturbance for narrow- as well as
for wide-gap considerations between the cylinders. They found that there exists a critical
value of the parameter Ω∗, of approximately −0.78, above which the critical disturbance
is axisymmetric and below which it is nonaxisymmetric.

Chang et al. [4] have studied the stability of ferrofluid flow between two concentric
rotating cylinders in the presence of constant axial magnetic field. They have discussed
the linear stability of this problem in general. They have found that the onset of instability
could be dominated by nonaxisymmetric mode only when the value of parameter Ω∗ is
sufficiently negative even if the strength of the magnetic field is very large.

In the present analysis, we have taken into consideration the nonaxisymmetric dis-
turbances in the Couette flow of a viscous, incompressible, Newtonian ferrofluid in the
presence of an axially applied magnetic field. The magnetic field perturbations in fer-
rofluid in the gap between two uniformly rotating cylinders have been considered and
their effect on the stability of flow for the onset of the first nonaxisymmetric mode of
disturbance has been investigated.

2. Formulation

We consider a viscous, incompressible, Newtonian ferrofluid flow in an annular region
between two coaxial cylinders of radii r1 and r2, (r1 < r2), respectively, rotating with uni-
form angular speeds Ω1 and Ω2, respectively, about their common axis taken as z-axis.
The cylinders are assumed to be of infinite length. We have used cylindrical polar co-
ordinates (r,θ,z), which denote, respectively, radial, azimuthal, and axial coordinates. A
constant magnetic field h0 = (0,0,h0) is applied to this system along the axis of the cylin-
ders. Then the governing equations [13] for the flow are

∂u
∂t

+ u ·∇u=−1
ρ
∇p+ ν∇2u +

µ0

ρ
m ·∇h +

µ0

2ρ
∇× (m×h),

∂m
∂t

+ u ·∇m= 1
2

(∇×u)×m−α(m−m0
)−βm× (m×h),

∇·u= 0, ∇×h= 0, ∇· (m + h)= 0,

(2.1)

where u, h, and m are velocity, magnetic field, and magnetization, respectively, for the
ferrofluid. p is the total pressure of the ferrofluid, ρ is its density, ν is the kinematic
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viscosity of ferrofluid, and µ0 is the magnetic permeability of free space. α= kbTb/3Vhη,
β = µ0/6ϕη, η = ρν, where kb, Tb, ϕ, and Vh are Boltzmann constant, temperature of the
ferrofluid, volume fraction of the ferromagnetic particles, and hydrodynamic volume of
a ferrocolloid particle, respectively. m0 is the equilibrium magnetization of the ferrofluid,
which is related to the equilibrium magnetic field h0 by the Langevin formula

m0 = nm(cothψ− 1/ψ)
h0∣∣h0
∣∣ , (2.2)

where n is the number density of ferromagnetic particles and m is the magnetic moment
of single ferromagnetic particle, ψ = µ0(mh0/kbTb) is the magnetic field parameter.

In system (2.1), velocity field u satisfies the following boundary conditions:

u= (0,rΩ j ,0
)

at r = rj , for j = 1,2. (2.3)

Magnetic induction field b(= µ0(m + h)) and magnetic field h satisfy

n̂ · [m + h]= 0, n̂× [h]= 0, at r = r1, r2, (2.4)

where n̂ denotes outward drawn unit normal to the curved surface of outer cylinder and
[m + h] and [h] denote the difference in m + h and h, respectively, across the boundaries.

System (2.1) along with boundary conditions (2.3)-(2.4) has a circular Couette flow
as a stationary solution:

u= (0,rΩ,0), h= (0,0,h0
)
, m= (0,0,m0

)
, p = p0, (2.5)

where Ω = A + B/r2, A = Ω1(Ω∗ − ξ2)/(1 − ξ2), B = r1
2Ω1(1 − Ω∗)/(1 − ξ2), Ω∗ =

Ω2/Ω1, ξ = r1/r2, and p0 = ρ
∫
rΩ2dr.

2.1. Perturbation equations. Due to the motion of the ferrofluid particles in the Taylor-
Couette flow, the magnetic field h inside the ferrofluid changes. In stationary state, fer-
rofluid is magnetized in direction of applied magnetic field but due to its motion, magne-
tization vector m in the nonequilibrium state is no longer parallel to the direction of mag-
netic field. To represent the nonequilibrium state, we superimpose a three-dimensional
disturbance on the stationary solution (2.5) in the form

u= (ur ,rΩ+uθ ,uz
)
, h= (hr ,hθ ,h0 +hz

)
,

m= (mr ,mθ ,m0 +mz
)
, p = p0 + p1.

(2.6)

Let R= r2− r1 be the gap width of fluid region in between the cylinders. Introducing
R, R2/ν, ν/R, ρν2/R2, ν(2ρ/µ0)1/2/R, as the characteristic scales for length, time, speed,
pressure, and magnetic field, respectively, we nondimensionalize the system (2.1). The
solution for the linearized, dimensionless system can be assumed in the following normal
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modes:

u=
(

0,
rΩR2

ν
,0
)

+
(
ûr(r), ûθ(r), ûz(r)

)
ei(ωt+σθ+kz),

h= (0,0,�h0
)

+
(
ĥr(r), ĥθ(r), ĥz(r)

)
ei(ωt+σθ+kz),

m= (0,0,�m0
)

+
(
m̂r(r),m̂θ(r),m̂z(r)

)
ei(ωt+σθ+kz),

p = R2p0(
ρν2
) + p̂(r)ei(ωt+σθ+kz),

(2.7)

where � = R(µ0/2ρ)1/2/ν, k is assumed to be real, and σ a nonnegative integer. The pa-
rameter ω is complex in general.

Substituting (2.7) in the linearized system, we obtain the following equations:

(
DD∗ − k2)ûr =Dp̂+

(
iω+

iσR2

ν
Ω+

σ2

r2

)
ûr + 2

(
iσ

r2
− R2

ν
Ω
)
ûθ − ik�h0m̂r ,

(
DD∗ − k2)ûθ = iσ

r
p̂+
(
iω+

iσR2

ν
Ω
σ2

r2

)
ûθ + 2

(
− iσ

r2
− Tν

4Ω1R2

)
ûr − ik�h0m̂θ ,

(
DD∗ − k2)ûz = ik p̂+

(
iω+

iσR2

ν
Ω+

σ2

r2

)
ûz − ik�h0m̂z

−�
(
m0 +h0

)(
D∗ĥr +

iσ

r
ĥθ + ikĥz

)
,[

iω+
iσR2Ω

ν
+
R2α

ν
+
R2βm0h0

ν

]
m̂r +

R2rDΩ

2ν
m̂θ

= �m0

2

(
ikûr −Dûz

)
+
βR2m2

0

ν
ĥr ,[

iω+
iσR2Ω

ν
+
R2α

ν
+
R2βm0h0

ν

]
m̂θ − R2rDΩ

2ν
m̂r

= i�m0

2

(
kûθ − σ

r
ûz

)
+
βR2m2

0

ν
ĥθ ,

m̂z = 0, D∗ûr =− iσ
r
ûθ − ikûz, ĥθ = σ

kr
ĥz, Dĥz = ikĥr ,

D∗
(
m̂r + ĥr

)
+
iσ

r

(
m̂θ + ĥθ

)
+ ik

(
m̂z + ĥz

)= 0,

(2.8)

where D ≡ d/dr and D∗ ≡ d/dr + 1/r. The dimensionless parameter T =−4AΩ1R4/ν2 is
the standard Taylor number.

System (2.8) satisfies the boundary conditions

ûr = ûθ = ûz = m̂r + ĥr = ĥz = 0, at r = r∗1 , r∗2 , (2.9)

where r∗1 = r1/R and r∗2 = r2/R.
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2.2. Solution. The system (2.8) has been reduced to a system of first-order ordinary dif-
ferential equations by using the transformations

ûr = X1, D∗ûr = X6 + p̂, ûθ = X2, D∗ûθ = X7,

ûz = X3, Dûz = X8− �
(
m0 +h0

)
ik

X10,

m̂r + ĥr = X4, D∗(m̂r + ĥr)= X9, ĥz = X5, Dĥz = X10.

(2.10)

We obtain the following system of ten first-order ODEs:

D∗X1 =− iσ
r
X2− ikX3, D∗X2 = X7, DX3 = X8− �

(
m0 +h0

)
ik

X10,

D∗X4 = X9, DX5 = X10,

DX6 =
[
iω+

iσR2

ν
Ω+

σ2

r2
+ k2

(
1 +

�2m0h0g1

2

)]
X1

+
[

2
(
iσ

r2
− R2Ω

ν

)
+
k2�2m0h0g2

2

]
X2− σk�2m0h0g2

2r
X3− iσ�R2βm2

0h0g2

νr
X5

+
ikm0h0�2g1

2
X8−�h0g1

[
R2βm2

0

ν
+

�2m0
(
m0 +h0

)
2

]
X10,

DX7 =
[
− Tν

2Ω1R2
− 2iσ

r2
− k2�2m0h0g2

2

]
X1

+
[
iω+

iσR2

ν
Ω+

2σ2

r2
+ k2

(
1 +

�2m0h0g1

2

)]
X2 +

σk

r

[
1− �2m0h0g1

2

]
X3

− iσ�R2βm2
0h0g1

νr
X5− iσ

r
X6− ik�2m0h0g2

2
X8

+ �h0g2

[
R2βm2

0

ν
+

�2m0
(
m0 +h0

)
2

]
X10,

D∗X8 = σk

r
X2 +

[
iω+

iσR2

ν
Ω+

σ2

r2
+ 2k2

]
X3

− i�(m0 +h0
)(σ2 + k2r2

kr2

)
X5− ikX6,

DX9 = ik
(
D f3− f3

r

)
X1− ik

(
D f4− f4

r

)
X2

+
[
iσ2

k
D
(
f4
r2

)
−
(
iω+

iσR2

ν
Ω+

σ2

r2
+ k2

)
f3

]
X3 +

(
D f2− f2

r

)
X4

+
[
i�
(
m0 +h0

)(σ2 + k2r2
)

kr2
−D f1

]
X5 + ik f3X6− ik f4X7

+
[
iσ

r
f4−D f3 +

f3
r

]
X8 + f2X9−

[
f1 +

σ�
(
m0 +h0

)
kr

f4

]
X10,
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D∗X10 = k2�m0Dg1

2∆
X1 +

k2�m0Dg2

2∆
X2

+
ik�m0

2∆

[
iσ

r
Dg2 +

(
iω+

iσR2

ν
Ω+

σ2

r2
+ k2

)
g1

]
X3

+
1
∆

[
�2m0

(
m0 +h0

)
2

(
σ2 + k2r2

)
r2

− iσR2βm2
0

ν
D∗
(
g2

r

)]
X5

+
k2�m0g1

2∆
X6 +

k2�m0g2

2∆
X7 +

ik�m0

2∆

(
Dg1 +

iσ

r
g2

)
X8 +

ik

∆
X9

− 1
∆

[
R2βm2

0

ν
+

�2m0
(
m0 +h0

)
2

](
Dg1 +

iσ

r
g2

)
X10,

(2.11)

where

g1 = iω+
(
iσR2/ν

)
Ω+

(
R2/ν

)(
α+βm0h0

)[
iω+

(
iσR2/ν

)
Ω+

(
R2/ν

)(
α+βm0h0

)]2
+R4r2(DΩ)2/04ν2

,

g2 =− R2rDΩ/2ν[
iω+

(
iσR2/ν

)
Ω+

(
R2/ν

)(
α+βm0h0

)]2
+R4r2(DΩ)2/4ν2

,

∆= 1 +

[
R2βm2

0

ν
+

�2m0
(
m0 +h0

)
2

]
g1,

f1 = i
(
σ2 + k2r2

)
kr2

+
iσ2R2βm2

0

νkr2

[(
g2

1 + g2
2

)
∆− g2

2

g1∆

]
,

f2 = iσg2

rg1

(
∆− 1
∆

)
, f3 = iσ�m0g2

2r∆
, f4 = iσ�m0

2rg1∆

[(
g2

1 + g2
2

)
∆− g2

2

]
.

(2.12)

The associated boundary conditions in terms of the new variables can be written as

X1 = X2 = X3 = X4 = X5 = 0 at r = r∗1 , r∗2 . (2.13)

The system of (2.11) along with ten boundary conditions given by (2.13) leads to a
two-point boundary value problem that has been solved by using a shooting method
[9, 14].

The five linearly independent solutions Yj (1 ≤ j ≤ 5) (where each Yj is a column
matrix with ten rows) for the system (2.11) can be constructed such that they satisfy the
initial conditions

Y= (O5 I5
)t

at r = r∗1 , (2.14)

where Y = (Y1Y2 ···Y5), superscript t denotes the matrix transpose, O5 and I5 are, re-
spectively, zero matrix and identity matrix of order five.

The functions Yj ’s have been evaluated by solving the system (2.11) together with
initial conditions (2.14), using fourth-order Runge-Kutta method. We define X as the
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column vector (X1X2 ···X9X10)t. Then any other solution of the system (2.11) satisfying
the initial conditions (2.14) at r = r∗1 is a linear combination of these five solutions Yj ’s,
that is,

X= Y ·C, (2.15)

where C is an arbitrary constant column matrix with five rows. This solution should
satisfy the boundary conditions required at r = r2, that is, the functions in first five rows
of the column matrix X should vanish at r = r2. We decompose the matrix Y as Y =
(Z1 Z2)t such that each of the matrices Z1, Z2 is of order five, then (2.15) is equivalent
to

X= (Z1 Z2
)t ·C, (2.16)

with

Z1 ·C=O at r = r∗2 , (2.17)

where O is a zero matrix of order 5× 1. Equation (2.17) is homogeneous in C. For a
nontrivial solution of C, we have the determinant∣∣Z1

∣∣= 0 at r = r∗2 . (2.18)

This is the required secular equation which involves unknowns: the Taylor number T ,
the axial wave number k, the azimuthal wave number σ , and the angular frequency of
disturbance ω. The marginal state is characterized by vanishing of the imaginary part
of parameter ω. We have solved the secular equation (2.18) numerically to calculate the
critical Taylor number Tc for fixed values of the parameters ξ, Ω∗, ϕ, and ψ.

3. Results and discussion

The numerical results have been obtained for a ferrofluid of magnetite with carrier liq-
uid as a diester. Its physical properties can be seen in [1]. We have fixed the ratio of the
radius of the inner cylinder to that of outer cylinder, ξ = 0.95, and the volume fraction of
ferromagnetic particles, ϕ= 0.2, for numerical calculations.

There exists a critical value Ω∗
c of the ratio Ω∗ of angular speeds of the two cylin-

ders, above which the onset mode of instability is axisymmetric and below which it is
nonaxisymmetric. In the absence of magnetic field, the value Ω∗

c has been found to be
approximately −0.75. Krueger et al. [10] have found this value as −0.78. With axially ap-
plied magnetic field, the critical value Ω∗

c varies with the parameter ψ characterizing the
magnitude of applied magnetic field. The critical values of the parameter Ω∗ and the cor-
responding values of critical Taylor number Tc obtained for various values of magnetic
field parameter ψ at σ = 0,1 have been listed in Table 3.1. Figure 3.1 shows the plot of Ω∗

c

with respect to ψ. It has been observed that for low and high values of ψ, Ω∗
c is close to

−0.75 but for intermediate values of ψ, it differs from −0.75 significantly. Initially, Ω∗
c

increases with increase in ψ, attains a maximum, and then starts decreasing with fur-
ther increase in ψ until its value is close to −0.75. Chang et al. [4] have given the critical
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Table 3.1

Magnetic field
parameter ψ

Ω∗
c Tc(σ = 0) Tc(σ = 1)

0 −0.75 12281 12272

0.5 −0.73 12215 12214

1 −0.71 12890 12885

2 −0.67 14295 14294

3 −0.66 15573 15573

4 −0.67 16822 16809

6 −0.68 17784 17772

8 −0.69 18220 18212

10 −0.70 18527 18518

15 −0.72 19017 19001

20 −0.73 19110 19095

50 −0.75 19061 19053

100 −0.76 19105 19096

−0.66

−0.68

−0.7

−0.72

−0.74

Ω
∗ c

0 5 10 15 20

ψ

Figure 3.1. Variation of critical value Ω∗
c with magnetic field parameter ψ at ξ = 0.95 and ϕ= 0.2.

value Ω∗
c to be approximately −0.75 and found that it is independent of the magnitude

of applied magnetic field.
The ratio T∗ = Tcσ /T0, where Tcσ is the critical Taylor number at a given value of σ and

T0 = Tc at σ = 0, has been found numerically at Ω∗ = −1 and ψ = 0 and 6, The points in
(σ ,T∗) plane have been plotted in Figure 3.2. In the absence of magnetic field, the critical
disturbance is nonaxisymmetric with critical azimuthal wave number σc = 4. The critical
disturbance remains nonaxisymmetric at ψ = 6 but occurs at σc = 5. Thus, the magnetic
field affects the value of critical azimuthal wave number.

Paying attention to the variation of Tc with magnetic field at Ω∗ = −1, we have found
that the critical disturbance remains nonaxisymmetric for all values of ψ. For 2 ≤ ψ ≤
6.8 approximately, the critical nonaxisymmetric mode of disturbance occurs at σc = 5.
The difference in the corresponding values of Tc at σ = 4 and σ = 5 is small whenever
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1

0.95

0.9

0.85

0.8

0.75

0.7

T∗

0 1 2 3 4 5 6

σ

ψ = 0
ψ = 6

Figure 3.2. The plot of ratio T∗ = Tcσ /T0 at fixed values, ξ = 0.95, ϕ= 0.2, and Ω∗ = −1.

the value of magnetic field parameter is not too large. For (ψ,Ω∗)= (2,−1), the critical
Taylor number Tc for σ = 4 has been found to be 26503, whereas it is 26403 at σ = 5. For
(ψ,Ω∗) = (6,−1), Tc is 33920 at σ = 4 and it is 33871 at σ = 5. On further increase of
magnetic field parameter ψ, the critical nonaxisymmetric mode of disturbance occurs at
σc = 4.

Figure 3.3a shows variation of critical Taylor number Tc with magnetic field parameter
ψ. The two curves correspond to σ = 0 and 4, respectively. Tc increases initially with ψ,
attains a maximum, and then starts decreasing with further increase in ψ until it becomes
constant. Figure 3.3b shows the variation of Tc with ψ for σ = 0 and 5.

The corresponding variation of critical axial wave number kc and critical angular fre-
quency ωc with the magnetic field parameter ψ at the onset of nonaxisymmetric mode
of the Couette-Taylor instability have been shown in Figures 3.3c and 3.3d, respectively.
Figure 3.3c shows that the critical axial wave number for nonaxisymmetric disturbance
remains less than its corresponding values for axisymmetric disturbance for all values of
the applied magnetic field. The plots show that kc at fixed σ decreases initially with in-
crease of the magnetic field parameter ψ, attains a minimum at certain value of ψ, starts
increasing with further increase of ψ, and then becomes constant at high magnetic fields.
A similar variation of the critical frequency parameter ωc with magnetic field occurs,
which has been observed from Figure 3.3d.

4. Conclusion

We have investigated the stability of Couette flow of a ferrofluid with nonaxisymmetric
disturbance in the presence of axial magnetic field. We have taken into consideration the
magnetic field perturbations in ferrofluid in the gap between cylinders. A general analysis
has been done and throughout the investigation, no approximations for the narrow-gap
limit have been assumed. The magnetic field causes the critical value of parameter Ω∗ to
vary. The critical value of the angular speed ratio Ω∗ for change of the mode of instability
from axisymmetry to nonaxisymmetry in the Couette flow is close to −0.75 at small and
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40000

35000
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25000
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0 5 10 15 20

ψ

σ = 0

σ = 4

(a)

40000

35000
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25000
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ψ

σ = 0

σ = 5

(b)

4.2

4

3.8

3.6

3.4
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0 5 10 15 20

ψ

σ = 0

σ = 5

σ = 4

(c)

−22.5
−25
−27.5
−30
−32.5
−35
−37.5
−40

ωc

0 5 10 15 20

ψ

σ = 4

σ = 5

(d)

Figure 3.3. (a) Variation of the critical Taylor number Tc with magnetic field parameter ψ at fixed
values: ξ = 0.95, ϕ= 0.2, and Ω∗ = −1 for two different values of azimuthal wave number σ = 0,4. (b)
Variation of the critical Taylor number Tc with magnetic field parameter ψ at fixed values: ξ = 0.95,
ϕ = 0.2, and Ω∗ = −1 for two different values of azimuthal wave number σ = 0,5. (c) Variation of
critical axial wave number kc with ψ at ξ = 0.95, ϕ= 0.2, and Ω∗ = −1 at different values of azimuthal
wave number σ = 0,5,4. (d) Variation of angular frequency of critical disturbance for the fixed values
the same as for Figure 3.3c at σ = 4,5.

high values of applied magnetic field but varies at intermediate magnetic fields. Applied
magnetic field causes the change of critical azimuthal wave number σc. The onset of non-
axisymmetric mode of instability in the Couette flow of a ferrofluid occurs at σ = 5 for
intermediate values of applied magnetic field at Ω∗ = −1. For high values of applied
magnetic field, when the ferrofluid magnetization approaches its saturation value the
onset of nonaxisymmetric mode of instability occurs at σ = 4.
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