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Some common fixed point theorems for a pair of nonself-mappings in complete met-
rically convex metric spaces are proved by altering distances between the points, which
generalize earlier results due to M. D. Khan and Bharadwaj (2001), M. S. Khan et al.
(2000), Bianchini (1972), Chatterjea 1972, and others. Some related results are also dis-
cussed besides furnishing an illustrative example.

1. Introduction

There exists extensive literature on fixed points of self-mappings in metric and Banach
spaces. But in many applications the mappings under examination may not always be
self-mappings, therefore fixed point theorems for nonself-mappings form a natural sub-
ject for investigation. Assad and Kirk [2] initiated the study of fixed point of nonself-
mappings in metrically convex spaces. Indeed while doing so, Assad and Kirk [2] noticed
that with some kind of metric convexity, domain and range of the mappings under ex-
amination can be considered of more varied type. In recent years, this technique due to
Assad and Kirk [2] has been utilized by many researchers of this domain and by now there
exists considerable literature on this topic. To mention a few, we cite [1, 2, 5, 6, 7, 8, 11,
12].

Recently, Assad [1] gave sufficient conditions for nonself-mappings defined on a closed
subset of complete metrically convex metric spaces satisfying Kannan-type mappings
[10] which have been currently generalized by M. S. Khan et al. [12]. For the sake of
completeness, we state the main result of M. S. Khan et al. [12].

Theorem 1.1. Let (X ,d) be a complete metrically convex metric space and K a nonempty
closed subset of X . Let T : K → X be a mapping satisfying the inequality

d(Tx,Ty)≤ amax
{
d(x,Tx),d(y,Ty)

}
+ b
{
d(x,Ty) +d(y,Tx)

}
(1.1)
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for every x, y ∈ K , where a and b are nonnegative reals such that

max
{
a+ b

1− b
,

b

1− a− b

}
= h > 0,

max
{

1 + a+ b

1− b
h,

1 + b

1− a− b
h
}
= h′,

max{h,h′} = h′′ < 1.

(1.2)

Further, if for every x ∈ δK , Tx ∈ K , then T has a unique fixed point in K .

2. Preliminaries

Before proving our results, we collect the relevant definitions and a lemma for our future
use.

Definition 2.1 [5]. Let K be a nonempty subset of a metric space (X ,d) and F,T : K → X.
The pair (F,T) is said to be weakly commuting if for every x, y ∈ K with x = Fy and
Ty ∈ K ,

d(Tx,FTy)≤ d(Ty,Fy). (2.1)

Notice that for K = X , this definition reduces to that of Sessa [13].

Definition 2.2 [6]. Let K be a nonempty subset of a metric space (X ,d) and F,T : K → X .
The pair (F,T) is said to be compatible if for every sequence {xn} ⊂ K and from the
relation

lim
n→∞d

(
Fxn,Txn

)= 0, (2.2)

and Txn ∈ K (for every n∈N), it follows that

lim
n→∞d

(
Tyn,FTxn

)= 0 (2.3)

for every sequence yn ∈ K such that yn = Fxn, n∈N.

Notice that for K = X , this definition reduces to that of Jungck [9].

Definition 2.3. Let (X ,d) be a metric space and K a nonempty subset of X . Let F,T : K →
X be a pair of maps which satisfy the condition

φ
(
d(Fx,Fy)

)≤ amax
{

1
2
φ
(
d(Tx,Ty)

)
,φ
(
d(Tx,Fx)

)
,φ
(
d(Ty,Fy)

)}

+ b
{
φ
(
d(Tx,Fy)

)
+φ
(
d(Ty,Fx)

)} (2.4)

for all distinct x, y ∈ K , a,b ≥ 0 such that a+ 4b < 1 and let φ :R+ →R+ be an increasing
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continuous function for which the following properties hold:

φ(t)= 0⇐⇒ t = 0, φ(2t)≤ 2φ(t). (2.5)

Then F is called generalized T contraction mapping of K into X .

Definition 2.4 [8]. A pair of nonself-mappings (F,T) on a nonempty subset K of a metric
space (X ,d) is said to be coincidentally commuting if Tx,Fx ∈ K and Tx = Fx imply that
FTx = TFx.

Definition 2.5 [2]. A metric space (X ,d) is said to be metrically convex if for any distinct
x, y ∈ X , there exists a point z ∈ X with x 
= z 
= y such that

d(x,z) +d(z, y)= d(x, y). (2.6)

Lemma 2.6 [2]. Let K be a nonempty closed subset of a metrically convex metric space X . If
x ∈ K and y /∈ K , then there exists a point z ∈ δK (the boundary of K) such that

d(x,z) +d(z, y)= d(x, y). (2.7)

3. Results

Our main result runs as follows.

Theorem 3.1. Let (X ,d) be a complete metrically convex metric space and K a nonempty
closed subset of X . If F is a generalized T contraction mapping of K into X satisfying the
following:

(i) δK ⊆ TK , FK ∩K ⊆ TK ,
(ii) Tx ∈ δK ⇒ Fx ∈ K ,

(iii) (F,T) is coincidentally commuting,
(iv) TK is closed in X ,

then F and T have a unique common fixed point.

Proof. Firstly, we proceed to construct two sequences {xn} and {yn} in the following way.
Let x ∈ δK . Then (due to δK ⊂ TK), there exists a point x0 ∈ K such that x = Tx0.

Since Tx ∈ δK ⇒ Fx ∈ K , one concludes that Fx0 ∈ FK ∩K ⊆ TK . Let x1 ∈ K be such
that y1 = Tx1 = Fx0 ∈ K . Let y2 = Fx1. If y2 ∈ K , then y2 ∈ FK ∩K ⊆ TK which implies
that there exists a point x2 ∈ K such that y2 = Tx2. If y2 /∈ K , then there exists a point
p ∈ δK such that

d
(
Tx1, p

)
+d
(
p, y2

)= d
(
Tx1, y2

)
. (3.1)

Since p ∈ δK ⊆ TK , there exists a point x2 ∈ K such that p = Tx2 so that

d
(
Tx1,Tx2

)
+d
(
Tx2, y2

)= d
(
Tx1, y2

)
. (3.2)

Thus, repeating the foregoing arguments, one obtains two sequences {xn} and {yn} such
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that
(v) yn+1 = Fxn,

(vi) yn ∈ K ⇒ yn = Txn or yn /∈ K ⇒ Txn ∈ δK and

d
(
Txn−1,Txn

)
+d
(
Txn, yn

)= d
(
Txn−1, yn

)
. (3.3)

We denote

P = {Txi ∈ {Txn} : Txi = yi
}

,

Q = {Txi ∈ {Txn} : Txi 
= yi
}
.

(3.4)

Obviously, the two consecutive terms cannot lie in Q.
Now, we distinguish the following three cases.

Case 1. If Txn,Txn+1 ∈ P, then

φ
(
d
(
Txn,Txn+1

))= φ
(
d
(
Fxn−1,Fxn

))

≤ amax
{

1
2
φ
(
d
(
Txn−1,Txn

))
,φ
(
d
(
Txn−1,Fxn−1

))
,φ
(
d
(
Txn,Fxn

))}

+ b
{
φ
(
d
(
Txn−1,Fxn

))
+φ
(
d
(
Txn,Fxn−1

))}
= amax

{
φ
(
d
(
yn−1, yn

))
,φ
(
d
(
yn, yn+1

))}
+ bφ

(
d
(
yn−1, yn+1

))
= amax

{
φ
(
d
(
yn−1, yn

))
,φ
(
d
(
yn, yn+1

))}
+ bφ

{
2max

[
d
(
yn−1, yn

)
,d
(
yn, yn+1

)]}
,

(3.5)

which in turn yields

φ
(
d
(
Txn,Txn+1

))≤



(
a+ b

1− b

)
φ
(
d
(
Txn−1,Txn

))
, if d

(
yn−1, yn

)≥ d
(
yn+1, yn

)
,

0, if d
(
yn−1, yn

)≤ d
(
yn+1, yn

)
.

(3.6)

Case 2. If Txn ∈ P and Txn+1 ∈Q, then

d
(
Txn,Txn+1

)
+d
(
Txn+1, yn+1

)= d
(
Txn, yn+1

)
, (3.7)

which in turn yields

d
(
Txn,Txn+1

)≤ d
(
Txn, yn+1

)= d
(
yn, yn+1

)
, (3.8)

and hence

φ
(
d
(
Txn,Txn+1

))≤ φ
(
d
(
Txn, yn+1

))= φ
(
d
(
yn, yn+1

))
. (3.9)
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Now, as in Case 1, one obtains

φ
(
d
(
Txn,Txn+1

))≤



(
a+ b

1− b

)
φ
(
d
(
Txn−1,Txn

))
, if d

(
yn−1, yn

)≥ d
(
yn+1, yn

)
,

0, if d
(
yn−1, yn

)≤ d
(
yn+1, yn

)
.
(3.10)

Case 3. If Txn ∈ Q and Txn+1 ∈ P, then Txn−1 ∈ P. Since Txn is a convex linear combi-
nation of Txn−1 and yn, it follows that

d
(
Txn,Txn+1

)≤max
{
d
(
Txn−1,Txn+1

)
,d
(
yn,Txn+1

)}
. (3.11)

Now, if d(Txn−1,Txn+1)≤ d(yn,Txn+1), then proceeding as in Case 1, we have

φ
(
d
(
Txn,Txn+1

))≤



(
a+ b

1− b

)
φ
(
d(Txn−1,Txn)

)
, if d

(
yn−1, yn

)≥ d
(
yn+1, yn

)
,

0, if d
(
yn−1, yn

)≤ d
(
yn+1, yn

)
.
(3.12)

On the other hand, if d(Txn,Txn+1)≤ d(Txn−1,Txn+1), then

φ
(
d
(
Txn,Txn+1

))≤ φ
(
d
(
Txn−1,Txn+1

))= φ
(
d
(
Fxn−2,Fxn

))

≤ amax
{

1
2
φ
(
d
(
Txn−2,Txn

))
,φ
(
d
(
Txn−2,Fxn−2

))
,φ
(
d
(
Txn,Fxn

))}

+ b
{
φ
(
d
(
Txn−2,Fxn

))
+φ
(
d
(
Txn,Fxn−2

))}

= amax
{

1
2
φ
(
d
(
yn−2,Txn

))
,φ
(
d
(
yn−2, yn−1

))
,φ
(
d
(
Txn, yn+1

))}

+ b
{
φ
(
d
(
yn−2, yn+1

))
+φ
(
d
(
Txn, yn−1

))}
.

(3.13)

Since

1
2
φ
(
d
(
yn−2,Txn

))= 1
2

{
φ
(
d
(
yn−2, yn−1

)
+d
(
yn−1,Txn

))}

=max
{
φ
(
d
(
Txn, yn−1

))
,φ
(
d
(
yn−1, yn−2

))}
,

(3.14)

therefore, one gets

φ
(
d
(
Txn,Txn+1

))= amax
{
φ
(
d
(
Txn, yn−1

))
,φ
(
d
(
yn−1, yn−2

))
,φ
(
d
(
Txn, yn+1

))}
+ b
{
φ
(
d
(
yn−2, yn+1

))
+φ
(
d
(
Txn, yn−1

))}
.

(3.15)
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Note that by Case 2, we have φ(d(Txn−1,Txn))≤ φ(d(Txn−2,Txn−1)), therefore

φ
(
d
(
Txn,Txn+1

))≤ amax
{
φ
(
d
(
yn−1, yn−2

))
,φ
(
d
(
Txn, yn+1

))}
+ bφ

(
d
(
yn−2, yn+1

))
+ bφ

(
d
(
yn−2, yn−1

))
≤ amax

{
φ
(
d
(
yn−1, yn−2

))
,φ
(
d
(
Txn, yn+1

))}
+ bφ

[
3max

{
d
(
yn−2, yn−1

)
,d
(
yn−1,Txn

)
,d
(
Txn, yn+1

)}]
+ bφ

(
d
(
yn−2, yn−1

))
(3.16)

which in turn yields

φ
(
d
(
Txn,Txn+1

))

≤




(
a+ 3b
1− b

)
φ
(
d
(
Txn−2,Txn−1

))
, if d

(
yn−2, yn−1

)≥ d
(
Txn, yn+1

)
,

(
b

1− a− 3b

)
φ
(
d
(
Txn−2,Txn−1

))
, if d

(
yn−2, yn−1

)≤ d
(
Txn, yn+1

)
.

(3.17)

Thus in all cases, we have

φ
(
d
(
Txn,Txn+1

))≤ kmax
{
φ
(
d
(
Txn−1,Txn

))
,φ
(
d
(
Txn−2,Txn−1

))}
, (3.18)

where k =max{((a+ b)/(1− b)),((a+ 3b)/(1− b))}.
It can be easily shown by induction that for n≥ 1, we have

φ
(
d
(
Txn,Txn+1

))≤ kn max
{
φ
(
d
(
Tx0,Tx1

))
,φ
(
d
(
Tx1,Tx2

))}
. (3.19)

Now, for any positive integer p, we have

φ
(
d
(
Txn,Txn+p

))≤ φ
{
d
(
Txn,Txn+1

)
+d
(
Txn+1,Txn+2

)
+ ···+d

(
Txn+p−1,Txn+p

)}
≤ φ

[{
1 + k+ k2 + ···+ kp−1}kn max

{
d
(
Tx0,Tx1

)
,d
(
Tx1,Tx2

)}]

≤ φ
[{

1
1− k

}
kn max

{
d
(
Tx0,Tx1

)
,d
(
Tx1,Tx2

)}]
,

(3.20)

which implies that φ(d(Txn,Txn+1))→ 0 as n→∞, so that {Txn} is a Cauchy sequence
and hence converges to a point z in X . We assume that a subsequence {Txnk} of {Txn}
contained in P and TK is a closed subspace of X . Since {Txnk} is Cauchy in TK , it con-
verges to a point z ∈ TK . Let u ∈ T−1z; then Tu = z. Here, one also needs to note that
{Fxnk−1} will also converge to z.

Using (2.4), one can write

φ
(
d
(
Fxnk−1,Fu

))≤ amax
{

1
2
φ
(
d
(
Txnk−1,Tu

))
,φ
(
d
(
Txnk−1,Fxnk−1

))
,φ
(
d(Tu,Fu)

)}

+ b
{
φ
(
d
(
Fxnk−1,Tu

))
+φ
(
d
(
Fu,Txnk−1

))}
(3.21)
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which, on letting k→∞, reduces to

φ
(
d(Fu,z)

)≤ amax
{

1
2
φ
(
d(Tu,z)

)
,0,φ

(
d(Tu,Fu)

)}
+ b
{
φ
(
d(Tu,z)

)
+φ
(
d(Fu,z)

)}
,

φ
(
d(Fu,Tu)

)≤ (a+ b)φ
(
d(Fu,Tu)

)
,

(3.22)

yielding thereby Tu= Fu which shows that u is a point of coincidence for F and T .
Since the pair (F,T) is coincidentally commuting, therefore

z = Tu= Fu=⇒ Fz = FTu= TFu= Tz. (3.23)

To prove that z is the fixed point of F, consider

φ
(
d(Fz,z)

)= φ
(
d(Fz,Fu)

)

≤ amax
{

1
2
φ
(
d(Tz,Tu)

)
,φ
(
d(Tz,Fz)

)
,φ
(
d(Tu,Fu)

)}

+ b
{
φ
(
d(Tz,Fu)

)
+φ
(
d(Tu,Fz)

)}

≤
(
a

2
+ 2b

)
φ
(
d(Fz,z)

)
,

(3.24)

which shows that z is a common fixed point of F and T . The proof goes on similar lines
in case we assume subsequence {Txnk} of {Txn} contained in Q, hence it is omitted. The
uniqueness of fixed point follows easily. This completes the proof. �

Remark 3.2. By setting T = IK and φ(t) = t, one deduces a result similar to the main
results of M. S. Khan et al. [12] and M. D. Khan and Bharadwaj [11].

Remark 3.3. By restricting T = IK and φ(t) = t with b = 0, one deduces a result for
nonself-mappings satisfying Bianchini-type condition [3].

Remark 3.4. If we choose T = IK and φ(t)= t with a= 0, then, one deduces a result for
nonself-mappings satisfying Chatterjea-type condition [4].

Inspired by Imdad [7], we derive a corollary (as an application of Theorem 3.1) which
involves self- as well as nonself-mappings.

Corollary 3.5. Let I , J : K → K , F : I(K)→ X , and T : J(K)→ X be four mappings so that
FI and TJ are nonself-mappings from a closed subset K to X which satisfy the condition

φ
(
d(FIx,FI y)

)≤ amax
{

1
2
φ
(
d(TJx,TJ y)

)
,φ
(
d(TJx,FIx)

)
,φ
(
d(TJ y,FI y)

)}

+ b
{
φ
(
d(TJx,FI y)

)
+φ
(
d(TJ y,FIx)

)}
,

(3.25)

for all x, y ∈ K with x 
= y, a,b ≥ 0 such that a+ 4b < 1, and let φ :R+ →R+ be an increasing
continuous function which satisfies φ(t)= 0⇔ t = 0 and φ(2t)≤ 2φ(t). Suppose that

(vii) δK ⊆ TJK , FIK ∩K ⊆ TJK ,
(viii) TJx ∈ δK ⇒ FIx ∈ K ,

(ix) TJK is closed in X .
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Then (FI ,TJ) has a point of coincidence z. Furthermore, if the pair (FI ,TJ) is coincidentally
commuting, then z is also the unique common fixed point of FI and TJ. Moreover, if the
pairs (F,I), (FI ,I), (T , J), (TJ , J), (FI ,T), (FI , J), (TJ ,F), and (TJ ,I) commute at z, then z
remains a common fixed point of F, I , T , and J .

Proof. Since all the conditions of Theorem 3.1 are satisfied, therefore FI and TJ have a
unique common fixed point z. Now, using the commutativity of various pairs, one can
easily show that z remains the unique common fixed point of F, I , T , and J . �

In the next theorem, we use “weak commutativity” instead of “coincidentally com-
muting property” of (F,T) and alternately replace the “closedness of TK” by “continuity
of the map F or T” to prove the following.

Theorem 3.6. Let (X ,d) be a complete metrically convex metric space and K a nonempty
closed subset of X . Let F,T : K → X be a pair of maps which satisfy (2.4), (i), and (ii).
Suppose that

(x) (F,T) is a weakly commuting pair,
(xi) either F or T is continuous on K .

Then F and T have a unique common fixed point.

Proof. On the lines of the proof of Theorem 3.1, one can show that the sequence {Txn}
converges to a point z in X . Assume that there exists a subsequence {Txnk} of {Txn}
which is contained in P. Since T is continuous, {TTxnk} converges to a point Tz. As
Fxnk−1 = Txnk and Txnk−1 ∈ K , on using the weak commutativity of (F,T), we have

d
(
TTxnk ,FTxnk−1

)≤ d
(
Fxnk−1,Txnk−1

)
(3.26)

which, on letting k→∞, reduces to d(Tz,FTxnk−1)→ 0.
Using (2.4), one can write

φ
(
d
(
FTxnk−1,Fz

))

≤ amax
{

1
2
φ
(
d
(
TTxnk−1,Tz

))
,φ
(
d
(
TTxnk−1,FTxnk−1

))
,φ
(
d(Tz,Fz)

)}

+ b
{
φ
(
d
(
TTxnk−1,Fz

))
+φ
(
d
(
Tz,FTxnk−1

))}
,

(3.27)

which, on letting k→∞, reduces to

φ
(
d(Tz,Fz)

)≤ amax
{

0,0,φ
(
d(Tz,Fz)

)}
+ b
{
φ
(
d(Fz,Tz)

)
+ 0
}

≤ (a+ b)φ
(
d(Tz,Fz)

)
,

(3.28)

yielding thereby Fz = Tz.
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To prove that z is the fixed point of T , consider

φ
(
d
(
Txnk ,Tz

))= φ
(
d
(
Fxnk−1,Fz

))

≤ amax
{

1
2
φ
(
d
(
Txnk−1,Tz

))
,φ
(
d
(
Txnk−1,Fxnk−1

))
,φ
(
d(Tz,Fz)

)}

+ b
{
φ
(
d
(
Txnk−1,Fz

))
+φ
(
d
(
Tz,Fxnk−1

))}
(3.29)

which, on letting k→∞, reduces to

φ
(
d(Tz,z)

)≤
(
a

2
+ 2b

)
φ
(
d(Tz,z)

)
, (3.30)

implying thereby that z = Tz. Thus z = Tz = Fz, which shows that z is a common fixed
point of F and T . In case the subsequence {Txnk} of {Txn} is contained in Q, then the
proof goes on similar lines, hence it is omitted. This completes the proof. �

Finally, we prove a theorem when “weak commutativity” is replaced by “compatibil-
ity.”

Theorem 3.7. Let (X ,d) be a complete metrically convex metric space and K a nonempty
closed subset of X . Let F,T : K → X be a pair of maps satisfying (2.4), (i), and (ii). Suppose
that

(xii) (F,T) is a compatible pair,
(xiii) F and T are continuous on K .

Then F and T have a unique common fixed point.

Proof. On the lines of the proof of Theorem 3.1, one can show that the sequence {Txn}
converges to a point z ∈ K . Again, we assume that a subsequence {Txnk} of {Txn} is
contained in P. Since Txnk = Fxnk−1 and Txnk−1 ∈ K , using compatibility of (F,T), we
have

lim
n→∞d

(
Fxnk−1,Txnk−1

)= 0, lim
n→∞d

(
TTxnk ,FTxnk−1

)= 0. (3.31)

Using continuity of T , it follows that {FTxnk−1} → Tz as k→∞. Now, repeating the fore-
going arguments (as in Theorem 3.6), one can show that z = Tz = Fz. This completes the
proof. �

Remark 3.8. Corollaries similar to Corollary 3.5 can be outlined in the context of Theo-
rems 3.6 and 3.7.

4. An illustrative example

Finally, we furnish an example to establish the utility of our results over earlier ones es-
pecially those contained in [3, 4, 11, 12] and others.
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Example 4.1. Let R be the set of reals equipped with usual metric, K = {−2} ∪ [0,1].
Define F,T : K → X by

Tx =


−2x if 0≤ x ≤ 1,

1 if x =−2,
Fx =



−x

2
if 0≤ x < 1,

0 if x ∈ {−2,1},
(4.1)

whereas φ :R+ →R+ is defined by φ(t)= t.
Since δK (the boundary of K)= {−2,0,1} andTK = [−2,0]∪{1}which is also closed

in R, clearly δK ⊆ TK . Furthermore, FK = (−1/2,0]⇒ K ∩FK = {0} ⊂ TK .
Also

T1=−2∈ δK =⇒ F1= 0∈ K ,

T0= 0∈ δK =⇒ F0= 0∈ K ,

T(−2)= 1∈ δK =⇒ F(−2)= 0∈ K.

(4.2)

Now, if x, y ∈ [0,1), then

φ
(
d(Fx,Fy)

)= 1
2
|x− y| = 1

2

(
1
2
d(Tx,Ty)

)

≤ 2
3

max
{

1
2
d(Tx,Ty),d(Tx,Fx),d(Ty,Fy)

}

+
1

16

{
d(Tx,Fy) +d(Fx,Ty)

}
.

(4.3)

Next, if x ∈ [0,1) and y =−2, then

φ
(
d(Fx,Fy)

)= x

2
= 1

3

(
3x
2

)
= 1

3
d(Tx,Fx)

≤ 2
3

max
{

1
2
d(Tx,Ty),d(Tx,Fx),(Ty,Fy)

}

+
1

16

{
d(Tx,Fy) +d(Fx,Ty)

}
.

(4.4)

Finally, if x = 1 and y =−2, then

φ
(
d(Fx,Fy)

)= 0≤ 2
3

max
{

1
2
d(Tx,Ty),d(Tx,Fx),(Ty,Fy)

}

+
1

16

{
d(Tx,Fy) +d(Fx,Ty)

}
,

(4.5)

which shows that the contraction condition (2.4) is satisfied for every distinct x, y ∈ K .
Moreover “0” is a point of coincidence as T0= F0. Also TF0= 0= FT0; hence the pair
(F,T) is coincidentally commuting. Thus all the conditions of Theorem 3.1 are satisfied
and “0” is the unique common fixed point of F and T .

However, it is interesting to note that Theorem 1.1 due to M. S. Khan et al. [12] (also
Theorem 1 due to M. D. Khan and Bharadwaj [11]) does not work in the context of
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mapping T . Otherwise, for x = 1, y =−2 (making use of ((a+ b)/(1− b)) < 1 or (b/(1−
a− b)) < 1), contraction condition (1.1) reduces to

3 < amax{3,3}+ 2b < 3a+ 2
1− a

2
< 2a+ 1, (4.6)

implying thereby that a > 1 which is indeed a contradiction to the fact that a < 1. Here, it
is worth noting that the mappingsT and F satisfying (2.4) need not satisfy (1.1) separately
(e.g., mapping T) which establishes the utility of our results proved in this paper.
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