COMPATIBLE ELEMENTS IN PARTLY ORDERED GROUPS

JIŘÍ MOČKOŘ AND ANGELIKI KONTOLATOU

Received 16 September 2004 and in revised form 28 September 2005

Some conditions equivalent to a strong quasi-divisor property (SQDP) for a partly ordered group G are derived. It is proved that if G is defined by a family of t-valuations of finite character, then G admits an SQDP if and only if it admits a quasi-divisor property and any finitely generated t-ideal is generated by two elements. A topological density condition in topological group of finitely generated t-ideals and/or compatible elements are proved to be equivalent to SQDP.

1. Introduction

Let *G* be a partly ordered commutative group (*po*-group). Then *G* is said to have a *quasi-divisor property* if there exist commutative lattice-ordered group (*l*-group) (Γ , \cdot , \wedge) and an order isomorphism *h* (the so-called quasi-divisor morphism) from *G* into Γ such that for any $\alpha \in \Gamma$, there exist $g_1, \ldots, g_n \in G$ such that $\alpha = h(g_1) \wedge \cdots \wedge h(g_n)$. Moreover, if this embedding *h* satisfies the condition

$$(\forall \alpha, \beta \in \Gamma_+) \ (\exists \gamma \in \Gamma_+) \quad \alpha \cdot \gamma \in h(G), \quad \beta \wedge \gamma = 1,$$
(1.1)

then *G* is said to have *a strong quasi-divisor property*. Many papers have dealt with *po*groups with (strong) quasi-divisor property (e.g., see [1, 3, 4, 5, 6, 7, 8]). It is well known that there are some generic examples of such *l*-group Γ . Namely, if $h: G \to \Gamma$ is a quasidivisor morphism, then Γ is *o*-isomorphic to the group $(\mathcal{F}_t^f(G), \times_t)$ of finitely generated *t*-ideals of *G*. Recall that a *t*-*ideal* X_t of *G* generated by a lower bounded subset $X \subseteq G$ is a set $X_t = \{g \in G : (\forall s \in G) \ s \leq X \Rightarrow g \geq s\}$. Then the set $\mathcal{F}_t^f(G)$ of all finitely generated *t*-ideals of *G* is a semigroup with operation \times_t defined such that $X_t \times_t Y_t = (X \cdot Y)_t$ (see [2]). It is clear that a map $d: G \to \mathcal{F}_t^f(G)$ defined by $d(g) = \{g\}_t$ is an embedding. Another example of a group Γ is a group $\mathcal{K}(W)$ of compatible elements of a defining family of *t*valuations *W* (see the definitions below). In this note, we want to show that properties of a group $\mathcal{K}(W)$ can be used for deriving new conditions under which quasi-divisor property is also a strong quasi-divisor property.

Copyright © 2005 Hindawi Publishing Corporation

International Journal of Mathematics and Mathematical Sciences 2005:24 (2005) 4041–4048 DOI: 10.1155/IJMMS.2005.4041

4042 Compatible elements in partly ordered groups

Let $w : G \to G_1$ be an *o*-homomorphism. Then, *w* is called *t*-homomorphism if $w(X_t) \subseteq (w(X))_t$ for any lower bounded subset $X \subseteq G$. Moreover, if G_1 is a totally ordered group (i.e., *o*-group), then *w* is called *t*-valuation. Recall that a family *W* of *t*-valuations $w : G \to G_w$ is called a *defining family for G* if

$$(\forall g \in G) \quad g \ge 1 \iff (\forall w \in W) \quad w(g) \ge 1.$$
(1.2)

We say that *W* is of finite character if

$$(\forall g \in G) \ (\forall' w \in W) \quad w(g) = 1, \tag{1.3}$$

where \forall' means "for all but a finite number." Hence any defining family W of finite character creates an embedding of G into a sum $\sum_{w \in W} G_w$ of o-groups G_w , $w \in W$. Then a quasi-divisors property of G is said to be of *finite character*, if there exists a defining family of t-valuations of finite character for G. If w_1, w_2 are two t-valuations of a po-group G, then w_1 is said to be coarser than w_2 ($w_1 \ge w_2$) if there exists an o-epimorphism d_{w_1,w_2} : $G_{w_1} \to G_{w_2}$ such that $w_2 = d_{w_1,w_2}w_1$. It may be then proved that for any two t-valuations w_1, w_2 , there exists a t-valuation $w_1 \land w_2$ which is the infimum of w_1, w_2 with respect to this preorder relation. Then, $d_{w_1,w_1 \land w_2}$ (resp., $d_{w_2,w_1 \land w_2}$) is an o-epimorphism such that $w_1 \land w_2 = d_{w_1,w_1 \land w_2}, w_1 = d_{w_2,w_1 \land w_2}w_2$. For simplicity, we set $d_{w_1w_2} = d_{w_1,w_1 \land w_2}, d_{w_2w_1} = d_{w_2,w_1 \land w_2}$ (see the difference between d_{w_1,w_2} and $d_{w_1w_2}$). If W is a system of t-valuations $w : G \to G_w$ of a po-group G and $W' \subseteq W$, then a system $(g_w)_w \in \prod_{w \in W'} G_w$ of elements is called *compatible* provided that $d_{wv}(g_w) = d_{vw}(g_v)$ for all $w, v \in W'$. Finally, $(g_w)_{w \in W'}$ is called W'-complete if $\bigcup_{w \in W'} W(g_w) = W'$, where $W(g_w) = \{v \in W : d_{wv}(g_w) \neq 1\}$ for $g_w \neq 1_w$ and $W(1_w) = \{w\}$ for any $w \in W$.

Let *W* be a defining family of *t*-valuations of *G*. Then, we set

$$\mathscr{K}(W) = \left\{ \left(a_w\right)_w \in \prod_{w \in W} G_w : \left(a_w\right)_w \text{ is compatible} \right\}.$$
(1.4)

It can be proved that $\mathcal{H}(W)$ is an *l*-subgroup in $\prod_{w \in W} G_w$ (see [8]). Now we say that *G* with a defining family of *t*-valuations satisfies the positive weak approximation theorem (PWAT) if for any finite subset $F \subseteq W$ and any compatible system $(\alpha_w)_{w \in F} \in \prod_{w \in F} G_w^+$, there exists $g \in G^+$ such that $w(g) = \alpha_w$, $w \in F$. Finally, we say that *G* with *W* satisfies the approximation theorem (AT) if for any finite subset $F \subseteq W$ and any compatible and *F*-complete system $(\alpha_w)_{w \in F} \in \prod_{w \in F} G_w$, there exists $g \in G$ such that

$$w(g) = \alpha_w, \quad w \in F,$$

$$w(g) \ge 1, \quad w \in W \setminus F.$$
(1.5)

2. Results

In the theory of quasi-divisors of a *po*-group, a *t*-ideal theory has an important position. In the next propositions, we want to show that all *t*-ideals in a *po*-group *G* with a quasidivisor property of finite character can be derived from the set of compatible elements $\mathscr{H}(W)$ of *G*, where *W* is some defining family of *t*-valuations of *G*. LEMMA 2.1. Let $(\alpha_w)_w \in \mathcal{K}(W)$ and let $W_0 = \{w \in W : \alpha_w \neq 1\}$. Then $(\alpha_w)_{w \in W'}$ is W'complete for any $W_0 \subseteq W' \subseteq W$.

Proof. Let $v \in \bigcup_{w \in W'} W(\alpha_w)$. Then there exists $w \in W_0$ such that $v \in W(\alpha_w)$. Because (α_w, α_v) is compatible, we have $1 \neq d_{wv}(\alpha_w) = d_{vw}(\alpha_v)$ and it follows that $\alpha_v \neq 1$. Hence, $v \in W_0 \subseteq W'$.

PROPOSITION 2.2. Let G be a po-group with a quasi-divisor property of finite character and let W be a defining family of t-valuations of G. Let $(\alpha_w)_w \in \mathcal{K}(W)$. Then $X = \{g \in G : (\forall w \in W) w(g) \ge \alpha_w\}$ is a finitely generated t-ideal of G.

Proof. Because the *t*-system is defined by a family *W* of *t*-valuations, according to [8, Theorem 2.6], the group $\mathcal{H}(W)$ is *o*-isomorphic to a Lorenzen *l*-group $\Lambda_t(G)$. It follows that a map $d : G \to \mathcal{H}(W)$ such that $d(g) = (w(g))_w$ is a quasi-divisors morphism. Then for any $(\alpha_w)_w \in \mathcal{H}(W)$, there exist $g_1, \ldots, g_n \in G$ such that $d(g_1) \wedge \cdots \wedge d(g_n) = (\alpha_w)_w$. Then $X = (g_1, \ldots, g_n)_t$. In fact, for $g \in X$, we have $w(g) \ge \alpha_w$ and it follows that $w(g) \in (w(g_1), \ldots, w(g_n))_t$. Because the *t*-system is defined by *W*, we have $g \in (g_1, \ldots, g_n)_t$, analogously for the other inclusion.

COROLLARY 2.3. Let G be a po-group with a quasi-divisor property of finite character and let W be a defining family of t-valuations of G. Then there exists an o-isomorphism

$$\sigma: \mathscr{K}(W) \longrightarrow \mathscr{I}_t^f(G) \tag{2.1}$$

such that for $(\alpha_w)_w \in \mathcal{K}(W)$ and $J \in \mathcal{I}_t^f(G)$,

$$\sigma((\alpha_w)_w) = \{g \in G : (\forall w \in W) \ w(g) \ge \alpha_w\},\$$

$$\sigma^{-1}(J) = ((\land_{x \in J} w(x))_w).$$

(2.2)

It is well known that the existence of quasi-divisor property is equivalent to the existence of a defining family of *essential t*-valuations (see [3, Theorem 2.1]). Recall that a *t*-valuation w of G is essential if ker w is a directed subgroup of G and w is an o-epimorphism.

LEMMA 2.4. Let w, v be essential t-valuations of G and let $\alpha \in G_v$ be such that $d_{vw}(\alpha) = 1$. Then there exists $g \in G$ such that w(g) = 1, $v(g) \ge \alpha$.

Proof. We may assume that $\alpha > 1$. Let $J = \{x \in G : v(x) \ge \alpha\}$. Let us suppose on contrary that the statement of the lemma is not true. Then for any $x \in J$, we have w(x) > 1. Let H be the largest convex subgroup in G_v such that $\alpha \notin H$ and let $w' : G \xrightarrow{v} G_v \to G_v/H$ be the composition of v and canonical morphism. Then $w' \le w$. In fact, let $x \in G$, $x \ge 1$ be such that w'(x) > 1. Because w'(x) = v(x)H, we have $v(x) \notin H$, v(x) > 1. Then there exists $n \in \mathbb{N}$ such that $v(x)^n \ge \alpha$. In fact, if $v(x)^n < \alpha$ for all $n \in \mathbb{N}$, then the convex subgroup H' generated by $H \cup \{v(x)\}$ does not contain α and $H \subseteq H'$. On the other hand, we have $v(x) \in H' \setminus H$, a contradiction. Then $x^n \in J$ for some $n \in \mathbb{N}$ and according to the assumption, we have $w(x)^n > 1$. Hence w(x) > 1 and we proved the implication

$$x \in G, \quad x \ge 1, \quad w'(x) > 1 \Longrightarrow w(x) > 1.$$
 (2.3)

Let $\rho: G_w \to G_{w'}$ be defined by $\rho(w(g)) = w'(g)$. Then ρ is well defined. In fact, let w(x) = w(y). Since w is essential, there exists $t \in \ker w$ such that $t \ge 1, xy^{-1}$. If $w'(x) \ne w'(y)$, we have, for example, $w'(xy^{-1}) > 1$. Then $w'(t) \ge w'(xy^{-1}) > 1$. According to (2.3), we have w(t) > 1, a contradiction with $t \in \ker w$. Thus $w' = \rho \cdot w$ and $w' \le w$. Then, we have also $w' \le w \land v$. For any $b \in G$ such that $\alpha = v(b)$, we obtain $w'(b) = v(b)H = \alpha H \ne 1$ and $v \land w(b) = d_{vw} > v(b) = d_{vw}(\alpha) = 1$, a contradiction, because $v \land w \ge w'$.

LEMMA 2.5. Let w_1, \ldots, w_n be essential *t*-valuations of *G* and let $(\alpha_1, \ldots, \alpha_n) \in \prod_{i=1}^n G_{w_i}^+$ be compatible elements. Then there exists $a_1 \in G$, $a_1 \ge 1$, such that

$$\forall j \neq 1, \quad w_1(a_1) = \alpha_1, \quad w_j(a_1) > \alpha_j. \tag{2.4}$$

Proof. The proof will be done by the induction with respect to *n*. For n = 1, the proof is trivial. Let us assume that the statement is true for any compatible set of n - 1 elements. Let us assume firstly that $w_1 < w_k$ for some $k \neq 1$. According to the induction assumption, there exists $a \in G_+$ such that

$$\forall j \neq k, 1, \quad w_k(a) = \alpha_k, \quad w_j(a) > \alpha_j. \tag{2.5}$$

Because $w_1 < w_k$, there exists an *o*-epimorphism $\sigma : G_{w_k} \to G_{w_1}$ such that $w_1 = \sigma \cdot w_k$. Since (α_1, α_k) is compatible, we have $\sigma(\alpha_k) = \alpha_1$. Since ker $\sigma \neq \{1\}$, there exists $\delta \in \ker \sigma$, $\delta > 1$. From the fact that w_k is essential, it follows that there exists $g \in G$, g > 1, such that $w_k(g) = \delta$. We set $a_1 = ga$. Then, we have

$$w_{1}(a_{1}) = \sigma \cdot w_{k}(ga) = \sigma(\delta) \cdot \sigma(\alpha_{k}) = \alpha_{1},$$

$$w_{k}(a_{1}) = \delta \cdot \alpha_{k} > \alpha_{k},$$

$$\forall i \neq k, i \geq 2, \quad w_{i}(a_{1}) \geq w_{i}(a) > \alpha_{i}.$$

(2.6)

Let us assume now that $w_1 || w_j$, $j \ge 2$. Then $w_j \ne w_1 \land w_j$ and for any $j \ge 2$, there exists $\delta_j \in \ker d_{j1}, \delta_j > 1$. According to Lemma 2.4, for any $j \ge 2$, there exists $g_j \in G_+$ such that $w_1(g_j) = 1, w_j(g_j) \ge \delta_j$. We set $g_1 = \prod_{j\ge 2} g_j$. Then

$$\forall j \ge 2, \quad w_1(g_1) = 1, \quad w_j(g_1) \ge w_j(g_j) \ge \delta_j > 1.$$
 (2.7)

According to the induction assumption, there exists $a_1 \in G_+$ such that

$$\forall 2 \le j \le n-1, \quad w_1(a_1) = \alpha_1, \quad w_j(a_1) > \alpha_j.$$
 (2.8)

Without the loss of generality, we may assume that

$$\forall 2 \le j, \quad w_1(a_1) = \alpha_1, \quad w_j(a_1) \ge \alpha_j. \tag{2.9}$$

In fact, if $w_n(a_1) < \alpha_n$, then $d_{n1}(\alpha_n \cdot w_n^{-1}(a_1)) = d_{1n}(\alpha_1) \cdot d_{1n}(w_1^{-1}(a_1)) = 1$ and according to Lemma 2.4, there exists $a'_1 \in G_+$ such that $w_1(a'_1) = 1$, $w_n(a'_1) \ge \alpha \cdot w_n^{-1}(a_1)$. Then for $a''_1 = a_1a'_1$, we have

$$w_{1}(a_{1}^{\prime\prime}) = w_{1}(a_{1}a_{1}^{\prime}) = \alpha_{1},$$

$$\forall n > j \ge 2, \quad w_{j}(a_{1}^{\prime\prime}) \ge w_{j}(a_{1}) > \alpha_{j},$$

$$w_{n}(a_{1}^{\prime\prime}) \ge \alpha_{n}.$$
(2.10)

We set $c_1 = a_1g_1$, where a_1 satisfies the relation (2.9). Then we have

$$w_{1}(c_{1}) = w_{1}(a_{1}) = \alpha_{1},$$

$$w_{j}(c_{1}) > w_{j}(a_{1}) \ge \alpha_{j}, \quad j \ge 2.$$
(2.11)

If G admits a quasi-divisor property of finite character, the existence of a map

$$\sigma: \mathscr{K}(W) \longrightarrow \mathscr{P}_t^f(G) \tag{2.12}$$

follows immediately from Proposition 2.2. Between the *l*-group of compatible elements $\mathcal{H}(W)$ and a semigroup $\mathcal{I}_t^f(G)$ of finitely generated *t*-ideals of *any po*-group *G*, there exists another naturally defined map, namely,

$$\tau: \mathscr{I}^{J}_{t}(G) \longrightarrow \mathscr{K}(W) \tag{2.13}$$

such that $\tau(X_t) = (\wedge w(X))_{w \in W} = (\wedge w(X_t))_{w \in W} \in \mathcal{H}(W)$. τ is well defined and it can be proved easily that τ is a semigroup monomorphism (because *t*-ideals are defined by *W*). If *G* admits a quasi-divisor property of finite character, then σ and τ are mutually inverse *o*-isomorphisms (see Corollary 2.3). Moreover, if $h: G \to \mathcal{I}_t^f(G)$ and $d: G \to \mathcal{H}(W)$ are natural embedding maps such that $h(g) = (g)_t$ and $d(g) = (w(g))_{w \in W}$, then the following diagram commutes:

$$\begin{aligned}
\mathfrak{G}_{t}^{f}(G) &\xrightarrow{\tau} \mathfrak{K}(W) \xrightarrow{\sigma} \mathfrak{G}_{t}^{f}(G) \\
h & \uparrow \\
G &= G & \uparrow \\
G &= G & G
\end{aligned}$$
(2.14)

In the group $\mathcal{H}(W)$, a group topology \mathcal{T}_W can be defined such that ker $\hat{w} = \{(\alpha_v)_v \in \mathcal{H}(W) : \alpha_w = 1\}$ is a subbase of neighborhoods of 1 for any $w \in W$ (clearly, $\hat{w} : \mathcal{H}(W) \to G_w$ is the projection map). Then the semigroup monomorphism $\tau : \mathscr{I}_t^f(G) \to \mathcal{H}(W)$ induces a semigroup topology \mathcal{F}_W on $\mathscr{I}_t^f(G)$. If for $w \in W$, we define a map $\widetilde{w} : \mathscr{I}_t^f(G) \to G_w$ such that $\widetilde{w}(X_t) = \wedge w(X) (= \wedge w(X_t))$, then for any finite $F \subseteq W$, we obtain

$$\tau^{-1}\left(\bigcap_{w\in F}\ker\widehat{w}\right) = \bigcap_{w\in F}\ker\widetilde{w}.$$
(2.15)

Hence, the topology \mathcal{F}_W can be defined by maps $\widetilde{w}, w \in W$. Moreover, in the ordered semigroup $(\mathcal{F}_t^f(G), \times_t, \leq_t)$, where $X_t \leq_t Y_t$ if $Y_t \subseteq X_t$, a *t*-ideals structure can be defined analogously as in any *po*-group. The following lemma shows that the topology \mathcal{F}_W is defined also by *t*-valuations.

LEMMA 2.6. For any $w \in W$, \tilde{w} is a (t,t)-morphism from $(\mathcal{F}_t^f(G), \times_t, \leq_t)$ to G_w .

Proof. Let \mathscr{X}_t be a *t*-ideal in $\mathscr{F}_t^f(G)$ generated by a lower bounded subset \mathscr{X} and let $X_t \in \mathscr{X}_t$. Then there exists a finite set $\mathscr{F} \subseteq \mathscr{X}$ such that $X_t \in \mathscr{F}_t$. We set $S = \bigcup_{F_t \in \mathscr{F}} F$. Then, S is a finite subset in G and $S_t \leq_t F_t$ for any $F_t \in \mathscr{F}$. Hence, $X_t \geq_t S_t$ and we have $\wedge w(X) = \wedge w(X_t) \geq \wedge w(S_t) = \wedge w(S)$. Thus $\widetilde{w}(X_t) \in (\widetilde{w}(S_t))_t = (\wedge_{F_t \in \mathscr{F}} \widetilde{w}(F_t))_t = (\widetilde{w}(\mathscr{F}))_t$. \Box

THEOREM 2.7. Let G be defined by a family of t-valuations of finite character. Then the following statements are equivalent.

- (1) G admits a strong quasi-divisor property.
- (2) G admits a quasi-divisor property and for any (α_w)_w ∈ ℋ(W) and a ∈ G such that α_w ≤ w(a) for all w ∈ W, there exists b ∈ G such that α_w = w(a) ∧ w(b) for all w ∈ W.
- (3) *G* admits a quasi-divisor property and for any $X_t \in \mathcal{I}_t^f(G)$ and $a \in X_t$, there exists $b \in G$ such that $X_t = (a, b)_t$.

If W is an infinite set, then these statements are equivalent to the following equivalent statements.

- (4) *G* admits a quasi-divisor property and h(G) is dense in $(\mathcal{F}_t^f(G), \mathcal{F}_W)$.
- (5) d(G) is dense in $(\mathcal{K}(W), \mathcal{T}_W)$.

Proof. (1) \Rightarrow (2) Let $(\alpha_w)_w \in \mathcal{K}(W)$, $a \in G$ such that $w(a) \ge \alpha_w$ for all $w \in W$. Let $W_1 = \{w \in W : \alpha_w \neq 1\} \cup \{v \in W : v(a) \neq 1\}$. According to Lemma 2.1, $(\alpha_w)_{w \in W_1}$ is compatible and W_1 -complete and according to AT, there exists $b \in G$ such that

$$w(b) = \alpha_w, \quad w \in W_1,$$

$$w(b) \ge 1, \quad w \in W \setminus W_1.$$
(2.16)

Then for $w \in W_1$, we have $w(a) \wedge w(b) = w(a) \wedge \alpha_w = \alpha_w$, and for $w \in W \setminus W_1$, $w(a) \wedge w(b) = 1 \wedge w(b) = 1 = \alpha_w$.

 $(2)\Rightarrow(3)$ Let $a \in X_t \in \mathcal{F}_t^f(G)$. Because *t*-system is defined by *W*, we have $X_t = \{g \in G : w(g) \ge \wedge w(X), w \in W\}$. According to [3, Lemma 2.9], $(\wedge w(X))_w \in \mathcal{H}(W)$ and there exists $b \in G$ such that $\wedge w(X) = w(a) \wedge w(b)$, for all $w \in W$. Then we have $X_t = \{g \in G : w(g) \in (w(a), w(b))_t, w \in W\} = (a, b)_t$.

(3)⇒(1) We show that *G* satisfies the positive weak approximation theorem (PWAT). Let $(\alpha_1,...,\alpha_n) \in \prod_{i=1}^n G_{w_i}^+$ be compatible. According to Lemma 2.5, there exist $a_1,...,a_n \in G_+$ such that

$$\forall i, \forall j \neq i, \quad w_i(a_i) = \alpha_i, \quad w_j(a_i) > \alpha_j. \tag{2.17}$$

We set $b = a_1 \cdots a_n$. Then $b \in (a_1, \dots, a_n)_t$. Hence, there exists $a \in G_+$ such that $(a_1, \dots, a_n)_t = (a, b)_t$. Then for any *i*, we have

$$w_i(b) = \alpha_i \cdot \prod_{j \neq i} w_i(a_j) > \alpha_i^n \ge \alpha_i.$$
(2.18)

Let us assume that there exists *i* such that $w_i(b) < w_i(a)$. Since $a_i \in (a,b)_t$, we have $\alpha_i = w_i(a_i) \ge w_i(a) \land w_i(b) = w_i(b)$, a contradiction. Then we have $\alpha_i = w_i(a_i) \ge w_i(a) \land w_i(b) = w_i(a)$. Since $a \in (a_1, ..., a_n)_t$, we have $w_i(a) \ge w_i(a_1) \land \cdots \land w_i(a_n) = \alpha_i \land \bigwedge_{j \ne i} w_i(a_j) = \alpha_i$. Thus $w_i(a) = \alpha_i$, i = 1, ..., n and *G* satisfies the PWAT. According to [7, Theorem 3.5], *G* admits a strong quasi-divisor property.

Now let *W* be an infinite set.

 $(1) \Rightarrow (4)$ Since *G* admits a quasi-divisor property, $(\mathscr{F}_t^f(G), \times_t)$ is a group and the subbase of neighborhoods of unity in topology \mathscr{F}_W is {ker $\widetilde{w} : w \in W$ }. We show that a map $\sigma : \mathscr{K}(W) \to \mathscr{F}_t^f(G)$ is a homeomorphism. Let $\mathbf{a}, \mathbf{b} \in \mathscr{K}(W)$. Then there exist $a_1, \ldots, a_n, b_1, \ldots, b_m \in G$ such that $\mathbf{a} = d(a_1) \land \cdots \land d(a_n), \mathbf{b} = d(b_1) \land \cdots \land d(b_m)$ and we have $\sigma(\mathbf{a}) = (a_1, \ldots, a_n)_t, \ \sigma(\mathbf{b}) = (b_1, \ldots, b_m)_t$. Then $\mathbf{a} \cdot \mathbf{b} = d(a_1b_1) \land \cdots \land d(a_nb_m)$ and $\sigma(\mathbf{a} \cdot \mathbf{b}) = (a_1b_1, \ldots, a_nb_m)_t = \sigma(\mathbf{a}) \times_t \sigma(\mathbf{b})$. If $\sigma(\mathbf{a}) = (1)_t$, then $(a_1, \ldots, a_n)_t = (1)_t$ and it follows easily that $\mathbf{a} = 1$. It is clear that σ is also homeomorphism. According to [8, Theorem 2.6], there exists an σ -isomorphism ψ such that the following diagram commutes:

$$\begin{array}{ccc} \Lambda_t(G) & \stackrel{\psi}{\longrightarrow} \mathcal{H}(W) \\ & \stackrel{w}{\longrightarrow} & & & \downarrow_{\hat{w}} \\ & G_w = & & G_w \end{array}$$
 (2.19)

where \overline{w} is a canonical extension of w. Since $G \to \Lambda_t(G)$ is a strong quasi-divisor morphism, it follows that $d: G \to \mathcal{H}(W)$ is a strong quasi-divisor morphism as well. Then, according to [5, Theorem 2.9], d(G) is dense in $(\mathcal{H}(W), \mathcal{T}_W)$ and it follows that h(G) is also dense in $(\mathcal{H}_t^f(G), \mathcal{F}_W)$.

(4) \Rightarrow (5) If *G* admits a quasi-divisor property, then $\mathscr{I}_t^f(G)$ is *o*-isomorphic to $\Lambda_t(G)$ and according to [8, Theorem 6], it is also *o*-isomorphic to $\mathscr{K}(W)$. It can be proved easily that $(\mathscr{I}_t^f(G), \mathscr{F}_W)$ is also homeomorphic to $(\mathscr{K}(W), \mathscr{T}_W)$.

 $(5) \Rightarrow (1)$ It follows directly from [5, Theorem 2.9].

References

- A. Geroldinger and J. Močkoř, *Quasi-divisor theories and generalizations of Krull domains*, J. Pure Appl. Algebra 102 (1995), no. 3, 289–311.
- [2] P. Jaffard, *Les Systèmes d'Idéaux*, Travaux et Recherches Mathématiques, IV, Dunod, Paris, 1960.
- [3] J. Močkoř, t-valuations and the theory of quasi-divisors, J. Pure Appl. Algebra 120 (1997), no. 1, 51–65.
- [4] _____, Construction of po-groups with quasi-divisors theory, Czechoslovak Math. J. 50(125) (2000), no. 1, 197–207.

4048 Compatible elements in partly ordered groups

- [5] _____, Topological characterization of ordered groups with quasi-divisor theory, Czechoslovak Math. J. 52(127) (2002), no. 3, 595–607.
- [6] J. Močkoř and A. Kontolatou, *Divisor class groups of ordered subgroups*, Acta Math. Inform. Univ. Ostraviensis 1 (1993), 37–46.
- [7] _____, Groups with quasi-divisors theory, Comment. Math. Univ. St. Paul. 42 (1993), no. 1, 23–36.
- [8] _____, Some remarks on Lorenzen r-group of partly ordered groups, Czechoslovak Math. J. 46(121) (1996), no. 3, 537–552.

Jiří Močkoř: Department of Mathematics, University of Ostrava, CZ-702 00 Ostrava, Czech Republic

E-mail address: jiri.mockor@osu.cz

Angeliki Kontolatou: Department of Mathematics, School of Natural Sciences, University of Patras, 26500 Patras, Greece

E-mail address: angelika@math.upatras.gr