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We consider quasilinear elliptic variational-hemivariational inequalities involving the in-
dicator function of some closed convex set and a locally Lipschitz functional. We pro-
vide a generalization of the fundamental notion of sub- and supersolutions, on the basis
of which we then develop the sub-supersolution method for variational-hemivariational
inequalities, including existence, comparison, compactness, and extremality results.

1. Introduction

Let Ω ⊂ RN be a bounded domain with Lipschitz boundary ∂Ω, and let V =W1,p(Ω)

and V0 =W1,p
0 (Ω), 1 < p <∞, denote the usual Sobolev spaces with their dual spaces V∗

and V∗
0 , respectively. In this paper, we deal with the following quasilinear variational-

hemivariational inequality:

u∈ K : 〈Au− f ,v−u〉+
∫
Ω
jo(u;v−u)dx ≥ 0 ∀v ∈ K , (1.1)

where jo(s;r) denotes the generalized directional derivative of the locally Lipschitz func-
tion j :R→R at s in the direction r given by

jo(s;r)= limsup
y→s,t↓0

j(y + tr)− j(y)
t

, (1.2)

(cf., e.g., [6, Chapter 2]), f ∈V∗
0 , andK is a closed and convex subset ofV0. The operator

A :V →V∗
0 is a second-order quasilinear differential operator in divergence form:

Au(x)=−
N∑
i=1

∂

∂xi
ai
(
x,∇u(x)

)
with∇u=

(
∂u

∂x1
, . . . ,

∂u

∂xN

)
. (1.3)

The main goal of this paper is to develop the sub-supersolution method for variational-
hemivariational inequalities of form (1.1). Problem (1.1) includes various special cases.
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(i) For K =V0 and j :R→R smooth, (1.1) is the weak formulation of the Dirichlet
problem

u∈V0 : Au+ j′(u)= f in V∗
0 , (1.4)

for which the sub-supersolution method is well known.
(ii) If K = V0, and j :R→R not necessarily smooth, then (1.1) is a hemivariational

inequality of the form

u∈V0 : 〈Au− f ,v−u〉+
∫
Ω
jo(u;v−u)dx ≥ 0 ∀v ∈V0, (1.5)

for which an extension of the sub-supersolution method has been given recently
in [3].

(iii) If j=0, then (1.1) becomes a variational inequality for which a sub-supersolution
method has been developed in [8, 9].

This paper continues the work on the extension of the sub-supersolution method started
with the papers by Carl, Le, and Motreanu in [2, 3, 8, 9] to develop a strongly generalized
and unified theory that includes all the above cited special cases.

2. Notation and hypotheses

We assume the following hypotheses of Leray-Lions type on the coefficient functions ai,
i= 1, . . . ,N , of the operator A.

(A1) Each ai : Ω×RN → R satisfies the Carathéodory conditions, that is, ai(x,ξ) is
measurable in x ∈ Ω for all ξ ∈ RN and continuous in ξ for almost all x ∈ Ω.
There exist a constant c0 > 0 and a function k0 ∈ Lq(Ω),1/p+ 1/q = 1, such that

∣∣ai(x,ξ)
∣∣≤ k0(x) + c0|ξ|p−1 (2.1)

for a.e. x ∈Ω and for all ξ ∈RN .
(A2)

N∑
i=1

(
ai(x,ξ)− ai(x,ξ′)

)(
ξi− ξ′i

)
> 0 (2.2)

for a.e. x ∈Ω, and for all ξ,ξ′ ∈RN with ξ �= ξ′.
(A3)

N∑
i=1

ai(x,ξ)ξi ≥ ν|ξ|p− k1(x) (2.3)

for a.e. x ∈Ω, and for all ξ ∈ RN with some constant ν > 0 and some function
k1 ∈ L1(Ω).
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As a consequence of (A1), (A2) the semilinear form a associated with the operator A
by

〈Au,ϕ〉 := a(u,ϕ)=
∫
Ω

N∑
i=1

ai(x,∇u)
∂ϕ

∂xi
dx ∀ϕ∈V0 (2.4)

is well defined for any u∈V , and the operator A :V0 →V∗
0 is continuous, bounded, and

strictly monotone. For functions w,z : Ω→R and sets W and Z of functions defined on
Ω we use the following notations: w∧ z =min{w,z}, w∨ z =max{w,z}, W ∧Z = {w∧
z | w ∈W , z ∈ Z}, W ∨ Z = {w∨ z | w ∈W , z ∈ Z}, and w∧ Z = {w} ∧ Z, w ∨ Z =
{w}∨Z. Next we introduce our basic notion of sub-supersolution.

Definition 2.1. A function u∈V is called a subsolution of (1.1) if the following holds:

(i) u≤ 0 on ∂Ω,
(ii) 〈Au− f ,v−u〉+

∫
Ω j

o(u;v−u)dx ≥ 0, for all v ∈ u∧K .

Definition 2.2. ū∈V is a supersolution of (1.1) if the following holds:

(i) ū≥ 0 on ∂Ω,
(ii) 〈Aū− f ,v− ū〉+

∫
Ω j

o(ū;v− ū)dx ≥ 0, for all v ∈ ū∨K .

Note that the notion of sub-supersolution introduced here extends that for inclusions
of hemivariational type introduced in [4, 5] and those for variational or hemivariational
inequalities in [3, 8, 9].

Let ∂ j :R→ 2R \ {∅} denote Clarke’s generalized gradient of j defined by

∂ j(s) := {ζ ∈R | jo(s;r)≥ ζr, ∀r ∈R}. (2.5)

We assume the following hypothesis for j.

(H) The function j : R→ R is locally Lipschitz and its Clarke’s generalized gradient
∂ j satisfies the following growth conditions:
(i) there exists a constant c1 ≥ 0 such that

ξ1 ≤ ξ2 + c1
(
s2− s1

)p−1
(2.6)

for all ξi ∈ ∂ j(si), i= 1,2, and for all s1, s2 with s1 < s2,
(ii) there is a constant c2 ≥ 0 such that

ξ ∈ ∂ j(s) : |ξ| ≤ c2
(
1 + |s|p−1) ∀s∈R. (2.7)

Let Lp(Ω) be equipped with the natural partial ordering of functions defined by u ≤ w
if and only if w− u belongs to the positive cone L

p
+(Ω) of all nonnegative elements of

Lp(Ω). This induces a corresponding partial ordering also in the subspace V of Lp(Ω),
and if u,w ∈V with u≤w, then

[u,w]= {z ∈V | u≤ z ≤w} (2.8)

denotes the ordered interval formed by u and w.
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In the proofs of our main results we make use of the cut-off function b : Ω×R→ R
related to an ordered pair of functions u≤ ū, and given by

b(x,s)=




(
s− ū(x)

)p−1
if s > ū(x),

0 if u(x)≤ s≤ ū(x),

−(u(x)− s)p−1
if s < u(x).

(2.9)

One readily verifies that b is a Carathéodory function satisfying the growth condition

∣∣b(x,s)
∣∣≤ k(x) + c3|s|p−1 (2.10)

for a.e. x ∈Ω, for all s∈R, with some function k ∈ L
q
+(Ω) and a constant c3 ≥ 0. More-

over, one has the following estimate
∫
Ω
b
(
x,u(x)

)
u(x)dx ≥ c4‖u‖pLp(Ω)− c5 ∀u∈ Lp(Ω), (2.11)

where c4 and c5 are some positive constants. In view of (2.10) the Nemytskij operator
B : Lp(Ω)→ Lq(Ω) defined by

Bu(x)= b(x,u(x)
)

(2.12)

is continuous and bounded, and thus due to the compact embedding V ⊂ Lp(Ω) it fol-
lows that B :V0 →V∗

0 is compact.

3. Preliminaries

In this section, we briefly recall a surjectivity result for multivalued mappings in reflexive
Banach spaces (cf., e.g., [10, Theorem 2.12]) which among others will be used in the proof
of our main result in this section.

Theorem 3.1. Let X be a real reflexive Banach space with dual space X∗, Φ : X → 2X
∗

a maximal monotone operator, and u0 ∈ dom(Φ). Let A : X → 2X
∗

be a pseudomonotone
operator, and assume that either Au0 is quasibounded or Φu0 is strongly quasibounded. As-
sume further that A : X → 2X

∗
is u0-coercive, that is, there exists a real-valued function

c :R+ →R with c(r)→ +∞ as r → +∞ such that for all (u,u∗)∈ graph(A), 〈u∗,u−u0〉 ≥
c(‖u‖X)‖u‖X holds. Then A+Φ is surjective, that is, range(A+Φ)= X∗.

The operators Au0 and Φu0 that appear in the theorem above are defined by Au0 (v) :=
A(u0 + v) and similarly for Φu0 . As for the notion of quasibounded and strongly quasi-
bounded, we refer to [10, page 51]. In particular, one has that any bounded operator is
quasibounded and strongly quasibounded as well. The following proposition provides
sufficient conditions for an operator A : X → 2X

∗
to be pseudomonotone, which is suit-

able for our purpose.

Proposition 3.2. Let X be a real reflexive Banach space, and assume that A : X → 2X
∗

satisfies the following conditions:

(i) for each u∈ X , A(u) is a nonempty, closed, and convex subset of X∗;
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(ii) A : X → 2X
∗

is bounded;
(iii) if un⇀ u in X and u∗n ⇀ u∗ in X∗ with u∗n ∈A(un) and if

limsup〈u∗n ,un−u〉 ≤ 0, then u∗ ∈A(u) and 〈u∗n ,un〉 → 〈u∗,u〉.
Then the operator A : X → 2X

∗
is pseudomonotone.

As for the proof of Proposition 3.2 we refer, for example, to [10, Chapter 2].

4. Existence and comparison result

The main result of this section is given by the following theorem which provides an exis-
tence and comparison result for the variational-hemivariational inequality (1.1).

Theorem 4.1. Let ū and u be super- and subsolutions of (1.1), respectively, satisfying u≤ ū,
and assume ū∧K ⊂ K and u∨K ⊂ K . Then under hypotheses (A1)–(A3) and (H), there
exist solutions of (1.1) within the ordered interval [u, ū].

Proof. Let IK : V0 → R∪{+∞} denote the indicator function related to the given closed
convex set K �= ∅ and defined by

IK (u)=



0 if u∈ K ,

+∞ if u /∈ K ,
(4.1)

which is proper, convex, and lower semicontinuous. By means of the indicator function
the variational-hemivariational inequality (1.1) can be rewritten in the following form.
Find u∈ K such that

〈Au− f ,v−u〉+ IK (v)− IK (u) +
∫
Ω
jo(u;v−u)dx ≥ 0 ∀v ∈V0. (4.2)

Since we are looking for solutions of (4.2) within [u, ū], we consider the following auxil-
iary problem: Find u∈ K such that

〈
Au− f + λB(u),v−u〉+ IK (v)− IK (u) +

∫
Ω
jo(u;v−u)dx ≥ 0 ∀v ∈V0, (4.3)

where B is the cut-off operator introduced in Section 2, and λ≥ 0 is some parameter to
be specified later. As will be seen in the course of the proof, the role of λB is twofold. First
it provides a coercivity generating term, and second, it allows for comparison. The proof
of the theorem will be done in two steps. In Step 1 we prove the existence of solutions
of auxiliary problem (4.3), and in Step 2 we are going to show that any solution of (4.3)
belongs to the interval [u, ū], which completes the proof, since then B(u) = 0 and (4.2)
holds.

Step 1 (existence for (4.3)). We introduce the functional J : Lp(Ω)→R defined by

J(v)=
∫
Ω
j
(
v(x)

)
dx ∀v ∈ Lp(Ω), (4.4)
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which by hypothesis (H) is locally Lipschitz, and moreover, by Aubin-Clarke theorem
(see [6, page 83]) for each u∈ Lp(Ω) we have

ξ ∈ ∂J(u)=⇒ ξ ∈ Lq(Ω) with ξ(x)∈ ∂ j(u(x)
)

for a.e. x ∈Ω. (4.5)

Consider now the multivalued operator

A+ λB+ ∂
(
J|V0

)
+ ∂IK :V0 −→ 2V

∗
0 , (4.6)

where J|V0 denotes the restriction of J toV0 and ∂IK is the subdifferential of IK in the sense
of convex analysis. It is well known that Φ := ∂IK :V0 → 2V

∗
0 is a maximal monotone op-

erator (cf., e.g., [11]). Since A :V0 →V∗
0 is strictly monotone, bounded, and continuous,

and λB :V0 →V∗
0 is bounded, continuous, and compact, it follows that A+ λB :V0 →V∗

0

is a (single-valued) pseudomonotone, continuous, and bounded operator. In [3], it has
been shown that ∂(J|V0 ) :V0 → 2V

∗
0 is a (multivalued) pseudomonotone operator, which,

due to (H), is bounded. ThusA0 := A+ λB+ ∂(J|V0 ) :V0 → 2V
∗
0 is a pseudomonotone and

bounded operator. Hence, it follows by Theorem 3.1 that range(A0 +Φ)= V∗
0 provided

A0 is u0-coercive for some u0 ∈ K , which can readily be seen as follows. For any v ∈ V0

and any w ∈ ∂(J|V0 )(v), we obtain by applying (A3), (H)(ii), and (2.11) the estimate

〈
Av+ λB(v) +w,v−u0

〉

=
∫
Ω

N∑
i=1

ai(x,∇v)
∂v

∂xi
dx+ λ

〈
B(v),v

〉
+
∫
Ω
wvdx− 〈Av+ λB(v) +w,u0

〉

≥ ν

∫
Ω
|∇v|pdx−∥∥k1

∥∥
L1(Ω) + c4λ‖v‖pLp(Ω)− c5λ

− c2

∫
Ω

(
1 + |v|p−1)|v|dx−∣∣〈Av+ λB(v) +w,u0

〉∣∣
≥ ν‖v‖pV0

−C
(

1 +
∥∥v∥∥p−1

V0

)

(4.7)

for some constant C > 0, by choosing the constant λ in such a way that c4λ > c2. Since
p > 1, the coercivity of A0 follows from (4.7). In view of the surjectivity of the operator
A0 +Φ, there exists a u∈ K such that f ∈A0(u) +Φ(u), that is, there is an ξ ∈ ∂(J|V0 )(u)
with ξ ∈ Lq(Ω) and ξ(x)∈ ∂ j(u(x)) for a.e. x ∈Ω, and an η ∈Φ(u) such that

Au− f + λB(u) + ξ +η = 0 in V∗
0 , (4.8)

where

〈ξ,ϕ〉 =
∫
Ω
ξ(x)ϕ(x)dx ∀ϕ∈V0, (4.9)

IK (v)≥ IK (u) + 〈η,v−u〉 ∀v ∈V0. (4.10)

By definition of Clarke’s generalized gradient ∂ j from (4.9) we get

〈ξ,ϕ〉 =
∫
Ω
ξ(x)ϕ(x)dx ≤

∫
Ω
jo
(
u(x);ϕ(x)

)
dx ∀ϕ∈V0. (4.11)
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Thus from (4.8), (4.9), (4.10), and (4.11) with ϕ replaced by v−u we obtain (4.3), which
proves the existence of solutions of problem (4.3).

Step 2 (u ≤ u ≤ ū for any solution u of (4.3)). We first show u ≤ ū. By definition, the
supersolution ū satisfies ū≥ 0 on ∂Ω, and

〈Aū− f ,v− ū〉+
∫
Ω
jo(ū;v− ū)dx ≥ 0 ∀v ∈ ū∨K. (4.12)

Let u be any solution of (4.3) which is equivalent to the following variational-hemi-
variational inequality:

u∈ K : 〈Au− f ,v−u〉+
〈
λB(u),v−u〉+

∫
Ω
jo(u;v−u)dx ≥ 0 ∀v ∈ K. (4.13)

We apply the special test function v = ū∨u= ū+ (u− ū)+(∈ ū∨K) in (4.12) and v = ū∧
u= u− (u− ū)+(∈ K) in (4.13), and get by adding the resulting inequalities the following
one:

〈
Aū−Au, (u− ū)+〉+ λ

〈
B(u),−(u− ū)+〉

+
∫
Ω

(
jo
(
ū; (u− ū)+)+ jo

(
u;−(u− ū)+))dx ≥ 0,

(4.14)

which yields due to

〈
Au−Aū, (u− ū)+〉≥ 0, (4.15)

the inequality

λ
〈
B(u),(u− ū)+〉≤

∫
Ω

(
jo
(
ū; (u− ū)+)+ jo

(
u;−(u− ū)+))dx. (4.16)

By using (H) and the properties on jo and ∂ j we get for certain ξ̄(x) ∈ ∂ j(ū(x)) and
ξ(x)∈ ∂ j(u(x)) the following estimate of the right-hand side of (4.16):

∫
Ω

(
jo
(
ū; (u− ū)+)+ jo

(
u;−(u− ū)+))dx

=
∫
{u>ū}

(
jo(ū;u− ū) + jo

(
u;−(u− ū)

))
dx

=
∫
{u>ū}

(
ξ̄(x)

(
u(x)− ū(x)

)
+ ξ(x)

(− (u(x)− ū(x)
)))

dx

=
∫
{u>ū}

(
ξ̄(x)− ξ(x)

)(
u(x)− ū(x)

)
dx

≤
∫
{u>ū}

c1
(
u(x)− ū(x)

)p
dx.

(4.17)

Since

〈
B(u),(u− ū)+〉=

∫
{u>ū}

(u− ū)pdx, (4.18)



408 Variational-hemivariational inequalities

we get from (4.16) and (4.17) the estimate

(
λ− c1

)∫
{u>ū}

(u− ū)pdx ≤ 0. (4.19)

Selecting the parameter λ, in addition, such that λ− c1 > 0, then (4.19) yields

∫
Ω

(
(u− ū)+)pdx ≤ 0, (4.20)

which implies (u− ū)+ = 0 and thus u≤ ū. The proof for the inequality u≤ u can be car-
ried out in a similar way which completes the proof of the theorem. �

5. Compactness and existence of extremal solutions

Let � denote the set of all solutions of (1.1) within the interval [u, ū] of an ordered pair
of sub- and supersolutions. In this section, we are going to show that the solution set � is
compact, and under certain lattice conditions on K , � possesses the smallest and greatest
elements with respect to the given partial ordering. The smallest and greatest elements of
� are called the extremal solutions of (1.1) within [u, ū].

Theorem 5.1. Under the hypotheses of Theorem 4.1 the solution set � is compact in V0.

Proof. First we prove that � is bounded in V0. Since any u ∈ � belongs to the interval
[u, ū], it follows that � is bounded in Lp(Ω). Moreover, any u∈� solves (1.1), that is, we
have u ∈ K : 〈Au− f ,v− u〉+

∫
Ω j

o(u;v− u)dx ≥ 0, for all v ∈ K . Let u0 be any (fixed)
element of K . By taking v = u0 in the above inequality we get

〈Au,u〉 ≤ 〈Au,u0
〉

+
〈
f ,u−u0

〉
+
∫
Ω
jo
(
u;u0−u

)
dx. (5.1)

This yields, by applying (A3), (H)(ii), and Young’s inequality, the following estimate:

ν‖∇u‖pLp(Ω)≤
∥∥k1
∥∥
L1(Ω) + c(ε)

(
‖ f ‖qV∗0 + 1

)
+ ε‖u‖pV0

+ α̃
(
‖u‖Lp(Ω) +‖u‖pLp(Ω) + 1

)
(5.2)

for any ε > 0. Hence, the boundedness of � in V0 follows by choosing ε sufficiently small
and by taking into account that � is bounded in Lp(Ω).

Let (un)⊂�. From the above boundedness of � in V0, we can choose a subsequence
(uk) of (un) such that

uk⇀ u in V0, uk −→ u in Lp(Ω), uk(x)−→ u(x) a.e. in Ω. (5.3)

Obviously u ∈ [u, ū]. On the other hand, because K is closed and convex in V0, it is
weakly closed. As uk ∈ K for all k, we see that u is also in K . Since uk solve (1.1), we can
put v = u∈ K in (1.1) (with uk instead of u) and get

〈
Auk − f ,u−uk

〉
+
∫
Ω
jo
(
uk;u−uk

)
dx ≥ 0, (5.4)
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and thus

〈
Auk,uk −u

〉≤ 〈 f ,uk −u
〉

+
∫
Ω
jo
(
uk;u−uk

)
dx. (5.5)

Due to (5.3) and due to the fact that (s,r) �→ jo(s;r) is upper semicontinuous, we get by
applying Fatou’s lemma

limsup
k

∫
Ω
jo
(
uk;u−uk

)
dx ≤

∫
Ω

limsup
k

jo
(
uk;u−uk

)
dx = 0. (5.6)

In view of (5.6) we thus obtain from (5.3) and (5.5)

limsup
k

〈
Auk,uk −u

〉≤ 0. (5.7)

Since the operator A has the (S+)-property (we refer, e.g., to [1] for the definition of the
(S+)-property being used here), the weak convergence of (uk) inV0 along with (5.7) imply
the strong convergence uk → u in V0, see, for example, [1, Theorem D.2.1]. Moreover, the
limit u belongs to � as can be seen by passing to the limsup on the left-hand side of the
following inequality:

〈
Auk − f ,v−uk

〉
+
∫
Ω
jo
(
uk;v−uk

)
dx ≥ 0, (5.8)

where we have used Fatou’s lemma and the strong convergence of (uk) in V0. This com-
pletes the proof. �

As for the existence of extremal solutions in �, we introduce the following notion.

Definition 5.2. Let (�,≤) be a partially ordered set. A subset � of � is said to be upward-
directed if for each pair x, y ∈ �, there is a z ∈ � such that x ≤ z and y ≤ z, and � is
downward-directed if for each pair x, y ∈�, there is a w ∈� such that w ≤ x and w ≤ y.
If � is both upward and downward directed it is called directed.

We are now ready to prove our extremality result.

Theorem 5.3. Let the hypotheses of Theorem 4.1 be satisfied, and assume, moreover,

K ∧K ⊂ K , K ∨K ⊂ K. (5.9)

Then, the solution set � possesses extremal elements.

Proof. The proof of Theorem 5.3 is divided into two steps. In Step 1, we show that the
solution set � is directed, and the existence of extremal elements of � is proved in Step 2.

Step 1 (� is a directed set). As a consequence of Theorem 4.1, we have � �= ∅. Given
u1,u2 ∈ �, we show that there is a u ∈ � such that uk ≤ u, k = 1,2, which means � is
upward-directed. To this end we consider the following auxiliary variational-hemivaria-
tional inequality

u∈ K :
〈
Au− f + λB(u),v−u〉+

∫
Ω
jo(u;v−u)dx ≥ 0 ∀v ∈ K , (5.10)
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where λ≥ 0 is a free parameter to be chosen later. Unlike in the proof of Theorem 4.1, the
operator B is now given by the following cut-off function b : Ω×R→R:

b(x,s)=




(
s− ū(x)

)p−1
if s > ū(x),

0 if u0(x)≤ s≤ ū(x),

−(u0(x)− s)p−1
if s < u0(x),

(5.11)

where u0 =max{u1,u2}. By arguments similar to those in the proof of Theorem 4.1 we
get the existence of solutions of (5.10). The set � is shown to be upward-directed provided
that any solution u of (5.10) satisfies uk ≤ u ≤ ū, k = 1,2, because then Bu = 0 and thus
u∈� exceeding uk.

For k = 1,2, because uk ∈�, we have uk ∈ K ∩ [u, ū] and

〈
Auk − f ,v−uk

〉
+
∫
Ω
jo
(
uk;v−uk

)
dx ≥ 0 ∀v ∈ K. (5.12)

Note that since u,u1,u2 ∈ K , (5.9) implies that

u+
(
uk −u

)+ = u∨uk ∈ K , uk −
(
uk −u

)+ = u∧uk ∈ K. (5.13)

Therefore, one can take as special functions v = u+ (uk −u)+ in (5.10) and v = uk − (uk −
u)+ in (5.12). Adding the resulting inequalities we obtain

〈
Auk −Au,

(
uk −u

)+
〉
− λ
〈
B(u),

(
uk −u

)+
〉

≤
∫
Ω

(
jo
(
u;
(
uk −u

)+
)

+ jo
(
uk;−(uk −u)+

))
dx.

(5.14)

Arguing as in (4.17), we have for the right-hand side of (5.14) the estimate

∫
Ω

(
jo
(
u;
(
uk −u

)+
)

+ jo
(
uk;−(uk −u)+

))
dx ≤

∫
{uk>u}

c1
(
uk(x)−u(x)

)p
dx. (5.15)

For the terms on the left-hand side we have
〈
Auk −Au,

(
uk −u

)+
〉
≥ 0, (5.16)

and (5.11) yields

〈
B(u),

(
uk −u

)+
〉
=−

∫
{uk>u}

(
u0(x)−u(x)

)p−1(
uk(x)−u(x)

)
dx

≤−
∫
{uk>u}

(
uk(x)−u(x)

)p
dx.

(5.17)

By means of (5.15), (5.16), (5.17) we get from (5.14) the inequality

(
λ− c1

)∫
{uk>u}

(
uk(x)−u(x)

)p
dx ≤ 0. (5.18)
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Selecting λ such that λ > c1 from (5.18) it follows uk ≤ u. The proof for u≤ ū follows sim-
ilar arguments, and thus � is upward-directed. By obvious modifications of the auxiliary
problem, one can show analogously that � is also downward-directed.

Step 2 (existence of extremal solutions). We show the existence of the greatest element of
�. Since V0 is separable, we have that �⊂V0 is separable too, so there exists a countable,
dense subset Z = {zn | n ∈N} of �. From Step 1, � is upward-directed, so we can con-
struct an increasing sequence (un)⊂� as follows. Let u1 = z1. Select un+1 ∈� such that

max
{
zn,un

}≤ un+1 ≤ u. (5.19)

The existence of un+1 is established in Step 1. From the compactness of � according to
Theorem 5.1, we can choose a subsequence of (un), denoted again (un), and an element
u ∈ � such that un → u in V0, and un(x) → u(x) a.e. in Ω. This last property of (un)
combined with its increasing monotonicity implies that the entire sequence is convergent
in V0 and, moreover, u= supn un. By construction, we see that

max
{
z1,z2, . . . ,zn

}≤ un+1 ≤ u ∀n, (5.20)

thus Z ⊂ [u,u]. Since the interval [u,u] is closed in V0, we infer

�⊂ Z ⊂ [u,u]= [u,u], (5.21)

which in conjunction with u∈� ensures that u is the greatest solution of (1.1).
The existence of the least solution of (1.1) can be proved in a similar way. �

Remark 5.4. From the proof of Theorem 5.3 it can be seen that instead of lattice condition
(5.9), it is enough to assume the following weaker condition:

K ∧ (K ∩ [u, ū]
)⊂ K , K ∨ (K ∩ [u, ū]

)⊂ K. (5.22)

6. Example and generalization

6.1. Example. We consider (1.1) with f ∈ Lp∗′(Ω), where p∗′ is the Hölder conjugate of
the critical Sobolev exponent p∗, and K representing the following obstacle problem:

K = {v ∈V0 | v(x)≤ ψ(x) for a.e. x ∈Ω
}

(6.1)

withψ : Ω→Rmeasurable. We are going to provide sufficient conditions for the existence
of an ordered pair of constant sub-and supersolutions α and β, respectively.

Proposition 6.1. Let K �= ∅ be given by (6.1) and assume f and ψ as given above, and let
ai(x,0)= 0, i= 1, . . . ,N . Then

(a) the constant function u(x)≡ α≤ 0 is a subsolution of (1.1) if

f (x)≥− jo(α;−1) for a.e. x ∈Ω, (6.2)

(b) the constant function ū(x)≡ β ≥ 0 is a supersolution of (1.1) if

f (x)≤ jo(β;1) for a.e. x ∈Ω, (6.3)
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(c) if f ∈ L∞(Ω) and α,β ∈R satisfy α≤ 0≤ β and

− jo(α;−1)≤ f (x)≤ jo(β;1) for a.e. x ∈Ω, (6.4)

then α and β is an ordered pair of sub- and supersolutions.

Proof. Let α ≤ 0 satisfy (6.2). According to Definition 2.1, we only need to verify that α
satisfies Definition 2.1(ii). To this end let v ∈ α∧K be given. Then v−α≤ 0 in Ω and in
view of (6.2) we get

〈Aα− f ,v−α〉+
∫
Ω
jo
(
α;v(x)−α)dx

=
∫
Ω

(
jo
(
α;v(x)−α)− f (x)

(
v(x)−α))dx

=
∫
Ω

(
jo(α;−1) + f (x)

)(
α− v(x)

)
dx ≥ 0 ∀v ∈ α∧K ,

(6.5)

which proves that α is a subsolution. In a similar way one can show that under (6.3), the
constant β ≥ 0 is a supersolution. Finally, (c) follows immediately from (a) and (b). �

In order to apply Theorem 4.1 to our example, we only need to make sure that, in
addition, β∧K ⊂ K and α∨K ⊂ K is satisfied. For the obstacle problem β∧K ⊂ K is
trivially satisfied and α∨K ⊂ K holds provided α≤ ψ(x) for a.e. x ∈Ω.

Moreover, straightforward calculations show that both lattice conditions in (5.9) are
satisfied for our convex set K here. Thus, Theorem 5.3 also holds in the present example
if α≤ ψ(x) for a.e. x ∈Ω.

Remark 6.2. Our main goal is a general sub-supersolution approach for variational-
hemivariational inequalities and the example given here illustrates the above results in
a simple circumstance. Calculations of nonconstant sub-supersolutions in inclusions and
variational inequalities were presented, for example, in [3, 4, 7].

Applications of the sub-supersolution method presented above to some variational-
hemivariational inequalities in material science (in which nonconstant sub-supersolu-
tions are constructed) will be studied in a forthcoming project.

6.2. Generalization. Our discussions above could be extended to the case where the
principal operator A is perturbed by a lower-order term G. The inequality (1.1) is ex-
tended to

u∈ K : 〈Au+Gu− f ,v−u〉+
∫
Ω
jo(u;v−u)dx ≥ 0 ∀v ∈ K , (6.6)

where G is the Nemytskij operator associated with a Carathéodory function g : Ω×R×
RN →R:

〈Gu,v〉 =
∫
Ω
g(·,u,∇u)vdx ∀u,v ∈V. (6.7)
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For the integral in (6.7) to be defined, we need some growth condition on g, which will
be specified later. Note that the operator A+G is not coercive in general. The definition
of supersolutions of (6.6) now becomes as follows.

Definition 6.3. A function ū∈V is called a supersolution of (6.6) if the following holds:

(i) ū≥ 0 on ∂Ω,
(ii) Gū∈ Lq(Ω),

(iii) 〈Aū+Gū− f ,v− ū〉+
∫
Ω j

o(ū;v− ū)dx ≥ 0, for all v ∈ ū∨K .

We have a similar definition for subsolutions of (6.6). Combining this notion of sub-
supersolutions with appropriate modifications of the arguments in Section 5, we can
prove the following existence and extremality result for (6.6).

Theorem 6.4. (a) Assume the hypotheses (A1)–(A3), (H), and that (6.6) has subsolutions
u1, . . . ,uk and supersolutions ū1, . . . , ūm such that

u :=max
{
u1, . . . ,uk

}≤ ū :=min
{
ū1, . . . , ūm

}
, (6.8)

and ūi ∧K ⊂ K , uj ∨K ⊂ K for all 1 ≤ i ≤m, 1 ≤ j ≤ k. Suppose furthermore g has the
growth condition

∣∣g(x,u,ξ)
∣∣≤ k2(x) + c6|ξ|p−1 (6.9)

for a.e. x ∈Ω, all ξ ∈RN , and all u∈R such that

min
{
u1(x), . . . ,uk(x)

}≤ u≤max
{
ū1(x), . . . , ūm(x)

}
, (6.10)

where k2 ∈ Lq(Ω), c6 > 0. Then there exists a solution u of (6.6) such that

u≤ u≤ ū. (6.11)

(b) Furthermore, if K satisfies (5.9), then under the assumptions in (a), (6.6) possesses
extremal solutions within [u, ū].

Proof. To prove the assertion in part (a), we follow the idea of the proof of Theorem 4.1.
We first note that variational-hemivariational inequality (6.6) is equivalent to the follow-
ing. Find u∈V0 such that

〈Au+Gu− f ,v−u〉+ IK (v)− IK (u) +
∫
Ω
jo(u;v−u)dx ≥ 0 ∀v ∈V0, (6.12)

where IK denotes the indicator function related to K . However, unlike in Theorem 4.1
the functions u and ū defined in (6.8) are no longer sub- and supersolutions, respectively.
Therefore our existence proof will be based on the following modified auxiliary truncated
problem: find u∈V0 such that

〈
Au− f + λB(u) +Pu,v−u〉+ IK (v)− IK (u) +

∫
Ω
jo(u;v−u)dx ≥ 0 ∀v ∈V0,

(6.13)
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where B is the cut-off operator as given by (2.9) and λ ≥ 0 is some free parameter to be
specified later. The operator P :V0 →V∗

0 is defined by

Pu :=G◦Tu+
m∑
i=1

∣∣G◦Tiu−G◦Tu∣∣−
k∑
j=1

∣∣G◦Tju−G◦Tu
∣∣, (6.14)

where the truncation operators Tj ,Ti,T :V → [u, ū]⊂V are defined as follows:

Tu(x)=




u(x) if u(x) < u(x),

u(x) if u(x)≤ u(x)≤ ū(x),

ū(x) if u(x) > ū(x),

Tju(x)=




uj(x) if u(x) < uj(x),

u(x) if uj(x)≤ u(x)≤ ū(x),

ū(x) if u(x) > ū(x),

Tiu(x)=




u(x) if u(x) < u(x),

u(x) if u(x)≤ u(x)≤ ūi(x),

ūi(x) if u(x) > ūi(x),

(6.15)

for 1≤ i≤m, 1≤ j ≤ k, x ∈Ω. The operators G ◦T , G ◦Tj , G ◦Ti stand for the compo-
sitions of the Nemytskij operator G and the truncation operators T , Tj , Ti, respectively,
and we have

〈∣∣G◦Tju−G◦Tu
∣∣,v
〉=

∫
Ω

∣∣g(·,Tju,∇Tju
)− g(·,Tu,∇Tu)

∣∣vdx (6.16)

for all u,v ∈ V0. Since Tj ,Ti,T :V0 →V0 are bounded and continuous, it follows in view
of the growth condition imposed on g that P : V0 → Lq(Ω) ⊂ V∗

0 is bounded and con-
tinuous as well. Moreover, by applying [1, Theorem D.2.1] one sees that A + λB + P :
V0 → V∗

0 is continuous, bounded, and pseudomonotone. Introducing the same func-
tional J as in the proof of Theorem 4.1, we can show that the multivalued operator
A + λB + P + ∂(J|V0 ) : V0 → 2V

∗
0 is pseudomonotone, bounded, and due to the growth

condition on g as well as the mapping properties of the truncation operators, it is also
coercive for λ chosen sufficiently large. Hence, by similar arguments as in the proof of
Theorem 4.1, we infer that (6.13) has a solution u. The proof of the existence result of
part (a) is accomplished provided any solution u of (6.13) can be shown to satisfy

uj ≤ u≤ ūi, 1≤ i≤m, 1≤ j ≤ k. (6.17)

This is because then u satisfies also u ≤ u ≤ ū which finally results in Tu = u,Tju = u,
Tiu= u, and thus Pu=Gu as well as Bu= 0 showing that u is a solution of (6.12) (i.e., of
(6.6)) within [u, ū].
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We first show that u ≤ ūl for l ∈ {1, . . . ,m} fixed. By Definition 6.3 we have ūl ≥ 0 on
∂Ω, and

〈
Aūl +Gūl − f ,v− ūl

〉
+
∫
Ω
jo
(
ūl;v− ūl

)
dx ≥ 0 ∀v ∈ ūl ∨K , (6.18)

and u is a solution of auxiliary problem (6.13) which is equivalent to the following. Find
u∈ K such that

〈
Au− f + λB(u) +Pu,v−u〉+

∫
Ω
jo(u;v−u)dx ≥ 0 ∀v ∈ K. (6.19)

We apply the special test function v = ūl ∨ u = ūl + (u− ūl)+ in (6.18) and v = ūl ∧ u =
u− (u− ūl)+(∈ K) in (6.19), and get by adding the resulting inequalities the following
one:

〈
Aūl −Au,

(
u− ūl

)+
〉

+
〈
λB(u) +Pu−Gūl,−

(
u− ūl

)+
〉

+
∫
Ω

(
jo
(
ūl;
(
u− ūl

)+
)

+ jo
(
u;−(u− ūl)+

))
dx ≥ 0,

(6.20)

which yields due to

〈
Au−Aūl,

(
u− ūl

)+
〉
≥ 0, (6.21)

the inequality

〈
λB(u) +Pu−Gūl,

(
u− ūl

)+
〉
≤
∫
Ω

(
jo
(
ūl;
(
u− ūl

)+
)

+ jo
(
u;−(u− ūl)+

))
dx. (6.22)

As in (4.17), for the right-hand side of (6.22) we get the estimate

∫
Ω

(
jo
(
ūl;
(
u− ūl

)+
)

+ jo
(
u;−(u− ūl)+

))
dx ≤

∫
{u>ūl}

c1
(
u(x)− ūl(x)

)p
dx. (6.23)

As for the estimates of the terms on the left-hand side of (6.22) we note that ūl ≥ ū≥ u≥
uj which by taking into account the definition of the truncation operators yields

∫
{u>ūl}

k∑
j=1

∣∣G◦Tju−G◦Tu
∣∣(u− ūl)dx = 0, (6.24)
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and the following estimates

〈
B(u),

(
u− ūl

)+
〉
=
∫
{u>ūl}

(u− ū)pdx ≥
∫
{u>ūl}

(
u− ūl

)p
dx,

〈
Pu−Gūl,

(
u− ūl

)+
〉

=
∫
{u>ūl}

(
Pu−Gūl

)(
u− ūl

)
dx

=
∫
{u>ūl}

[(
G◦Tu−Gūl

)(
u− ūl

)
+

m∑
i=1

∣∣G◦Tiu−G◦Tu∣∣(u− ūl)
]
dx

=
∫
{u>ūl}

((
G◦Tu−Gūl

)
+
∣∣Gūl −G◦Tu∣∣)(u− ūl)dx

+
∫
{u>ūl}

∑
i �=l

∣∣G◦Tiu−G◦Tu∣∣(u− ūl)dx ≥ 0.

(6.25)

Thus from (6.22) we get by means of (6.23), and (6.25),

(
λ− c1

)∫
{u>ūl}

(
u− ūl

)p
dx ≤ 0. (6.26)

By selecting λ in addition large enough such that λ− c1 > 0, from (6.26) we obtain u ≤
ūl. In a similar way one can prove that for any l ∈ {1, . . . ,k} one has also u ≥ ul which
completes the proof of part (a) of the theorem.

In order to prove (b), that is, the existence of extremal solutions in [u, ū], we denote
again by � the set of all solutions of (6.6) within [u, ū]. Following the line in the proof
of Theorem 5.1, one readily verifies the compactness of � in V0. Due to lattice condition
(5.9) assumed in (b), one observes that any solution u∈� is, in particular, a subsolution
and a supersolution of (6.6). Therefore, the statement of part (a) implies that � is a di-
rected set. In just the same way as in Step 2 of the proof of Theorem 5.3, the compactness
and directedness of � yield the existence of extremal elements of �, which completes the
proof of the theorem. �

Remark 6.5. The results and methods in this paper can be extended to variational-
hemivariational inequalities involving more general quasilinear elliptic operators of
Leray-Lions type and functions j : Ω×R→ R depending also on the space variable x,
which, however, has been omitted in order to avoid too many technicalities and in order
to emphasize the main ideas.

We could also extend the above results to more general cases where the operator A
satisfies a monotonicity condition such as

〈
Au1−Au2,

(
u1−u2

)+
〉
≥ 0 (6.27)

for u1, u2 in some appropriate function space (such as V0 or its analogue). This extension
would allow us to study problems with weighted or degenerate operators.
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