
SEMIDISCRETE CENTRAL DIFFERENCE METHOD IN TIME
FOR DETERMINING SURFACE TEMPERATURES

ZHI QIAN, CHU-LI FU, AND XIANG-TUAN XIONG

Received 27 May 2004 and in revised form 20 November 2004

We consider an inverse heat conduction problem (IHCP) in a quarter plane. We want
to know the distribution of surface temperature in a body from a measured temperature
history at a fixed location inside the body. This is a severely ill-posed problem in the sense
that the solution (if exists) does not depend continuously on the data. Eldén (1995) has
used a difference method for solving this problem, but he did not obtain the convergence
at x = 0. In this paper, we gave a logarithmic stability of the approximation solution at
x = 0 under a stronger a priori assumption ‖u(0, t)‖p ≤ E with p > 1/2. A numerical
example shows that the computational effect of this method is satisfactory.

1. Introduction

In several engineering contexts, it is sometimes necessary to determine the surface tem-
perature in a body from a measured temperature history at a fixed location inside the
body [1]. This problem is called the inverse heat conduction problem (IHCP). IHCP is a
severely ill-posed problem: a small perturbation in the data may cause dramatically large
errors in the solution. As a model problem, we will consider the following sideways heat
equation:

uxx = ut, x > 0, t > 0,

u(x,0)= 0, x ≥ 0,

u(1, t)= g(t), t ≥ 0, u(x, t)|x→∞ bounded,

(1.1)

and want to know u(x, t) for 0≤ x < 1.
Some valid regularizing methods and error estimates for above problem have appeared

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10], but most of them only consider the case when x ∈ (0,1)
and cannot obtain the convergence of approximation solution at x = 0. For example,
Carasso utilized a particular Tikhonov regularization method in [2], and Eldén applied
the difference schemes in time in [3]. In this paper, we specially deal with the convergence
of an approximate solution at x = 0 by a central difference scheme in time which itself has
a regularization effect. An error estimate is obtained and the estimate gives information
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about how to choose the step length in the time discretization. A numerical example is
also given.

As we consider the problem (1.1) in L2(R) with respect to the variable t, we extend
the domain of definition of the function u(x,·), g(·) := u(1,·), f (·) := u(0,·) and other
functions appearing in the paper to the whole real t-axis by defining them to be zero for
t < 0. The notation ‖ · ‖ denotes L2-norm, and

ĥ(ξ) := 1√
2π

∫∞
−∞

e−iξth(t)dt (1.2)

is the Fourier transform of function h(t). We assume that there exists a priori bound for
f (t) := u(0, t):

‖ f ‖p ≤ E, p ≥ 0, (1.3)

where ‖ · ‖p denotes the norm in Hp(R) defined by

‖ f ‖p :=
(∫∞

−∞

(
1 + ξ2)p∣∣ f̂ (ξ)

∣∣2
dξ
)1/2

. (1.4)

Let g(t) and gδ(t) denote the exact and measured data at x = 1 of the solution u(x, t),
respectively, which satisfy ∥∥g(t)− gδ(t)

∥∥≤ δ, (1.5)

where δ is the measurement error. The solution of problem (1.1) has been given in [2] by

u(x, t)= 1√
2π

∫∞
−∞

eiξte(1−x)θ(ξ)ĝ(ξ)dξ, 0≤ x < 1, (1.6)

or, equivalently,

û(x,ξ)= e(1−x)θ(ξ)ĝ(ξ), 0≤ x < 1, (1.7)

where θ(ξ) is the principal value of
√
iξ:

θ(ξ)= (1 + σi)

√
|ξ|
2

, σ = sign(ξ), ξ ∈R. (1.8)

It is easy to see from (1.7) that

f̂ (ξ)= eθ(ξ)ĝ(ξ). (1.9)

Since the real part of θ(ξ) is nonnegative, û(x,ξ) is in L2(R), so from (1.7) we know
that ĝ(ξ) must decay rapidly as ξ →∞. Small errors in high-frequency components can
blow up and completely destroy the solution for 0≤ x < 1. As the measured data gδ(t), its
Fourier transform ĝδ(ξ) is merely in L2(R). In order to obtain the stability of the solution,
a central difference scheme in time, which we learned from Eldén [3], is considered in the
next section and an error estimate is obtained.
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2. The central difference schemes and error estimate

In this section, we will first consider discretization in time by central difference and then
discuss the error estimate. As an approximation of problem (1.1) we now consider the
following problem:

vxx(x, t)= 1
2k

(
v(x, t+ k)− v(x, t− k)

)
, x > 0, t > 0,

v(x,0)= 0, x ≥ 0,

v(1, t)= gδ(t), t ≥ 0,

v(x, t)|x→∞ bounded,

(2.1)

where we have replaced the time derivative by a central difference with step length k. The
advantage of not discretizing in the space variable is that we can use Fourier transform
techniques.

By taking the Fourier transform for variable t in (2.1) we have

v̂xx(x,ξ)= i
sinkξ
k

v̂(x,ξ),

v̂(1,ξ)= ĝδ(ξ),

v̂(x,ξ)|x→∞ bounded.

(2.2)

The solution of (2.2) has been given in [3]:

v̂(x,ξ)= e(1−x)ρ(k,ξ)ĝδ(ξ), (2.3)

or, equivalently,

v(x, t)= 1√
2π

∫∞
−∞

eiξte(1−x)ρ(k,ξ)ĝδ(ξ)dξ, 0≤ x < 1, (2.4)

where ρ(k,ξ) is the principal value of
√
i((sinkξ)/k):

ρ(k,ξ)= (1 + νi)

√
|sinkξ|

2k
, ν= sign(sinkξ), ξ ∈R. (2.5)

We will discuss the convergence and error estimate of approximation solution v(x, t) at
x = 0.

Theorem 2.1. If p > 1/2, and conditions (1.3), (1.5) hold, functions u(x, t) and v(x, t) are
given by (1.6), (2.4), respectively. Let

k = 1

2
(

ln
((

E

δ

)(
ln
(
E

δ

))−2p))2 . (2.6)
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Then, there holds

∥∥u(0,·)− v(0,·)∥∥≤ E
((

ln
(
E

δ

))−2p

+ ε
)

, (2.7)

where ε =max{2kp, (
√

2/6)kp−1/2, (
√

2/6)k2}.
Proof. By (1.7), (2.3), and Parseval formula, we have

∥∥u(0,·)− v(0,·)∥∥= ∥∥û(0,·)− v̂(0,·)∥∥= ∥∥eθ(ξ)ĝ(ξ)− eρ(k,ξ)ĝδ(ξ)
∥∥. (2.8)

For abbreviation, we denote, for example,

θ := θ(ξ), ρ := ρ(k,ξ), ĝ := ĝ(ξ), (2.9)

Then, (1.9), (1.3), and (1.5) lead to

∥∥u(0,·)− v(0,·)∥∥= ∥∥eθĝ − eρĝδ
∥∥

= ∥∥eθĝ − eρĝ + eρĝ − eρĝδ
∥∥

≤ ∥∥(1− eρ−θ
)
f̂
∥∥+

∥∥eρ(ĝ − ĝδ
)∥∥

= ∥∥(1− eρ−θ
)(

1 + ξ2)−p/2(1 + ξ2)p/2 f̂ ∥∥+
∥∥eρ(ĝ − ĝδ

)∥∥
≤ sup

ξ∈R
A(ξ)E+ sup

ξ∈R
B(ξ)δ,

(2.10)

where

A(ξ) := ∣∣(1− eρ−θ
)(

1 + ξ2)−p/2∣∣, B(ξ) := ∣∣eρ∣∣. (2.11)

We start by estimating the second term of the right side of (2.10). From (2.5) and (2.6)
we know

sup
ξ∈R

B(ξ)δ = sup
ξ∈R

eRe(ρ)δ = sup
ξ∈R

e
√
|sinkξ|/2kδ ≤ e

√
1/2kδ =

(
ln

E

δ

)−2p

E. (2.12)

To estimate the first term of the right side of (2.10), we rewrite A(ξ) as

A(ξ)= ∣∣1− e−τ
∣∣(1 + ξ2)−p/2, (2.13)
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where

τ = θ− ρ = 1 + σi√
2

√
|ξ|− 1 + νi√

2

( |sinkξ|
k

)1/2

. (2.14)

Denote

ξ0 := 1
k
= 2

(
ln

(
E

δ

(
ln

E

δ

)−2p
))2

. (2.15)

We now estimate A(ξ) for large values of ξ, that is, for |ξ| ≥ ξ0. Note that Re(τ)≥ 0 and
by (2.13), we have

A(ξ)≤ 2|ξ|−p ≤ 2ξ
−p
0 = 2kp (2.16)

so that

A(ξ)E ≤ 2kpE. (2.17)

It remains to estimate A(ξ) for |ξ| < ξ0, that is, |kξ| < 1. We now observe that for ξ in this
interval, σ = sign(ξ)= sign(sinkξ)= ν, which means that we can rewrite (2.14) as

τ = τ1(1 + σi), τ1 = 1√
2k

(√
|kξ|−

√
|sinkξ|

)
. (2.18)

Since τ1 ≥ 0, using inequalities
√

sina2 ≥ √a2− a6/6 ≥ a(1− a4/6) (0 ≤ a < 1) and 1−
e−y ≤ y (y ≥ 0), we get∣∣1− e−τ

∣∣= ∣∣1− e−iστ1 + e−iστ1 − e−(τ1+iστ1)
∣∣≤ ∣∣1− e−iστ1

∣∣+
∣∣1− e−τ1

∣∣
= 2

∣∣∣∣sin
(
στ1

2

)∣∣∣∣+
∣∣1− e−τ1

∣∣≤ 2τ1 ≤
√

2
6
k−1/2|kξ|5/2.

(2.19)

Combining this estimate with (2.13), we know

A(ξ)≤
√

2
6
k−1/2|kξ|5/2(1 + ξ2)−p/2. (2.20)

If 1/2 < p < 5/2, from (2.20) we have

A(ξ)E ≤
√

2
6
k−1/2|kξ|5/2|ξ|−pE =

√
2

6
kp−1/2|kξ|5/2−pE

≤
√

2
6
kp−1/2E for |kξ| < 1.

(2.21)

If p ≥ 5/2, for |ξ| ≥ 1, from (2.20) we have

A(ξ)E ≤
√

2
6
k−1/2|kξ|5/2|ξ|−pE =

√
2

6
k2|ξ|5/2−pE

≤
√

2
6
k2E for |kξ| < 1, |ξ| ≥ 1.

(2.22)
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For |ξ| < 1, from (2.20) we have

A(ξ)E ≤
√

2
6
k−1/2|kξ|5/2E ≤

√
2

6
k2E for |kξ| < 1, |ξ| < 1. (2.23)

Summarizing (2.17), (2.20), (2.21), (2.22), and (2.23), we know

A(ξ)E ≤max
{

2kp,

√
2

6
kp−1/2,

√
2

6
k2
}
E =: εE −→ 0 for δ −→ 0, p >

1
2
. (2.24)

Combining (2.24) with (2.12), we have

∥∥u(0,·)− v(0,·)∥∥≤ E
((

ln
(
E

δ

))−2p

+ ε
)
. (2.25)

This is just the estimate (2.7). �

It is obvious that

lim
δ→0

∥∥u(0,·)− v(0,·)∥∥= 0 for p >
1
2
. (2.26)

Theorem 2.1 solves the convergence of approximation solution v(x, t) of problem (1.1)
at x = 0, which is just the problem left over by Eldén in [3].

3. A numerical example

It is easy to verify that the function

u(x, t)=

x+ 1
t3/2

exp
{
− (x+ 1)2

4t

}
, t > 0,

0, t ≤ 0,
(3.1)

is the exact solution of problem (1.1) with data

g(t)=


2
t3/2

exp
{
− 1

t

}
, t > 0,

0, t ≤ 0.
(3.2)

So

f (t) := u(0, t)= t−3/2 exp
{
− 1

4t

}
. (3.3)

Figures 3.1 and 3.2 give a comparison of the exact solution u(0, t) with its approxima-
tion v(0, t) for p = 2/3 and p = 1, respectively. To obtain the solution v(0, t) of problem
(2.1) we applied the “method of lines” in [4]. The step length k is chosen according to
(2.6), and we get the measured data gδ(t) by adding random errors of amplitude δ to
g(t). It can be seen from these figures that the computation effect of the method given in
this paper is satisfactory.
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Figure 3.1. x = 0, p = 2/3, δ = 10−4, E = 6, k = 1/122.
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Figure 3.2. x = 0, p = 1, δ = 10−5, E = 12, k = 1/152.
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[8] D. N. Hào, H.-J. Reinhardt, and A. Schneider, Numerical solution to a sideways parabolic equa-
tion, Internat. J. Numer. Methods Engrg. 50 (2001), no. 5, 1253–1267.

[9] C.-Y. Qiu, C.-L. Fu, and Y.-B. Zhu, Wavelets and regularization of the sideways heat equation,
Comput. Math. Appl. 46 (2003), no. 5-6, 821–829.

[10] T. I. Seidman and L. Eldén, An “optimal filtering” method for the sideways heat equation, Inverse
Problems 6 (1990), no. 4, 681–696.

Zhi Qian: Department of Mathematics, Lanzhou University, Lanzhou 730000, China
E-mail address: qianzh03@st.lzu.edu.cn

Chu-Li Fu: Department of Mathematics, Lanzhou University, Lanzhou 730000, China
E-mail address: fuchuli@lzu.edu.cn

Xiang-Tuan Xiong: Department of Mathematics, Lanzhou University, Lanzhou 730000, China
E-mail address: xiongxt04@st.lzu.edu.cn

mailto:qianzh03@st.lzu.edu.cn
mailto:fuchuli@lzu.edu.cn
mailto:xiongxt04@st.lzu.edu.cn

