
A DISCRETE VARIATIONAL APPROACH FOR
INVESTIGATION OF STATIONARY LOCALIZED
STATES IN A DISCRETE NONLINEAR
SCHRÖDINGER EQUATION, NAMED IN-DNLS

K. KUNDU

Received 9 June 2004

IN-DNLS considered here is a countable infinite set of coupled one-dimensional non-
linear ordinary differential difference equations with a tunable nonintegrability parame-
ter. When this parameter vanishes, IN-DNLS reduces to the famous integrable Ablowitz-
Ladik (AL) equation. The formation of unstaggered and staggered stationary localized
states (SLSs) in IN-DNLS is studied here using a discrete variational method. The func-
tional form of stationary soliton of AL equation is used as the ansatz for SLSs. Derivation
of the appropriate functional and its equivalence to the effective Lagrangian are presented.
Formation of on-site peaked and intersite peaked unstaggered SLSs and their dependence
on the nonintegrability parameter are investigated. On-site peaked states are found to be
energetically stable. Results are explained using the effective mass picture. Also, the prop-
erties of staggered SLSs of Sievers-Takeno- (ST-) like mode and Page- (P-) like mode are
investigated and explained using the same effective mass picture. It is further shown here
that an unstable SLS which is found in the truncated analysis of the problem does not
survive in the exact calculation. For large-width and small-amplitude SLSs, the known
asymptotic result for the amplitude is obtained. Further scope and possible extensions of
this work are discussed.

1. Introduction

The study of energy localization in nonlinear lattices has become an important field of
research in nonlinear dynamics in the past couple of decades [25]. In this context, the
subject of intrinsic localized modes (ILMs) has drawn a considerable attention as it offers
appealing insights into a variety of problems ranging from the nonexponential energy
relaxation [69] in solids to the local denaturation of DNA double strands [14, 59]. The
subject is also an intense field of study in material science, and nonlinear optic applica-
tions [23, 49, 66].

The necessary condition for the formation of intrinsic localized modes (ILMs) or exci-
tations in translationally invariant nonlinear systems is the balance between nonlinearity
and dispersion. Furthermore, by localized it is meant that the amplitude of such modes
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goes to zero at the boundaries of the system, which is taken to be infinitely large. In other
words, the relevant localization length scale is much smaller than the system size length
scale. There are two broad classes of intrinsic localizations in (1 + 1)-dimensional nonlin-
ear continuous systems [68]. Shape preserving localized excitations, arising in nonlinear
continuous systems by satisfying the above-mentioned balancing condition, are called
dynamical solitons [20, 61, 64]. Solitons in continuous nonlinear Schrödinger equation
(CNLS) is an example of dynamical solitons [61, 71]. By solitons we usually mean moving
shape preserving nonlinear excitations, though there can be stationary solitons also. Take
for example CNLS. One particular one-soliton solution of this equation is a stationary
soliton [71]. Breathers belong to the second category of ILMs in nonlinear systems [68].
Breathers are spatially localized time-periodic solutions of nonlinear equations. They are
characterized by internal oscillations [7, 8, 9, 10, 11, 20, 24, 26, 40, 44, 50, 54, 55, 60, 68].
Again, by breathers we usually imply stationary localized excitations in nonlinear systems.
However, under appropriate conditions, nonlinear systems may have moving breathers
[20]. As for examples, we note that breathers can be found in continuous systems, de-
scribed by sine-Gordon (SG) equation and modified KdV (mKdV) equation [20]. Even
in CNLS, the stationary one-soliton solution is nothing but a breather [26]. So, the dis-
tinction between solitons and breathers is not always very rigorous. Breathers are how-
ever rare objects in continuous nonlinear equations and are usually unstable [26]. It is
important in the present context to note that continuous nonlinear equations may have
Galilean or Lorentz invariance. For example, KdV and CNLS are Galilean invariant [20].
So, a soliton of some fixed amplitude in the CNLS and KdV can be Galileo boosted to any
velocity. Similarly, an SG equation has both stationary and moving breather solutions
[9, 20]. These two solutions are, however, connected by Lorentz transformation [20]. So,
in dealing with stationary ILMs, we consider that moving frame which is at rest with
respect to the ILM.

However, models describing a microscopic phenomenon in condensed matter physics
are inherently discrete, with the lattice spacing between atomic sites being a fundamental
physical parameter. For these systems, an accurate microscopic description involves a set
of coupled ordinary differential difference equations (ODDEs). Coupled ODDEs are also
encountered in the study of many important problems in optics and other branches of
science [5, 9, 26]. So, it is pertinent to discuss next what features of continuous nonlinear
equations are possibly destroyed and what novel features can arise from the discretization
of at least one of the variables, say one spatial dimension.

In the general discrete case, Galilean or Lorentz invariance in relevant dynamical equa-
tions may not be present at all or may not be transparent at the equation level. Consider,
for example, the AL [1, 2, 3] and the N-AL equations [46]. The first one is the exam-
ple of an integrable nonlinear differential discrete equation, which is often referred to as
the integrable discretization of the CNLS equation. The other equation provides an ex-
ample of a differential discrete nonintegrable nonlinear equation, having solitary wave
solutions. Most importantly, the existence of solitary waves in the N-AL equation can be
shown analytically [46]. The solitary wave solutions of these equations have continuous
translational symmetry, which can be seen from the analytical expression of the one-
soliton solution of the AL equation. This in turn implies that both the AL and the N-AL
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equations have the Galilean invariance. So, also in case of ODDEs, stationarity in the ILM
will imply the moving frame which is at rest with respect to the ILM.

The replacement of the spatial derivatives by spatial differences in the equation of mo-
tion implies the reduction of symmetry of the Hamiltonian, for systems executing Hamil-
tonian dynamics. In general, lowering the symmetry means enriching the class of solu-
tions, because less restrictions are imposed. Of course, solutions are also lost by lowering
the symmetry, namely, ones which are generated by higher symmetry [26]. We consider
in this context two discrete nonlinear equations, the Frenkel-Kontorova (FK) [9, 15] and
the discrete nonlinear Schrödinger (DNLS) equations [45]. These are obtained by stan-
dard discretization of SG and CNLS, respectively [5, 9, 19, 45]. The FK model can be
used to describe a broad spectrum of physically important nonlinear phenomena, such as
propagation of charge-density waves, the dynamics of absorbed layer of atoms on crystal
surfaces, commensurable-incommensurable phase transitions, domain walls in magnet-
ically ordered structures and so forth [9, 15]. On the other hand, to name a few, DNLS
has been used to model the self-trapping phenomenon in nonlinear waveguide arrays [5],
to investigate a slow coherent transport of polarons in (1 + 1) dimension in condensed
matter physics [45], and to study the dynamical phase diagram of dilute Bose-Einstein
condensates [68]. We note that both of these discrete equations are nonintegrable while
their continuous versions are integrable. It is relevant in this context to know that kink
and antikink solutions of SG equation, which is the continuous integrable version of FK
model are moving topological solitons, and they arise due to the balance between non-
linearity and constraints originating from topological invariants in the system [61]. On
the other hand, there exists no steady-state solutions for a moving kink in the FK model.
What we obtain instead is static kinks [9]. To understand this, we note that the uniform
discretization of space variables transforms continuous translational invariance to lattice
translational invariance. This in turn leads to a periodic arrangement of Peierls-Nabarro
(PN) potential [9, 41]. Therefore, while the continuous translational invariance leads to
zero frequency Goldstone modes in the system, discreteness introduces the PN barrier,
with the barrier energy EPN [9]. Due to this potential, any moving kink radiates phonons
and loses energy (Ekink). When Ekink < EPN, the kink is trapped in one of the potential
wells and further loss of energy by the kink by radiation of phonons takes it to the bot-
tom of the well. This in turn yields static kinks. Similarly, SG breathers arise due to the
high symmetry of the equation and consequently are unstable towards perturbation [26].
As the discreteness in space variables act as an external symmetry breaking perturbation,
even a weak discreteness does not allow oscillating breather modes to exist as dynamical
eigenmodes of the SG chain, and breathers are destroyed by radiation of linear waves.
In case of DNLS, similar analysis has been done in a perturbative frame using AL one-
soliton solution as the zeroth order approximation [45, 70]. This analysis also shows that
discreteness introduces a trapping potential for moving solitons and when discreteness
exceeds a critical value, solitonic modes are trapped leading ultimately to pinned or sta-
tionary solitons.

It is already mentioned that the AL equation is an integrable discrete nonlinear equa-
tion. More specifically, the said equation is a countably infinite set of one-dimensional
nonlinear ordinary differential difference equations. This equation is continuous in time,
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but discrete in space with lattice translational invariance. The exact one-soliton solution
of the AL equation is characterized by two parameters, namely, β ∈ [0,∞) and k ∈ [−π,π]
[1, 2, 3]. For each β, there exists a band of velocities determined by the other parameter
k, at which the soliton can travel without experiencing any PN pinning from the lattice
discreteness [13]. Consider now other nonlinear equations in this series, namely, the N-
AL equation [46], the modified Salerno equation (MSE) [45, 62], and the IN-DNLS [13].
All these equations are nonintegrable extension of the AL equation, containing tunable
nonlinearities. The N-AL equation is postulated and investigated to study the effect of
dispersive imbalance on the maintenance of the moving solitonic profile. The impor-
tance of this equation lies in its appearance in the dynamics of vibrons and excitons in
soft molecular chains [45, 46]. The solitary wave solutions of this equation are also char-
acterized by the same two AL parameters, β and k. However, only certain values of k are
allowed, though β can take all possible permissible values. At the allowed values of k, the
term which imparts nonintegrability disappears. This in turn makes the solitary waves
transparent to the PN potential, arising from the lattice discreteness. For other values of
k, the initial AL one-soliton profiles are observed numerically to leave phonon tails be-
hind, causing both slowing down and distortion of the initial profile. Important too in
this context is an analytical investigation in a perturbative framework of the dynamics
of a moving AL soliton, described by the N-AL equation. This analysis suggests that any
moving soliton having energy below the PN barrier, induced by the discreteness in the
lattice will be pinned, yielding thereby stationary solitons [46].

The IN-DNLS is a hybrid form of the AL equation and the DNLS, again with a tunable
nonlinearity, the tuning of which switches the equation from the integrable AL equation
to the nonintegrable DNLS [13]. To gauge the physical significance of this equation, we
mention the following. This equation is studied to investigate the discreteness-induced
oscillatory instabilities of dark solitons [37, 42]. Furthermore, a discrete electrical lattice
where the dynamics of modulated waves can be modeled by this equation is studied to
investigate the modulation instability of plane waves [56]. In the MSE, the usual DNLS is
replaced by a modified version of DNLS, the ADNLS, which involves acoustic phonons
instead of optical phonons in condensed matter physics parlance [45, 70]. The study of
this equation is also important in understanding the dynamics of vibrons and excitons
in soft molecular chains. It is important to note that both IN-DNLS and MSE investigate
the competition between the on-site trapping and the solitonic motion of the AL soli-
ton [12, 13, 45]. So, the dynamics of a moving self-localized pulse, like the AL soliton
in the framework of the IN-DNLS or the MSE, will be subjected to two important ef-
fects. The first one is the PN pinning arising from the lattice discreteness and the second
one is a nonlinear interaction potential trying to trap or detrap the localized pulse. The
cumulative effect of these two interactions is expected to be the collapse of the moving
self-localized states to stable, but pinned solitons. This has indeed been observed in a
numerical simulation [13]. From this discussion so far, it can be concluded that the suffi-
cient condition to see the effect of discreteness on the dynamics of nonlinear excitations
is that the discrete nonlinear equations must be nonintegrable. This nonintegrability can
arise directly from the discretization of the continuous nonlinear equations or by adding
integrability breaking terms to integrable discrete nonlinear equations.
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Two important linear PDEs, which play very important roles in physics in linear sys-
tems are free-particle Schrödinger equation and the wave equation, respectively [22].
These equations are of course used to describe dynamics in continuous systems. The
eigenvalue spectra of these equations are a continuous function of a parameter k, called
wave vector, with the lim = ∞ and the lim = 0. In case of systems, described by
Schrödinger equation with a single-particle potential, an attractive potential will create
localized states below the spectra and these are called “bound states” of the system [22].
Furthermore, in one-(1 + 1)-dimensional systems, even an infinitesimally small attrac-
tive potential will create an exponentially localized bound state. On the other hand, when
wave equation is second order in time, even in (1 + 1) dimension, no attractive potential,
however large, can create bound states. On the contrary, one can get resonances from
attractive potentials.

When the continuity in spatial variables is replaced by lattice continuity, the contin-
uous spectra of linear PDEs fragment into bands. The number of bands will depend on
the number of lattice points in the unit cell. When linear substitutional impurities are
added to systems, described by a discrete Schrödinger equation, spatially localized states
are formed in the gap between bands [22, 36, 57]. We note that for a state to be localized
and stable, it must be in the gap of the spectra. Furthermore, these states, being exact
eigenstates of the relevant Hamiltonian, are stationary localized states (SLSs). For a finite
number of linear impurities in (1 + 1) dimension, it can be shown that the number of
spatially exponentially localized states cannot exceed the number of impurities and there
must be at least one exponentially localized state [22]. On the other hand, almost all states
are exponentially localized in fully disordered (1 + 1)-dimensional systems [36, 57]. How-
ever, with correlated disorder, it is possible to have some delocalized states [21, 47]. In-
stead of linear impurities, if a finite number of nonlinear impurities are present, we again
obtain SLSs in such systems. This can be analytically shown in the systems described by
the DNLS [27, 29, 30, 31, 32, 48].

The spatially discrete analog of the continuous wave equation is the coupled mass-
spring systems, with springs obeying Hooke’s law [22, 36, 57]. Here again we get bands
of eigenmodes, depending on the number of mass-spring units in a unit cell. The lowest
band is called an acoustic branch, which describes the collective motion of the masses.
Other bands give optical phonons [72]. In systems containing a finite number of mass
impurities, only light mass impurities will form exponentially localized states above the
acoustic band in (1 + 1) dimension. A similar result is also obtained with impurity in
springs [22]. Here also almost all states are exponentially localized in totally disordered
systems, whether the disorder is in the mass or in the spring or in both [36, 57]. However,
no states are obtained below the acoustic branch. Most importantly, states around zero
frequency remain delocalized [36, 57]. In this system also, one can have nonlinear impu-
rities, in the spring, in the on-site potential, or in both. Any such impurity will produce
SLSs in the system [43]. We end this discussion by noting that both continuous and dis-
crete linear systems cannot sustain any localized mode without broken continuous and
lattice translational invariance, respectively.

A uniform discrete nonlinear system will have lattice translational invariance. Similarly
to continuous nonlinear systems with translational invariance, nonlinearity in discrete
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systems can also generate localized modes by balancing the delocalization effect with-
out requiring broken periodicity. Such localized self-organization is the ILMs of discrete
nonlinear systems. It is important to note that ILMs of a discrete nonlinear system are the
exact eigenmodes of the nonlinear Hamiltonian describing the system. As in continuous
systems, ILMs in discrete systems can also be divided in two broad categories, solitons
and breathers [7, 8, 9, 10, 11, 24, 26, 40, 44, 50, 54, 55, 60]. In this case also the sepa-
ration line is not always distinct. Consider for example the AL equation. The stationary
one-soliton solutions of this equation are nothing but breathers [1, 2, 3]. ILMs are pre-
dominantly occurring nonlinear excitations in discrete nonlinear systems. To understand
this, we note that stable localized modes must always be either below the band or in band
gaps [22]. So, the discreteness in spatial variables can provide a favorable mechanism for
the formation and the stabilization of ILMs in discrete nonlinear systems by introduc-
ing finite bandwidths and consequently accessible band edges. This in turn increases the
probability that the energy of a localized self-organization in a discrete nonlinear system
will lie in the band gap. Again, the band width of a perfect linear discrete system depends
on the magnitude of the intersite coupling term. In a single band model, if such cou-
pling is weak, we have a narrow band. A discrete nonlinear system with narrow bands is
called anti-integrable. Such anti-integrable nonlinear systems are then expected to sustain
nonlinearity-induced localized modes in the band gaps by the above argument. There is
indeed a mathematical proof of this in the literature [50, 54, 55]. Of course, it is not neces-
sary to have anti-integrable systems to have breathers. The existence of a breather solution
in the N-AL equation has been shown [46]. In fact, in contrast to continuous nonlinear
systems, in any general discrete nonlinear systems, particularly in nonintegrable systems,
stationary breathers are predominantly occurring ILMs.

When localized states are formed below the lower edge of a band, they are unstag-
gered or symmetric localized states. These states are symmetric under reflection through
the center, and of course low-energy localized modes of the system [13, 46]. Further-
more, these symmetric localized states can have their peak at a lattice site or in between
two lattice sites. The first one is called on-site peaked unstaggered localized modes. The
other one is called intersite peaked unstaggered localized modes. When localized states
are formed above the upper edge of a band, they are staggered or antisymmetric localized
states [13]. These states are antisymmetric under reflection and high energy excitations
of a system. In case of staggered localized states, we analogously have odd-parity Sievers-
Takeno mode (ST) as well as even-parity Page (P) mode [58, 63, 65]. It is also to be noted
that staggered localized states have no analog in continuous systems [13]. Another kind
of ILMs, called twisted localized modes, can be found in nonlinear lattices [17, 39]. In
this category also, we can have unstaggered as well as staggered localized modes [17, 39].
When these modes are stationary modes of the system, they are called stationary localized
states (SLSs). We emphasize again that SLSs of any type, if they are true eigenmodes of
nonlinear systems, are also discrete breather [24, 26]. They may be called trivial breathers.

Though it is possible to have in circumstances stationary ILMs in discrete integrable
nonlinear systems, stationary ILMs are formed mostly in nonintegrable nonlinear sys-
tems. We discuss here the stationary ILMs of SLS type. We know that stationary solitons
of AL equations are examples of SLSs in integrable nonlinear equations, and these are
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also breather solutions of the same equation. We should however not fail to note that
though these breather solutions are band-edge states, their widths are undetermined.
On the other hand, the formation of SLSs in discrete nonlinear systems depends criti-
cally on two factors, the intersite hopping term which determines the width of bands in
the corresponding linear systems and the strength of the nonlinearity, which determines
the energy of the self-organized localized formation. If the first term is predominant,
the nonlinearity can produce at best localized modes near band edges. When localized
states are formed near band edges, they are weakly localized. In other words, they have
large widths and small amplitudes. Since the movement of these localized modes does
not require large-scale rearrangement in the lattice, such localized modes can be made to
move by applying small perturbing fields. As the movement of any unstaggered localized
state will not require an inversion of orientation in any of the sites, these states can easily
move compared to its staggered counterpart under small perturbation. Again, in case of
unstaggered localized states, intersite peaked states will have larger widths and smaller
amplitudes compared to their on-site peaked counterparts. So, intersite peaked states can
be made mobile easily by a small perturbation. In the other extreme where nonlinear-
ity is strong, strong localized modes having nonzero amplitudes only at a few sites are
formed. These are of course high-energy ILMs. Odd-parity Sievers-Takeno (ST) modes
and even-parity P modes in strongly anharmonic lattices are examples of such strongly
localized modes. Since these modes are formed from the acoustic branch of anharmonic
lattices, they appear above the band and hence are staggered localized states. It is further
found that ST modes are unstable to an infinitesimal perturbation. However, this mode
is not destroyed by the perturbation. Instead, any perturbation makes it move [39]. On
the other hand, P mode is stable and does not move by small perturbations. The mobility
difference of these modes can be understood by the PN potential. Because of the distribu-
tion of amplitudes, ST modes are formed at the maximum of the PN potential and the P
modes at the bottom of this potential [16]. For the P mode to move then we need enough
energy to excite this mode above the PN potential. Consequently, under a perturbation,
not sufficient to take it out of the well, this mode will remain immobile. On the other
hand, when ST modes are at the maximum of the PN potential, no energy is needed to
take it out of the well. So, an infinitesimal perturbation can make it mobile. The mobility
difference of on-site and intersite peaked unstaggered localized modes to an infinitesimal
perturbation can be understood by the same argument.

With this background, I plan to study here the formation of both unstaggered and
staggered stationary localized states in systems described by IN-DNLS [13]. To this end, I
plan to examine the dependence of the amplitude and width of the localized modes and
also the eigenfrequency of these modes on the nonintegrability parameter of the equa-
tion. The energy of the localized modes are calculated from the Hamiltonian. To the best
of my knowledge, a rudimentary asymptotic analysis of this problem is done using the
lattice Green function approach [13, 67]. For the detailed study, I plan to use the discrete
variational approach [5, 32, 48, 51]. In nonlinear dynamics, the standard variational ap-
proach has been applied to continuous nonlinear equations to study problems of non-
linear pulse propagation in optical fibers, and to soliton dynamics in massive Thirring
model, to mention a few [5, 6, 38, 52]. In the discrete variational approach, one directly
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proceeds to search for discrete solutions of the coupled discrete nonlinear evolution equa-
tions in a restricted subspace by imposing a suitable ansatz for the solution [5]. A proce-
dure of averaging over the discrete dimensions leads to either a set of coupled ODDEs or
a set of coupled algebraic equations or both for the solution parameters. Therefore, this
approach permits one to reduce the dimension of the problem from a set of many cou-
pled equations to generally a much smaller set of equations determined by the number
of parameters in the ansatz to be determined. Clearly, this method is advantageous when
the number of nonlinear equations is very large. This method has been applied to DNLS,
for example, to study problems of beam steering in nonlinear waveguide arrays [5], and
also to understand the formation and stability of static and dynamical solitons in one-
dimensional systems and Cayley trees [32, 48, 51]. We note in this context that equations
like DNLS describe the evolution of canonical coordinates of the canonical phase space
[5, 18]. On the other hand, AL, N-AL, and IN-DNLS in their generic form describe the
evolution of noncanonical coordinates in noncanonical phase spaces [1, 2, 3, 13, 18, 46].
Since these equations are derivable from Hamiltonians, the geometry of the dynamics is
automatically symplectic [18]. The noncanonical symplectic structure of the dynamics
is manifested in the structure of the Poisson brackets [11, 12, 13, 46, 64]. It is, however,
to be noted that there exists a global nonsingular coordinate transformation for these
equations, which transforms the noncanonical coordinates to canonical coordinates [12].
Therefore, these equations can also be described by canonical coordinates with canonical
Lagrangian and Poisson brackets, having canonical symplectic structure [12, 18]. I will
however proceed with the variational procedure with noncanonical coordinates. I note
that in Hamiltonian dynamics, the structure of the Poisson bracket is incorporated in the
Lagrangian [12, 53]. But my analysis is done with the appropriate functional, which is
also obtainable from the Lagrangian. So, the noncanonical symplectic structure of the
Poisson bracket does not pose any problem of finding SLSs in IN-DNLS. The other side
of this analysis is the following. It shows how the effective Lagrangian can be derived
from the knowledge of the Hamiltonian and constants of motion using the analogous
variational approach of finding eigenvalues in standard Sturm-Liouville problems [33].
In other words, I will also show that it is possible to set up the variational problem for
the determination of eigenvalues without the prior knowledge of the Lagrangian. Finally,
I note that it has been seen in continuous nonlinear equations that when the variational
method is applied to analyze solitary wave dynamics, the solitary wave solutions may
show instability in some range of variational parameters. On the other hand, the correct
dynamics may not show at all such instability. So, the variational method can produce
false instabilities [6, 51]. This consideration also applies to discrete nonlinear evolution
equations. However, I do not encounter any undesired instability in my solutions, which
can be ascribed to the variational method. So, this aspect, even though important, is not
dealt with here.

The organization of the paper is as follows. In Section 2 below, we present the ba-
sic equations to be studied. In Section 3, we present a set of results, coming from one
particular formulation. In Section 3, we also show that our formulation gives exact sta-
tionary localized states of the AL equation. In Section 4, we present another alternative
formulation of the same problem. We then present the corresponding results. Finally, we
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summarize our main results in Section 5. Besides, this paper contains three important as
well as relevant appendices.

2. Formalism

2.1. General derivation of the nonlinear IN-DNLS equation and the variational for-
mulation of the corresponding eigenvalue problem. We consider a dynamical system
having 2N generalized noncanonical coordinates, {φn,φ�n }, n = 1, . . . ,N , in a symplec-
tic manifold [18]. Let U and V be any two general dynamical variables of the system.
Any symplectic manifold has a natural Poisson bracket structure defined in terms of the
inverse of the symplectic structure function [18]. So, we now define the following non-
canonical Poisson bracket to characterize the manifold [12, 13, 64]:

{U ,V}{φ,φ�} = i
N∑
n=1

(
∂U

∂φn

∂V

∂φ�n
− ∂V

∂φn

∂U

∂φ�n

)(
1 +µ

∣∣φn∣∣2
)
. (2.1)

We now consider the Hamiltonian

H̃=−
∑
n

(
φ�n φn+1 +φ�n+1φn

)− 2ν
∑
n

∣∣φn∣∣2
+ 2ν

∑
n

ln
[

1 +
∣∣φn∣∣2

]
, (2.2)

which is obtained from the original IN-DNLS Hamiltonian H through the transforma-

tions φn →√µφn, n ∈ Z, and ν→ ν/µ [12, 13]. The corresponding Lagrangian �̃ in the
scaled variables [12, 53] is

�̃= i

2

∑
n

(
φ̇nφ

�
n − φ̇�n φn

) ln
[

1 +
∣∣φn∣∣2

]
∣∣φn∣∣2 − H̃. (2.3)

The dynamical evolution of the nth generalized coordinate φn can then be obtained by
using (2.1) and (2.2):

iφ̇n =
(

1 +
∣∣φn∣∣2

) ∂H̃
∂φ�n

=−
(

1 +
∣∣φn∣∣2

)(
φn+1 +φn−1

)− 2ν
∣∣φn∣∣2

φn,

(2.4)

for n∈ Z [12, 13]. The other set of equations is obtained by conjugation. The same equa-
tion can be obtained from the Lagrangian by using the standard Lagrangian equations of
motion. We note that under the global gauge transformation φn→ φneiα, (2.2), (2.3) and

(2.4) remain invariant. It can also be shown from (2.4) that �̃=∑n ln[1 + |φn|2] is a con-
stant of motion [13]. We now assume that φn = λnΨn exp(−iωt), n ∈ Z, where λ = ±1.
Furthermore, Ψn, n∈ Z, are taken to be real [13]. Then from (2.4), we get

(Ω̂Ψ̂)n = ωΨn + λ
(
1 +Ψ2

n

)(
Ψn+1 +Ψn−1

)
+ 2νΨ3

n = 0. (2.5)
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This is a nonlinear eigenvalue problem and its solutions give frequencies of stationary
localized states of IN-DNLS equation [13]. Introducing the above ansatz for φn, n∈ Z, in

�̃ and H̃, we get

�̃=
∑
n

ln
[
1 +Ψ2

n

]
, (2.6)

H̃=−2λ
∑
n

ΨnΨn+1− 2ν
∑
n

Ψ2
n + 2ν�̃

= H̃0 + 2ν�̃.
(2.7)

We define next

F̃= H̃−Λ�̃, (2.8)

where Λ is the Lagrange multiplier [35]. Setting δF̃= 0, we get back (2.5), when Λ= ω. It

is also important to note that the functional, F̃ can also be obtained from �̃ after intro-
ducing the ansatz. In Appendix A, I plan to discuss the importance of the functional F̃.

2.2. Variational approach with sech ansatz. We first note that the system described by
IN-DNLS equation (2.4) has lattice translational invariance. So, this system can only form
ILMs, arising from the competition between the localizing nonlinearity and the disper-
sion from the intersite hopping [61]. As the corresponding linear system is a discrete
single band system, this further enhances the propensity of formation of ILMs either be-
low or above the band. According to the theory of localization, any self-localized state in
one-dimensional systems will have exponential localization in the following sense. The
amplitude Ψn of the localized mode at the nth site will show exponential decay with |n|
for large values of |n| [22, 36, 57]. We should also keep in mind that a modulus function
(|···|) cannot appear in a physical problem in its generic form. This type of functions
can only be obtained in any physical problem in the asymptotic limit. Furthermore, when
ν= 0, (2.4) becomes the well-known AL equation [1, 2, 3, 13]. The one-soliton solution
of Ablowitz-Ladik (AL) equation can be either static or dynamic. For both cases, it has
the sech profile, which satisfies also the other requirement for localized states in one di-
mension. So, we use the ansatz Ψn = Φ(1/ coshβ(n− x0)), n ∈ Z. This ansatz has also
been used in the previous analysis [13]. For on-site peaked and ST-like localized states,
x0 = 0, and for intersite peaked and P-like states, x0 = ±1/2 [5, 58, 63, 65]. We further
write Φ2 = Ψ. While β−1 gives the half width of localization, Φ denotes the maximum
amplitude of the states. Now, the introduction of this ansatz in the functional F̃ makes it
an algebraic function of the parameters of the ansatz

F̃
(
Ψ,β,λ,x0

)= H̃
(
Ψ,β,λ,x0

)−Λ�̃
(
Ψ,β,x0

)
, (2.9)

and we need to find relative extrema of F̃ with respect to variables Ψ and β [35]. The
finding of relative extrema with respect to these two variables, Ψ and β, means that dF̃= 0
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should imply the following equations [35]:

∂H̃0

∂Ψ
−Λ1

∂�̃
∂Ψ

= 0,

∂H̃0

∂β
−Λ1

∂�̃
∂β

= 0,

(2.10)

where Λ1 = Λ− 2ν. For what follows, we assume that ∂�̃/∂Ψ �= 0. Then from (2.10), we
find that

Λ= ω = 2ν +
∂H̃0/∂Ψ

∂�̃/∂Ψ
(2.11)

and also

f
(
Ψ,β,λ,x0

)= {H̃0,�̃
}
{β,Ψ} = 0. (2.12)

The other required equation is

�̃
(
Ψ,β,x0

)= C = constant. (2.13)

We note that we have three unknowns, namely, Λ,Ψ, and β. But we also have three inde-
pendent equations to solve these unknowns. Hence, the problem is well posed.

2.3. Calculation of H̃0 and �̃. Introducing the expression of Ψn, n∈ Z, in H̃0 and �̃ we
get

H̃0
(
Ψ,β,λ,x0

)=−2λΨS1
(
β,x0

)− 2νΨS2
(
β,x0

)
, (2.14)

where

S1
(
β,x0

)= ∞∑
n=−∞

1
coshβ

(
n− x0

)
coshβ

(
n+ 1− x0

) ,

S2
(
β,x0

)= ∞∑
n=−∞

1

cosh2β
(
n− x0

) ,

�̃
(
Ψ,β,x0

)= ∞∑
n=−∞

Yn
(
Ψ,β,x0

)
,

(2.15)

where

Yn
(
Ψ,β,x0

)= ln

[
1 +

Ψ

cosh2β
(
n− x0

)]. (2.16)
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To evaluate S1(β,x0), S2(β,x0), and �̃(Ψ,β,x0), we make use of the famous Poisson sum
formula [5, 45, 46, 70, 72] which reads

∞∑
n=−∞

f (nβ)= 1
β

∫∞
−∞

dy

[
1 + 2

∞∑
s=1

cos

(
2πsy
β

)]
f (y). (2.17)

This application yields

S1
(
β,x0

)= 2
sinhβ

,

S2
(
β,x0

)= 2
β

+
4
β

∞∑
s=1

Γs
(
β,x0

)
,

(2.18)

Γs
(
β,x0

)= cos2πsx0
π2s/β

sinh
(
π2s/β

) ; (2.19)

√
Ψ(1 +Ψ)

∂�̃
∂Ψ

= 2
β

arcsinh
√
Ψ+

2π
β

∞∑
s=1

Ts(Ψ,β)cos2πsx0, (2.20)

where

Ts(Ψ,β)= sin
[
(2πs/β)arcsinh

√
Ψ
]

sinh
(
π2s/β

) . (2.21)

We now define the function, f1(β,ν,λ,x0)

f1
(
β,ν,λ,x0

)= sinhβ
1 + λν(sinhβ/β)S3

(
β,ν,λ,x0

) , (2.22)

where

S3
(
β,ν,λ,x0

)= 1 + 2
∞∑
s=1

cos2πsx0
π2s/β

sinh
(
π2s/β

) . (2.23)

Now, with this definition, we have

H̃0 =−4λ
Ψ

f1
(
β,ν,λ,x0

) , (2.24)

∂H̃0

∂Ψ
=− 4λ

f1
(
β,ν,λ,x0

) , (2.25)

∂H̃0

∂β
=−4λΨ

∂
(
1/ f1

(
β,ν,λ,x0

))
∂β

. (2.26)
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Again from (2.20), we have

�̃
(
Ψ,β,x0

)= 2
β

(
arcsinh

√
Ψ
)2

+ 4
∞∑
s=1

cos2πsx0
sin2 ((πs/β)arcsinh

√
Ψ
)

ssinh
(
π2s/β

) , (2.27)

and from (2.27) we in turn get

∂�̃
∂β

=− 2
β2

(
arcsinh

√
Ψ
)2− 4π arcsinh

√
Ψ

β2

∞∑
s=1

cos2πsx0
sin
(
(2πs/β)arcsinh

√
Ψ
)

sinh
(
π2s/β

)
+

4π2

β2

∞∑
s=1

cos2πsx0
sin2 ((πs/β)arcsinh

√
Ψ
)

sinh
(
π2s/β

) coth
π2s

β
.

(2.28)

The calculation of (2.27) is given in Appendix B.
In our variational formulation, in principle x0 is another parameter to be determined

from the extrema of the functional F̃ (2.8). Now, the extremization of F̃ with x0 inclusive
will yield, along with (2.10), the following equation:

∂H̃0

∂x0
−Λ1

∂�̃
∂x0

= 0. (2.29)

But, from (2.22), (2.24), and (2.27), it can be easily proved that as 0 ≤ |x0| < 1, x0 =
0,±1/2.

3. The variational formulation with �̃ constant : results and discussion

3.1. Ablowitz-Ladik limit. In the Ablowitz-Ladik limit, ν = 0. To probe this limit, we
evaluate relevant functions and their derivatives along the curve Ψ= sinh2β. Along this
curve, from (2.20), (2.27), and (2.28) we have

�̃
(
Ψ,β,x0

)= 2β, (3.1)

∂�̃
∂β

=−2, (3.2)

∂�̃
∂Ψ

= 2
sinhβcoshβ

. (3.3)

Since ν= 0 in this case, we also have from (2.22)–(2.26)

∂H̃0

∂Ψ
=− 4λ

sinhβ
, (3.4)

∂H̃0

∂β
= 4λcoshβ. (3.5)
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We find from (3.2)–(3.5) that f (Ψ,β,λ,x0)= {H̃0,�̃}{β,Ψ} = 0. Furthermore, from (2.11),

(3.3), and (3.4) we get ω = −2λcoshβ. The energy Ẽ = H̃ = −4λsinhβ. Due to positive

semidefiniteness of �̃, we get from (3.1) that β should also be positive semidefinite. This
is consistent with the one-soliton solution of Ablowitz-Ladik equation.

We now consider the case when ν �= 0. For convenience, we define

g
(
β,x0

)= 1
β

[
1 + 2

∞∑
s=1

cos2πsx0
π2s/β

sinh
(
π2s/β

)]. (3.6)

Along the line Ψ= sinh2β, we find that

f
(
Ψ,β,λ,x0

)= {H̃0,�̃
}
{β,Ψ} = −8νg

(
β,x0

)
tanhβ

d lnA0
(
β,x0

)
dβ

, (3.7)

where A0(β,x0) = sinhβg(β,x0). When β→ 0, tanhβ(d lnA0(β,x0)/dβ)→ β2/3 and con-
sequently f (Ψ,β,λ,x0) ∼ −(8ν/3)β2, provided ν is finite. So, when (νβ2) ∼ o(1), Ψ =
sinh2β is an asymptotic solution of a localized state with a large width and a small ampli-
tude. Eigenvalue ω and energy Ẽ= H̃ of these localized states are

ω = 2ν− 2
(
λ+ νA0

)
coshβ

∼−2λ−
(
λ+

4ν

3

)
β2,

Ẽ=−4λβ− 2
3
β3− 4νβ

[
A0 sinhβ

β
− 1

]
∼−4λβ− 2

3
(λ+ 2ν)β3.

(3.8)

So, according to this asymptotic analysis, when ν �= 0, the nonintegrability parameter ν
and the width parameter β of the SLS are not independent of each other.

3.2. Stationary localized states from IN-DNLS. We now consider various mathemati-
cal aspects of the formation of stationary localized states in IN-DNLS. We consider first
(2.13) along with (2.27). We restrict ourselves to β ≥ 0, which is necessary to keep Ψ pos-
itive semidefinite. Furthermore, in the following analysis, we assume that β ≤ 1. In this
situation, we can ignore infinite sums in (2.22) and in (2.27). Due to this approxima-

tion, (2.27) yields Ψ = sinh2α
√
β where α is a constant, as required by (2.13). Since the

right-hand side of (2.13) is taken to be a number constant C = 2.0α2, we have d�̃/dβ = 0
irrespective of the value of β. This in turn gives

dΨ

dβ
=− ∂�̃/∂β

∂�̃/∂Ψ
. (3.9)

Now introducing (3.9) in (2.12), we get dH̃0/dβ = 0. In other words, permissible values
of β are determined from the extrema of H̃0 as a function of β. From the functional
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Figure 3.1. The variation of the smaller root βs of (3.10) as a function of the nonintegrability param-
eter ν. Since λ= 1, these states are unstaggered stationary localized states. Curve I: α= 0.5 and curve
II: α= 0.25.

dependence of H̃0 and Ψ on β, we ultimately get

g1(α,β)= β

sinhβ
coshβ

tanhα
√
β

α
√
β

− 1,

g2(α,β)= 1−
tanhα

√
β

α
√
β

,

νλ= β

sinhβ
g1(α,β)
g2(α,β)

.

(3.10)

We note that for a given value of the parameter α, β is determined by the nonintegrabil-
ity parameter, ν. Furthermore, (3.10) yields two positive values of β as roots, under two
conditions, namely, νλ ≥ 0 and |ν| < |νcritical|. The behavior of the smaller root (βs) as a
function of ν for λ = 1 and α = 0.5 and 0.25 are shown in Figure 3.1. In Figure 3.2, we
present the variation of βs as a function of the parameter α for various values of ν ≥ 0.
It should be noted from these figures that βs ≤ 1 for these values of α and the chosen
interval of ν. So, the neglect of infinite sums in (2.22) and (2.27) is justified. It is a sim-
ple exercise to see from (3.10) that when |ν| → 0, βs → α2. Then, for small values of ν
the asymptotic solution is the AL stationary localized state solution. This is a very im-
portant result. This asymptotic analysis reveals that this stationary localized state solu-
tion of IN-DNLS continuously moves to the AL stationary localized state solution when
ν→ 0 from either side. It is further important to note from Figure 3.2 that for α	 1, we

have α≈
√
βs/(1.0 + νλ), νλ≥ 0. Consequently,

√
Ψ≈ sinh(βs/

√
(1.0 + νλ)). But, as for this

range of argument, sinhx ≈ x, we have
√
Ψ∼ βs/

√
1.0 + νλ. This agrees with the existing

asymptotic analysis [13].
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Figure 3.2. The variation of the smaller root βs of (3.10) as a function of the parameter α for var-
ious values of the nonintegrability parameter ν. Since λ = 1, these states are unstaggered stationary
localized states. Curve I: ν= 1.05, curve II: ν= 0.75, curve III: ν= 0.5, curve IV: ν= 0.25, and curve
V: ν= 0.10. Each curve is associated with a dotted curve which shows the variation of α2(1 + νλ) as a
function of α for the corresponding value of ν.
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Figure 3.3. The variation of the larger root βl of (3.10) as a function of νλ. If λ= 1, these states are then
unstaggered stationary localized states. Curve I : α= 0.1, curve II: α= 0.25, and curve III: α= 0.50.

The variation of the large root βl as a function of νλ for various values of α is shown
in Figure 3.3. Again, by comparing Figures 3.1 and 3.3, we see that as ν increases, the
large root βl of (3.10) decreases from ∞, while the other root βs increases from zero.
So, for a given α, the value of νcritical is determined by the inflection point of H̃0. This
then implies that the equations used to solve βcritical and νcritical are obtained by setting



K. Kundu 609

region
state
Two-

No-state region

0 0.5 1 1.5 2
α

0

3

6

9

12

15

ν c
ri

ti
ca

l

Figure 3.4. The variation of νcritical as a function of the parameter α for unstaggered stationary local-
ized states λ = 1. νcritical is obtained from (3.10) and (3.11) in the text. Note that the curve separates
the two-state region from the no-state region.

both dH̃0/dβ = 0 and d2H̃0/dβ2 = 0. While the first condition gives (3.10), the second
condition yields (3.11) as shown below:

g3(β)=
tanh

√
β√

β
, g4(β)= β

sinhβ
,

g5(α,β)= 1− g3
(
4α2β

)− 4g3
(
4α2β

)(
1− g3

(
α2β

))
,

g6(α,β)= 1− g3
(
4α2β

)(
1 + 4coshβg4(β)

)
,

g7(α,β)= g4(β)g2
3

(
α2β

)(
β2 + 2g2

4 (β)
)
,

g8(α,β)=−2ν
α2

β2
cosh2α

√
βg5(α,β),

g9(α,β)=−2λ
α2

β2
cosh2α

√
βg4(β)g6(α,β),

g10(α,β)=−4λ
α2

β2
cosh2α

√
βg7(α,β),

g8(α,β) + g9(α,β) + g10(α,β)= 0.

(3.11)

We again note that λ = ±1 and ν in (3.11) is given by (3.10). Of course, νλ is positive.
We find from (3.11) that when α→ 0, νcritical →∞. Again, when α� 1, νcritical ∼ 0. The
functional dependence of νcritical on α is shown in Figure 3.4.

The other important case is when νλ < 0. This means that we have either an unstag-
gered state with−ν or a staggered state with +ν. In this case if |νλ| > 1, both roots of (3.10)

are negative. Inasmuch as �̃(ψ,β,x0) is positive semi-definite, it is easy to see from (2.27)
that this is not permissible. For this case, from (3.10) expectedly we obtain that when
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Figure 3.5. The variation of the smaller root βs of (3.10) as a function of νλ for νλ < 0 for various
values of the nonintegrability parameter α. For λ=−1, these states are staggered stationary localized
states. Curve I: α= 1.0, curve II: α= 0.75, curve III: α= 0.5, curve IV: α= 0.25, and curve V: α= 0.10.
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Figure 3.6. The variation of the smaller root βs of (3.10) as a function of the parameter α for various
values of the nonintegrability parameter ν. Since λ=−1, these states are staggered stationary localized
states. Curve I: ν= 0.1, curve II: ν= 0.25, curve III: ν= 0.5, curve IV: ν= 0.75, curve V: ν= 0.90, and
curve VI: ν= 0.95. Each curve is also associated as in Figure 3.2 with a dotted curve which shows the
variation of α2(1 + νλ) as a function of α for the corresponding value of ν.

νλ→−1+, β→ 0, and when νλ→ 0−, β→ α2. See both Figures 3.1 and 3.5. Inasmuch as
for α≤ 1, permissible values of βs ≤ 1, the neglect of infinite sums in (2.22) and (2.27) is
again well justified. The variation of βs as a function of ν for α = 1.0,0.75,0.5,0.25, and

0.10 is shown in Figure 3.5. It is seen from Figure 3.6 that when νλ < 0, α=
√
βs/(1.0 + νλ)
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Figure 3.7. Comparison of the variation of the smaller root βs of (3.10) for both unstaggered (λ= 1)
and staggered (λ=−1) stationary localized states as a function of the parameter α for various values
of the nonintegrability parameter ν. Curve I: νλ=−0.1, curve II: νλ= 0.1, curve III: νλ=−0.25, curve
IV: νλ= 0.25, curve V: νλ=−0.5, and curve VI: νλ= 0.5.

is a very good approximation [13]. Another important aspect is in Figure 3.7, which
shows that for a given ν > 0, the staggered SLS (λ = −1) has larger width than the cor-
responding unstaggered SLS (λ= 1). So, the SLSs for νλ < 0 are basically localized states
with large widths and small amplitudes. As for eigenvalues of these stationary localized
states, introducing (2.20) and (2.25) into (2.11) and using the same approximation as
used for finding the roots of (3.10), we obtain that

ω =−2ν

 sinh2α
√
β

2α
√
β

− 1

− 2λ
β

sinhβ

sinh2α
√
β

2α
√
β

. (3.12)

The energy of these stationary states is given by

Ẽ= H̃= H̃0 + 2ν�̃=−4λ
sinh2α

√
β

sinhβ
− 4να2

[
sinh2α

√
β

α2β
− 1

]
. (3.13)

β in (3.12) and (3.13) is the root of (3.10). For β = βs and α not too large, these equations
are well justified. We already noted that when ν= 0, βs = α2. Furthermore, |νλ| 	 1 and
also α	 1, βs → α2. We obtain the respective limiting results for these cases from (3.12)
and (3.13).

3.3. Stability and position of stationary localized states of IN-DNLS. We now discuss
the issue of stability of these stationary localized states. We note first that when ν= 0, the
resulting nonlinear equation is the AL equation, which has both unstaggered and stag-
gered stationary localized states. These are basically band-edge states. Our variational cal-
culation correctly produces these states of the AL equation, by letting βs→ α2 as |ν| → 0.
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See Figures 3.1 and 3.5. Over and above it suggests another state for which βl =∞. This
can be easily seen in (3.10). It is again seen from Figures 3.1 and 3.2 that for any α, the in-
troduction of any ν, however small, with νλ > 0, makes βs > α2. We observe that β−1

s gives
the half-width of the localized state. So, for these localized states, the half-width reduces
with increasing ν. Since λ= 1 and ν > 0 (νλ > 0) imply that the on-site nonlinear trapping
potential is attractive, any positive enhancement of ν should reduce the half-width of the
SLS by effectively reducing the intersite hopping. Whether a given ν defines an attractive
or a repulsive potential also depends upon the value of λ. So, the above argument will
hold good whenever νλ > 0. When νλ is positive, unstaggered stationary localized states
characterized by βs are stable. On the other hand, for ν= 0, if there is any stationary lo-
calized state corresponding to βl =∞, it is a state with a peak of infinite height at a given
site with a half-width of a few sites. Again, we see from Figure 3.3 that for any α, when
νλ increases, βl decreases. This means that the half-width increases. On the other hand,
the introduction of ν with νλ > 0 should reduce the half-width as our argument suggests.
Hence, stationary localized states corresponding to βl are unstable. These states, if existing
in this system, will be unstable towards perturbation.

Consider next the case where νλ < 0. In this case, we have either staggered localized
states for positive ν or unstaggered localized states for negative ν. First of all, there is
only one set of stationary localized states. Furthermore, 0≤ βs ≤ α2 for −1≤ νλ≤ 0. See
Figure 3.5. Since, for ν > 0, staggered localized states are stabilized by increasing the half-
width (see Figure 3.7), states characterized by βs are stable. For ν negative and λ = 1, or
ν > 0 and λ = −1, the on-site nonlinear potential is repulsive. So, the expansion of the
half-width with decreasing ν is energetically favorable (see Figure 3.7).

So far our analysis did not include the effect of x0, the position of the peak on the
formation of stationary localized states and their stability. But this is also an important
part of the problem. However, even a semi-rigorous investigation of this problem in this
formulation requires the analytical solution of Ψ as exactly as possible from (2.27). As
there is no simple analytical way of solving (2.27) for Ψ, one can take recourse to ap-
proximation methods like the method of successive substitutions [34]. I will describe in
Appendix C how this method can be used to get approximate dependence on x0, of β, ω,
and E of the SLS. Of course, the other possibility is to find real positive roots of (2.27)
graphically. Inasmuch as the exact analytical solution of Ψ as a function of β is difficult in
this approach, we will not follow the present line of investigation further. On the contrary,
we will show next how the exact dependence of the parameter β, the frequency ω, and the
energy E of the SLS on x0 can be obtained by a rational alternation in the variational
procedure.

4. The variational formulation with H̃0 constant: results and discussion

Since H̃ and �̃ ((2.2) and (2.6), resp.) are two constants of motion, from the expression of
H̃, we see that H̃0 (2.2) is also a constant of motion. So, we reformulate in this section our
variational problem in which H̃0, in lieu of �̃, is taken to be the number constant. In this
modified variational approach, we take F̃= Λ2H̃0 + 2ν�̃, where (Λ2− 1) is the Lagrange
multiplier. This modified approach also yields (2.11) for the eigenvalue, ω in (2.5). One
other equation required to solve one of the two unknowns, namely, β and Ψ, is given by
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(2.12). These results are also derived in Appendix A. From (2.24) we find that

Ψ
(
β,ν,λ,x0

)= a f1(β,ν,λ,x0
)
, (4.1)

where a is a number constant, yields H̃0 =−4λa, which is again a number constant. Most
importantly, in this formulation Ψ is determined explicitly in terms of β within a mul-
tiplicative number constant a. Inasmuch as Ψ is positive semi-definite by definition, the
sign of this constant should be such that a f1 is positive semi-definite. Furthermore, in
this approach (2.24) yields dH̃0/dβ = 0, irrespective of β. This in turn gives

dΨ

dβ
=− ∂H̃0/∂β

∂H̃0/∂Ψ
=Ψ

∂ ln f1
(
β,ν,λ,x0

)
∂β

, (4.2)

where we have used (2.25) and (2.26). Equation (4.2) can also be obtained from (4.1).
Now introducing (4.2) in (2.12), we get d�̃/dβ = 0. In other words, permissible values of

β are determined from the extrema of �̃, as a function of β. The determination of extrema
in turn needs (4.2), (2.20), and (2.28).

Before we proceed further, we observe the following. Here, we have a variation prob-
lem involving two variables, Ψ and β. When Ψ is expressed as a function of β, we obtain
the Hamiltonian H̃ = H̃(β), and SLSs are determined from its extrema, which are ob-
tained by setting dH̃/dβ = 0. Of course, instead of β, we could have used Ψ as the funda-

mental variable. Now, when �̃ is constant, the structure of H̃ (2.7) is such that its extrema
are determined from the extrema of H̃0. We have already investigated here this part. On
the other hand, we also have the option to take H̃0 to be constant, as it is done in this
section and in sections to follow. In this limit the extrema of H̃ (2.7) are determined from
the extrema of �̃, provided �̃(β) has extrema. Another equivalent way of envisioning the
problem comes from (2.12), which is of course the direct consequence of the structure of
the Hamiltonian H̃ (2.7). We can think of an effective dynamical system having two con-
jugate dynamical variables, β and Ψ. Then, the Poisson bracket formula (2.12) suggests
that the effective or the reduced dynamical system can be described by the Hamiltonian

H̃0(Ψ,β) having a constant of motion �̃(Ψ,β), or vice versa. Stationary localized states
in this dynamical system picture are determined by fixed points (FPs) of the effective or
the reduced dynamical system. The two sets of extrema obtained from two procedures or
two pictures may not be identical. So, in the following section, I investigate this aspect of
the problem.

4.1. Equation for the fixed points of the reduced dynamical system and results. Now,

if we altogether ignore the infinite sum in (2.27) which defines �̃(Ψ,β,x0), we obtain

√
Ψ= sinh

[
β√

Ψ(1 +Ψ)
dΨ

dβ

]
. (4.3)

Introducing (4.1) and (4.2) in (4.3), we get the equation which determines β. If we are
mostly interested in the roots of (4.3), having magnitude less than unit magnitude, we
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Figure 4.1. Two real roots of (4.3) in the text as a function of the nonintegrability parameter ν for
three values of the parameter a. Since λ = 1, these states are unstaggered stationary localized states.
Curves I(a) and I(b): a = 1.5, curves II(a) and II(b): a = 1.75, and curves III(a) and III(b) a = 2.0.
While (a) or the lower part of all curves is for the smaller root βs, (b) or the upper part of these curves
show the variation of the larger root βl . Note that this figure also shows the variation of νcritical as a
function of the parameter a.

can as before ignore altogether the infinite sum in (2.22), which defines f1(β,ν,λ,x0).
This further simplifies the equation, which determines β.

When ν = 0, using (2.22) and (4.1) we find that βs = arcsinha makes the (4.3) an

identity. We will later show that even with the full expression of d�̃/dβ, derivable from

(2.27), the above choice of βs makes d�̃/dβ identically zero. In other words, irrespective of

�̃ or H̃0 taken to be a constant in this constrained variational approach, we get the same
stationary AL solitons with ω = −2λcoshβ in both cases. Furthermore, when ν ∼ o(1),
we expect from this result that βs ∼ arcsinha. This is also borne out in our numerical
calculation, albeit not shown here. We will show it in the exact calculation.

Considering (4.3), we consider first the unstaggered localized states with ν > 0. First of
all, for every value of a > 0, we find a νcritical, such that for ν > νcritical, (4.3) has no real root.
On the other hand, ν < νcritical(a), we find two roots of (4.3) for a given value of a > 0. It is
also found that βs is a monotonically increasing function of ν while βl is a monotonically
decreasing function of ν. These features of the solutions are shown in Figure 4.1. Then,
according to our previous discussion, stationary localized states characterized by βs are
stable, while the states characterized by βl are unstable. In case of staggered localized states
having ν > 0, we find that for |νλ| > 1, (4.3) has no root. Furthermore, 0 < |νλ| < 1, (4.3)
has only one root, βs. We find for λ=−1 that βs decreases with increasing ν. This is shown
in Figure 4.2. Since β−1

s gives a measure of the width of the localized states, from our
finding we conclude that staggered stationary localized states vanish whenever |νλ| ≥ 1.
This happens due to an effectively repulsive on-site nonlinear potential. This potential
helps spread the amplitude over the whole sample. We have already mentioned this. It is
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Figure 4.2. The variation of the smaller root βs of (4.3) in the text as a function of the nonintegrability
parameter ν for various values of the parameter a. Since λ=−1, these states are staggered stationary
localized states. Curve I: a= 0.5, curve II: a= 1.0, curve III: a= 1.5, and curve IV: a= 2.0.
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Figure 4.3. The variation of the smaller root βs of (4.3) in the text as a function of the parameter a for
various values of the nonintegrability parameter ν. Since λ= 1, these states are unstaggered stationary
localized states. Curve I: ν= 0.75, curve II: ν= 0.40, curve III: ν= 0.25, curve IV: ν= 0.0. Curve VI is
the straight line, βs = a.

also found for both unstaggered and staggered cases that for a ∼ o(1), a ∼ sinhβs ∼ βs,
and hence, in this asymptotic limit, (4.1) together with (2.22) yields

√
Ψ∼ βs/

√
1.0 + νλ.

Figure 4.3 shows the result for the unstaggered states with ν > 0. However, the result for
staggered localized states is not shown here. This result agrees with the asymptotic result
in [13].
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Figure 4.4. The variation of βroot as a function of the parameter a, for various values of the nonin-
tegrability parameter ν. This is obtained from the exact calculation. For this figure, H̃0 = constant,
x0 = 0.0, and λ= 1. Curve I: ν= 0.0, curve II: ν= 0.10, curve III: ν= 0.40, curve IV: ν= 0.75, curve V:
ν= 0.90, and curve VI: ν= 1.0. Curve VII: the dashed curve is the straight line βroot = a.

The next important aspect is to study the effect of x0 on the formation of these states.
Another equally important aspect is to examine if unstable localized states that we find in
the truncated equations or equivalently in the leading term analysis exist in the exact cal-
culation. We first emphasize that the problem can be solved exactly in this reformulated
version. For our numerical analysis, we use the “FindMinimum” program of Mathemat-
ica, version 4. We discuss below the exact solution.

4.2. The exact solution. We consider first the case of unstaggered stationary localized
states for ν > 0 and x0 = 0.0. Figure 4.4 shows the variation of βroot as a function of the pa-
rameter a for various values of the nonintegrability parameter ν. The corresponding fig-
ure to be compared is Figure 4.3. We note that for ν= 0.0, we obtain from (4.1) and (2.22)
that Ψ(β,0.0,λ,x0)= asinhβ. On the other hand, analytically Ψ(β,0.0,λ,x0)= sinh2β. So,
we must have then a = sinhβroot. This is clearly obtained in our numerical analysis. As
ν= 0.0 for these curves, both curve I of Figure 4.4 and curve V of Figure 4.3 are defined
by the equation βroot = arcsinha. We further see in Figure 4.4 and also in Figure 4.3 that
for small values of a, all curves merge simultaneously on the line βroot = a and curve I
(Figure 4.4) or curve V (Figure 4.3). This in turn implies that for a∼ o(1), a∼ sinhβroot ∼
βroot. Hence, for on-site peaked unstaggered localized states,

√
Ψ ∼ βroot/

√
1.0 + ν is the

asymptotic result [13]. We further note that in the exact calculation, we do not find any
root corresponding to βl of (4.3) for any value of a. This conclusion is reached from the
following observation in our numerical analysis. In our numerical analysis, we have used
N and M number of terms in two infinite sums in (2.22) and (2.27), respectively. We find
that βl →∞ monotonically if both N and M →∞, either separately or simultaneously.
So, unstable stationary localized states obtained from (4.3) are spurious and due to the
truncation error. Similar argument should hold good for the analysis of (3.10).
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Figure 4.5. The variation of βroot as a function of the nonintegrability parameter ν for various values
of the parameter a. It is obtained from the exact calculation. For this figure, H̃0 = constant, x0 = 0.0,
and λ= 1. Curve I: a= 0.5, curve II: a= 1.0, curve III: a= 1.5, and curve IV: a= 2.0.

The variation of βroot of unstaggered localized states as a function of ν for various
values of a from the exact calculation is shown in Figure 4.5.

We see that βroot is a monotonically increasing function of ν for ν > 0.0. We note that
β−1

root gives a measure of the width of the localized states. We have also argued before
that the width of the stable unstaggered localized states for this case must decrease with
increasing ν. So, |βroot| must increase with increasing ν, if it were to characterize stable
SLSs. Inasmuch as βroot satisfies this criterion, stationary localized states corresponding
to βroot are stable.

For intersite peaked unstaggered localized states, having x0 = 0.5, the dependence of
βroot on a for a fixed ν is also investigated for various values of ν > 0. It is shown in
Figure 4.6. Figure 4.6 also includes for comparison the variation of βroot as a function
of a for x0 = 0.0. We note that localized states have larger widths for x0 = 0.5. This in turn
implies that intersite peaked SLSs will have higher energy. Similarly, the variation of βroot

as a function of ν for x0 = 0.5 is shown in Figure 4.7. We again note that stationary local-
ized states for x0 = 0.5 have larger widths. Most importantly intersite peaked SLSs show
weak dependence on ν. This is expected from physical considerations.

In Figure 4.8 we show the variation of energy of the on-site and intersite peaked sta-
tionary localized states as a function of ν for x0 = 0.0 and 0.5. When ν∼ o(1), the solution
approximately has the continuous symmetry of the solution of ν= 0.0 [1, 2, 3]. So, in this
limit, both on-site and intersite peaked states should have almost the same energy. This is
clearly seen in Figure 4.8. Similarly, on-site peaked states are supposed to be more stable
than intersite peaked states. This is also clearly seen by comparing curves I(b) and II(b)
in this figure. Again, when a reduces, the width of the corresponding stationary localized
state increases. Consequently, the energetic distinction between the on-site and intersite
peaked states reduces. This is also clearly evident in Figure 4.8.
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Figure 4.6. The variation of βroot as a function of the parameter a for two positive values of ν. The
exact solution for λ= 1. For the curve I, ν= 0.0. For curves II(a) and II(b), ν= 0.40, but x0 = 0.5 and
0.0, respectively. For curves III(a) and III(b), ν= 1.0, but x0 = 0.5 and 0.0, respectively.
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Figure 4.7. The variation of βroot as a function of the nonintegrability parameter ν for two positive
values of the parameter a. The exact solution for λ = 1. For curves I(a) and I(b), a = 1, but x0 = 0.5
and 0.0, respectively. For curves II(a) and II(b), a= 2.0, but x0 = 0.5 and 0.0, respectively.

A comprehensive understanding of these results, delineating the basic differences of
on-site peaked and intersite peaked unstaggered SLSs, is definitely required. To this end,
we note that for ν > 0, these results indicate the operation of a nonlinear attractive poten-
tial in the system. This effective nonlinear potential is maximally attractive at lattice sites.
From the physical consideration, we argue that the attractive potential assumes maximum
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Figure 4.8. The variation of the energy of unstaggered stationary localized states as a function of ν for
two values of a and for two permissible values of x0. Of course, the result is obtained from the exact
calculation with H̃0 = constant. For curves I(a) and II(a), a = 1.0, but x0 = 0.0 and 0.5, respectively.
For curves I(b) and II(b), a= 2.0, but x0 = 0.0 and 0.5, respectively.

values at the center of any two consecutive lattice sites. Since the system has lattice trans-
lational invariance, this potential will also have the periodicity of the underlying lattice.
An attractive potential effectively reduces the intersite hopping of a particle, consequently
helping its localization. Secondly, any state can be thought of as an effective particle with
an effective mass, executing a motion in a potential. From the physical consideration, it
is easy to see that the stronger an attractive potential is, the stronger the localization is.
Consequently, the heavier the effective mass of the particle is. Conversely then the in-
verse of the effective mass gives the localization length of the effective state. In this picture
then the unstaggered SLS for ν > 0 is equivalent to an effective particle sitting either at
the bottom of any well (x0 = 0.0) or at the top of the same well (x0 = 0.5). So, the un-
staggered SLS with x0 = 0.0 will correspond to a heavier effective mass particle than the
corresponding SLS with x0 = 0.5. In terms of localization length, the first kind of states
will be more localized than the second type. Another important deduction from this pic-
ture is that energetically the first kind of states should be more stable. These results are
seen in our numerical analysis. Again, when we increase the parameter a, we increase the
maximum amplitude of the SLS. In this effective picture, the depth of the potential well
increases. A similar situation also occurs by increasing ν. This in turn implies that the
effective mass of the particle at the bottom of the well will increase with increasing a and
ν. So, in both cases, the width of the on-site peaked unstaggered SLSs should decrease, as
seen in our numerical calculation. The effective periodic potential however is a function
of at least three variables, the position variable x0, the parameter a, and the nonintegra-
bility parameter ν. Since the SLS with x0 = 0.5 shows weak dependence on ν, our results
suggest that the top of the potential is not substantially affected by the change in ν. On
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Figure 4.9. The variation of βroot as a function of the nonintegrability parameter ν for a= 1.0 and 2.0,
as obtained from the exact calculation. Since λ = −1, these states are staggered stationary localized
states. Curve I(a): a = 1.0, and x0 = 0.0. Curve II(a): a = 2.0, and x0 = 0.0. Curve I(b): a = 1.0, and
x0 = 0.5. Curve II(b): a= 2.0, and x0 = 0.5.

the other hand, from our results we deduce that the top of the potential is energetically
stabilized by increase in a.

Finally, some exact calculations of βroot for staggered SLSs for ν > 0, λ = −1 and for
both x0 = 0.0 and 0.5 are presented. In Figure 4.9 we present the variation of βroot as
a function of ν for a = 1.0 and 2.0. Consider first x0 = 0.0. Curves I(a) and II(a) in
Figure 4.9 are almost identical to corresponding curves in Figure 4.2 with a discernible
deviation in the magnitude of βroot for large values of a together with small values of ν.

The same calculation with �̃ = constant gives βs → 0 linearly as νλ→−1. See Figure 3.5.
Figure 4.10 shows the variation of βroot as a function of a for various values of ν > 0.
The important point to note is that βroot(νλ < 0) < βroot(ν = 0). In other words, SLSs
for ν > 0 are stabilized by expansion of the width. As βroot = a line becomes tangent
to all curves in Figure 4.10, we infer that when a ∼ o(1), βroot → a. Again on the curve
ν = 0, sinhβroot = a. In this asymptotic limit, we then have from (2.22) and (4.1) that√
Ψ∼ βroot/

√
1− ν. The corresponding approximate calculation for the model with �̃ =

constant is shown in Figure 3.6. Figure 3.6 shows that when α ∼ o(1), βs ∼ α2(1− ν).
This in turn yields the same asymptotic result for

√
Ψ. Comparing our results for stag-

gered SLSs from three different approaches, namely, approximate calculations with (a)

�̃ = constant, (b) H̃0 = constant, and (c) the exact calculation with H̃0 = constant and
x0 = 0.0, we conclude that all three give qualitatively the same result.

We now consider the basic difference between staggered SLS with x0 = 0.0 and stag-
gered SLS with x0 = 0.5. Figure 4.9 shows the variation of βroot as a function of ν≥ 0 for
a= 1.0 and 2.0. From this figure, we see that though βroot → 0 as ν→ 1 for both x0 = 0.0
and 0.5, the magnitude of βroot for intermediate values of ν is greater for the SLSs with
x0 = 0.5. This in turn implies that the SLS with x0 = 0.5 has smaller localization length.
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Figure 4.10. The variation of βroot as a function of the parameter a for positive values of ν. The exact
solution for λ=−1 and x0 = 0.0. Curve I: ν= 0.995, curve II: ν= 0.75, curve III: ν= 0.40, curve IV:
ν= 0.1, and curve V: ν= 0.0. Curve VI: the solid curve is the straight line βroot = a.
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Figure 4.11. ∆Elm = El −Em, where El and Em define the energy of staggered SLSs with x0 = 0.0 and
x0 = 0.5, respectively. The variation of ∆Elm as a function for ν∈ [0.1). Curve I: a= 1.0 and curve II:
a= 2.0.

This is very much opposite to what we observe for an unstaggered SLS. We consider next
Figure 4.11. We define ∆Elm = El − Em, where El and Em define the energy of staggered
SLS with x0 = 0.0 and x0 = 0.5, respectively. Figure 4.11 shows the variation of ∆Elm as a
function for ν∈ [0.1). As ∆Elm > 0 for intermediate values of ν, the SLS with x0 = 0.5 is
energetically stable compared to its equal counterpart.

In further analysis, we note that the amplitude distribution of staggered SLS around
the maximum amplitude site is ST-like mode for x0 = 0.0 and P-like mode for x0 = 0.5.
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In this case also there is a periodic arrangement of potential wells in the system. Since the
on-site nonlinear potential is repulsive in this case, this potential will attain the minimum
at the center of two consecutive lattice sites. So, the whole periodic arrangement of wells
is shifted by half a lattice constant. Consequently, the effective particles corresponding
to the P-like mode and the ST-like mode are sitting at the bottom of a well and at the
top of a well, respectively [16]. So, the P-like mode corresponds to an effective particle
with larger effective mass than the corresponding ST-like mode, and thereby having a
smaller localization length. From this picture, we also deduce that the P-like mode is
energetically more stable than the ST-like mode. This analysis further tells that ST-like
mode will be unstable to infinitesimal perturbation, and the perturbation will cause it
to move [58, 63, 65]. Most importantly however we prove by our variational approach
that the existence of P-like mode and ST-like mode is a fundamental property of a system
described by IN-DNLS. To successfully explain the dependence of the localization length
of the P-like modes on these two parameters a and ν, respectively, we need the following
behavior of the potential. When the parameter a increases, the effective well depth must
increase for intermediate values of ν. Consequently, the effective mass of the particle will
increase, and the localization length will decrease. But, in case of ν, the effective well depth
must decrease as ν→ 1. Furthermore, as discussed in the context of unstaggered SLS, the
dependence of the localization length of ST-like modes determines the dependence of the
top of the potential well on two important parameters, a and ν.

5. Summary

IN-DNLS is a one-dimensional discrete nonlinear equation with a tunable nonintegrabil-
ity parameter ν [13, 62]. When ν= 0, it reduces to the famous AL equations [1, 2, 3]. The
importance of IN-DNLS in physics as well as in nonlinear mathematics is discussed in the
text. In this paper, primarily eigenvalues, energies, and corresponding site amplitudes of
SLSs of IN-DNLS are studied using discrete variational formulation [5, 32, 48, 51]. The
standard variational approach starts from the respective Lagrangian to study this type of
problem. In this paper, however, the appropriate functional is derived using the standard
variational procedure for finding eigenvalues of Sturm-Liouville equations [33]. In other
words, it is shown here how the effective functional can be derived from the Hamiltonian
and constants of motion without the prior knowledge of the Lagrangian. The uniqueness
of the functional is also established by showing its equivalence to the effective Lagrangian.

Inasmuch as localized states in one-dimensional linear impure as well as disordered
systems show asymptotic exponential decay [22, 36, 57], a “sech” ansatz with two param-
eters, β and Φ = √Ψ, is used to find eigenvalues and eigenfunctions. In this choice, β−1

and
√
Ψ define the width and the maximum amplitude of SLS, respectively. This ansatz

is so chosen as it gives AL stationary localized states when ν→ 0. Furthermore, SLSs of
IN-DNLS are assumed to belong to the class of breathers with a single frequency [26].
Since stationary solitons of AL equations are breathers of this class, this choice of form
for SLSs of IN-DNLS is justified.

Very naturally two procedures have emanated in our variational calculation. In the

first case, the reduced dynamical system is described by the Hamiltonian H̃0 and �̃ is

taken to be the number constant. In the second case, �̃ acts as the Hamiltonian. Since
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the analysis involves two infinite sums, both sums are ignored in both cases in the leading
term analysis. In both cases, for unstaggered stationary localized states two permissible
values, namely, βs and βl, of the width parameter β are found. It is further found that
for two real roots to exist we need ν < νcritical if ν > 0. Furthermore, νcritical is found to
be a monotonically decreasing function of the parameter α in the first case and a in the
second case. These parameters are defined in the text and are positive semidefinite. It is
successfully argued from our numerical analysis that SLSs, characterized by the smaller
width parameter βs, are stable and the states characterized by βl are unstable. However,
for staggered SLSs both procedures have yielded a single value, βs, and our numerical re-
sults indicate that these are stable localized modes of the system. Though both procedures
yield qualitatively, the same results for the parameters of SLSs, no quantitative compar-
ison is attempted here. Again, it is found that the problem can be exactly solved in the
second case. In our exact solution no unstable SLS is obtained. So, the occurrence of
unstable SLSs in this system in the leading term analysis should be attributed to the trun-
cation error. In the context of SLS in one-dimensional nonlinear systems, this is indeed
an important result.

The formation of unstaggered and staggered SLSs are investigated here for ν≥ 0. For
the null value of ν, the present variational procedure correctly produces SLSs of AL equa-
tion. Furthermore, when ν → 0, it is found that βs → α2 in the first case for both un-
staggered and staggered SLSs. Consequently, AL stationary soliton is recovered in this
asymptotic limit. In the second case, a→ sinhβs asymptotically as ν→ 0 in the leading
term analysis. This result is true for both unstaggered and staggered SLSs. The same as-
ymptotic results are found in the exact analysis too, except that βs is replaced by βroot. So,
in the second case too the AL stationary soliton is the asymptotic result for ν→ 0. Analyt-
ically also the same asymptotic result is obtained here. Our both analytical and numerical
results are expected on physical consideration.

In the other asymptotic analysis, α→ 0 in the first case and a→ 0 in the second case.
Again, in the second case there are two scenarios, the leading term analysis and the ex-
act calculation. For all cases and for both unstaggered and staggered localized states, the
known asymptotic form of Ψ for the stable SLS are obtained numerically from the present
variational analysis. This is therefore a very important contribution of the present work.
For unstaggered SLSs, it is found that the width of the state decreases with increasing ν.
On the other hand, for staggered SLSs, the width increases with increasing ν and vanishes
as ν→ 1. These results are consistent with the physics of the problem and reasons are
given in the text.

Another important aspect is the dependence of the width of SLSs on the position of
the maximum amplitude, denoted by x0. It is proved in the text that x0 = 0 or ±1/2. It is
observed in our analysis that for unstaggered SLSs, the on-site peaked SLS (x0 = 0) has
smaller width than the intersite peaked (x0 =±1/2) SLS for a given value ν > 0 and a > 0.
Our analysis also shows that for a given ν and a, the on-site peaked unstaggered SLS
is energetically more stable than the corresponding intersite peaked SLS. These results
are physically realistic and are successfully explained using the effective-mass picture. It
is found in our analysis that the existence of the P-like mode and the ST-like mode is
a fundamental property of the system described by IN-DNLS. It is also shown in this
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numeroanalytical method that the P-like mode is energetically more stable than the cor-
responding ST-like mode. These results constitute a very important contribution of the
present work.

It is definitely important to find exact eigenvalues and eigenvectors of the problem.
Present analysis may turn out to be a useful guide for the exact calculation. In this anal-
ysis we have not proved that the lowest eigenvalue is obtained. Furthermore, the sys-
tem may have more than one SLS type of ILMs. These questions need to be properly
investigated. Presence of impurity in the nonintegrability parameter ν may produce more
stationary localized states and these states may interact through further external pertur-
bation. A study of this type is important in the transport in nonlinear systems [7, 44].
In our calculation, we find both P-like mode and ST-like mode. It will be interesting to
know the asymptotic form of these modes in this model. Furthermore, the behavior of
these modes under external perturbation should also be investigated. Finally, it is impor-
tant to find more physical as well as biological systems, where IN-DNLS can be used to
study transport properties. A good candidate in this regard is the transport across biolog-
ical membranes of protons through proton wires.

Appendices

A. The formulation of discrete variational approach for IN-DNLS

We are dealing with a nonlinear eigenvalue problem in our aim to find stationary local-
ized states of IN-DNLS equations, (2.4) and (2.5) in the text. For this purpose we are
employing variational formulation [5, 6, 33]. To implement the variational approach for
this problem, we require the proper functional F̃ whose constrained variation will lead
to (2.5) [33]. We of course know a constant of motion and the Hamiltonian, �̃ and H̃,
respectively for the problem at hand [13].

Inasmuch as we know �̃ and H̃, using the analogous variational approach of finding
eigenvalues in standard Sturm-Liouville problems [33]. We set up the functional F̃ =
H̃−Λ�̃ where Λ is the Lagrange multiplier [35]. We then have for the variation of F̃,

δF̃= δH̃−Λδ�̃. For the calculation of the variation, we transform Ψn →Ψn + δΨn, n∈
Z, in the expression of H̃ and �̃ ((2.6) and (2.7), resp.) to obtain

δF̃= δH̃−Λδ�̃=−2
∑
n

λ
(
1 +Ψ2

n

)(
Ψn+1 +Ψn−1

)
+ 2νΨ3

n +ΛΨn

1 +Ψ2
n

δΨn. (A.1)

Since {δΨn} are arbitrary, δF̃= 0 implies that

λ
(
1 +Ψ2

n

)(
Ψn+1 +Ψn−1

)
+ 2νΨ3

n +ΛΨn = 0. (A.2)

We note that (A.2) is identical to (2.5) when Λ= ω. From further analysis, we find that ω
is given by (2.11) in the text.

For the case where H̃0 = constant, the corresponding functional F̃ should be given by

F̃=Λ2H̃0 + 2ν�̃, where (Λ2− 1) is the Lagrange multiplier. The same procedure will yield
(2.5) if Λ2 = 2ν/(2ν−ω).
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So, it is important to note that we can devise the required functional to determine
the eigenvalues of SLSs by variational approach without the formal knowledge of the
Lagrangian.

B. Calculation of the function �̃(Ψ,β,x0), (2.27)

Before we proceed in this section, we cite some results required for the calculation [4, 28]:

I(s,Ψ,β)=
∫∞

0
dy

cos(πs/β)y
cosh y + (1 + 2Ψ)

= π sin
{

(2πs/β)arcsinh
√
Ψ
}

2
√
Ψ(1 +Ψ)sinh

(
π2s/β

) . (B.1)

From (B.1) we get

lim
s→0

I(s,Ψ,β)= arcsinh
√
Ψ√

Ψ(1 +Ψ)
= d(arcsinh

√
Ψ)2

dΨ
. (B.2)

In our calculation, we are using the following ansatz:

Ψn =Φ
1

coshβ
(
n− x0

) , n∈ Z. (B.3)

This ansatz has also been used in the previous analysis [13]. For on-site peaked and ST-
like localized states, x0 = 0, and for intersite peaked and P-like states, x0 =±1/2 [5, 58, 63,
65]. We further write Φ2 =Ψ. The function �̃(Ψ,β,x0) is given by (2.27) in the text. Now
introducing (B.3) in (2.6) and then taking partial derivative with respect to Ψ, we get

∂�̃
∂Ψ

=
∞∑

n=−∞

1

cosh2β
(
n− x0

)
+Ψ

. (B.4)

We use next the famous Poisson sum formula (2.17) in the text in (B.4) [72]. Thereafter,
some simple algebraic manipulations are done to obtain

∂�̃
∂Ψ

= 2
β
I(0,Ψ,β) +

4
β

∞∑
s=1

cos
(
2πsx0

)
I(s,Ψ,β). (B.5)

We note that (B.5) is identical to (2.20) in the text. Furthermore, we have from the defi-
nition that �̃(0,β,x0)= 0. See (2.6) in the text. After integration of (B.5) over Ψ′ ∈ (0,Ψ)

we get (2.27) in the text. When Ψ= sinh2nβ, n∈ Z, in (2.27), we get �̃(Ψ,β,x0)= 2n2β.
See (3.1) in this context. This particular result has been obtained by another route in the
literature [10, 12]. We consider now ν= 0 or the AL equation. Then from (2.12), (2.20),
(2.25), (2.26), and (2.28), we get for n∈N ,

tanhnβcothβ−n= 0. (B.6)

We see then that if n > 1, (B.6) has no real nonzero β as a solution.
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C. Application of the method of successive substitutions in the investigation of the for-
mation of stationary localized states in IN-DNLS

Following the text, we take �̃(Ψ,β,x0) = 2α2 = Constant. We further write (2.27) in the
form Ψ= F(Ψ) where the function F(Ψ) is defined as

F(Ψ)= sinh2
[√
α2β− f2

(
β,x0,Ψ

)]
, (C.1)

and in (C.1)

f2
(
β,x0,Ψ

)= 2βcos
[
2πx0

] sin2 ((π/β)arcsinh
√
Ψ
)

sinh
(
π2/β

) . (C.2)

It should be noted that only the first term in the sum in (2.27) is retained to obtain (C.1).
To obtain roots of the equation Ψ = F(Ψ), we can use the method of successive substi-
tutions. In this method at the kth iteration, we write Ψk+1 = F(Ψk) with the assump-
tion that limk→∞Ψk →Ψroot. However, the necessary condition for this to happen is that
|F′(Ψroot)| < 1 [34]. To explain the use of this method in the calculation, we will restrict

ourselves only to the first iteration with Ψ0 = sinh2α
√
β. This in turn implies that

Ψ∼Ψ1 = sinh2
[√
α2β− f2

(
β,x0,Ψ0

)]
. (C.3)

Note that in the calculation of roots ((3.10) in the text) we have taken f2 = 0. By approxi-
mating Ψ by Ψ1 and furthermore keeping only the first term in the sum in the definition
of f1(β,ν,λ,x0) (2.22) we get from (2.24)

H̃0 =−4λ
Ψ1

sinhβ
− 4λν

Ψ1

β

[
1 + 2cos2πx0

π2/β

sinh
(
π2/β

)]. (C.4)

We then get the permissible values of β by setting dH̃0/dβ = 0.
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media with cubic nonlinearity, Ž. Èksper. Teoret. Fiz. 113 (1998), no. 4, 1253–1260, trans-
lated in JETP Lett. 86 (1998), no. 4, 682–686.

[18] A. Das, Integrable Models, World Scientific Lecture Notes in Physics, vol. 30, World Scientific
Publishing, New Jersey, 1989.

[19] S. V. Dmitriev, Y. S. Kivshar, and T. Shigenari, Fractal structures and multiparticle effects in
soliton scattering, Phys. Rev. E (3) 64 (2001), no. 5, 056613–056614.

[20] P. G. Drazin and R. S. Johnson, Solitons: An Introduction, Cambridge Texts in Applied Mathe-
matics, Cambridge University Press, Cambridge, 1989.

[21] D. H. Dunlap, H.-L. Wu, and P. Phillips, Absence of localization in a random-dimer model, Phys.
Rev. Lett. 65 (1990), no. 1, 88–91.

[22] E. N. Economou, Green’s Functions in Quantum Physics, Springer Series in Solid-State Sciences,
vol. 7, Springer, Berlin, 1983.

[23] H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, Discrete spatial
optical solitons in waveguide arrays, Phys. Rev. Lett. 81 (1998), no. 16, 3383–3386.

[24] S. Flach, K. Kladko, and R. S. MacKay, Energy thresholds for discrete breathers in one-, two- and
three-dimensional lattices, Phys. Rev. Lett. 78 (1997), no. 7, 1207–1210.

[25] S. Flach and R. S. MacKay (eds.), A special issue on discrete breathers, Phys. D 119 (1998), 1–238.
[26] S. Flach and C. R. Willis, Discrete breathers, Phys. Rep. 295 (1998), no. 5, 181–264.
[27] A. Ghosh, B. C. Gupta, and K. Kundu, Stationary self-localized states due to quadratic nonlin-

earity in one-dimensional systems, J. Phys.: Condens. Matter 10 (1998), no. 12, 2701–2713.
[28] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 4th ed., Academic

Press [Harcourt Brace Jovanovich Publishers], New York, 1980.
[29] B. C. Gupta and K. Kundu, Formation of stationary localized states due to nonlinear impurities

using the discrete nonlinear Schrödinger equation, Phys. Rev. B 55 (1997), no. 2, 894–905.
[30] , Localized states in 1-D nonlinear chain, Phys. Lett. A 235 (1997), 176–182.
[31] , Stationary localized states due to a nonlinear dimeric impurity embedded in a perfect one

dimensional chain, Phys. Rev. B 55 (1997), no. 17, 11033–11036.
[32] , Discrete nonlinear Schrödinger equation and stationary localized states, Nonlinear Dy-

namics: Integrability and Chaos (M. Daniel, K. M. Tamizhmani, and R. Sahadevan, eds.),
Narosa publishing House, New Delhi, 2000, pp. 193–199.

[33] F. B. Hildebrand, Methods of Applied Mathematics, 2nd ed., Prentice-Hall, New Jersey, 1965.



628 A discrete variational approach for investigation in IN-DNLS

[34] , Introduction to Numerical Analysis, 2nd ed., International Series in Pure and Applied
Mathematics, McGraw-Hill Book, New York, 1974.

[35] , Advanced Calculus for Applications, 2nd ed., Prentice-Hall, New Jersey, 1976.
[36] K. Ishii, Localization of eigenstates and transport phenomena in the one-dimensional disordered

system, Theoret. Phys. Suppl. 53 (1973), 77–138.
[37] M. Johansson and Y. S. Kivshar, Discreteness-induced oscillatory instabilities of dark solitons,

Phys. Rev. Lett. 82 (1999), no. 1, 85–88.
[38] D. J. Kaup and T. I. Lakoba, Variational method: how it can generate false instabilities, J. Math.

Phys. 37 (1996), no. 7, 3442–3462.
[39] P. G. Kevrekidis, A. R. Bishop, and K. Ø. Rasmussen, Twisted localized modes, Phys. Rev. E 63

(2001), no. 3, 036603.
[40] J. M. Khalack, Y. Zolotaryuk, and P. L. Christiansen, Discrete breathers in classical ferromagnetic

lattices with easy-plane anisotropy, Chaos 13 (2003), no. 2, 683–692.
[41] Y. S. Kivshar and D. K. Campbell, Peierls-Nabarro potential barrier for highly localized nonlinear

modes, Phys. Rev. E (3) 48 (1993), no. 4, 3077–3081.
[42] Y. S. Kivshar and M. Peyrard, Modulational instabilities in discrete lattices, Phys. Rev. A (3) 46

(1992), no. 6, 3198–3205.
[43] Y. S. Kivshar, F. Zhang, and A. S. Kovalev, Stable nonlinear heavy-mass impurity modes, Phys.

Rev. B 55 (1997), no. 21, 14265–14269.
[44] G. Kopidakis, S. Aubry, and G. P. Tsironis, Targeted energy transfer through discrete breathers in

nonlinear systems, Phys. Rev. Lett. 87 (2001), no. 16, 165501.
[45] K. Kundu, Perturbative study of classical Ablowitz-Ladik type soliton dynamics in relation to en-

ergy transport in α-helical proteins, Phys. Rev. E (3) 61 (2000), no. 5, part B, 5839–5851.
[46] , A study of a new class of discrete nonlinear Schrödinger equations, J. Phys. A 35 (2002),

no. 38, 8109–8133.
[47] K. Kundu, D. Giri, and K. Ray, A study of one-dimensional correlated disordered systems using

the invariant measure method, J. Phys. A 29 (1996), no. 17, 5699–5717.
[48] K. Kundu and B. C. Gupta, The role of power law nonlinearity in the discrete nonlinear

Schrödinger equation on the formation of stationary localized states in the Cayley tree, Eur.
Phys. J. B Condens. Matter Phys. 3 (1998), no. 1, 23–33.

[49] J. Kutz, C. Hile, W. Kath, R.-D. Li, and P. Kumar, Pulse propagation in nonlinear optical fiber
lines that employ phase-sensitive parametric amplifiers, J. Opt. Soc. Amer. B Opt. Phys. 11
(1994), no. 10, 2112–2123.

[50] R. S. MacKay and S. Aubry, Proof of existence of breathers for time-reversible or Hamiltonian
networks of weakly coupled oscillators, Nonlinearity 7 (1994), no. 6, 1623–1643.

[51] B. Malomed and M. I. Weinstein, Soliton dynamics in the discrete nonlinear Schrödinger equa-
tion, Phys. Lett. A 220 (1996), no. 1–3, 91–96.

[52] B. A. Malomed and R. S. Tasgal, Vibration modes of a gap soliton in a nonlinear optical medium,
Phys. Rev. E (3) 49 (1994), no. 6, 5787–5796.

[53] B. A. Malomed and J. Yang, Solitons in coupled Ablowitz-Ladik chains, Phys. Lett. A 302 (2002),
no. 4, 163–170.

[54] J. L. Marı́n and S. Aubry, Breathers in nonlinear lattices: numerical calculation from the anticon-
tinuous limit, Nonlinearity 9 (1996), no. 6, 1501–1528.

[55] J. L. Marı́n, S. Aubry, and L. M. Florı́a, Intrinsic localised modes. Existence and linear stability,
Phys. D 113 (1998), no. 2-4, 283–292.

[56] P. Marquié, J. M. Bilbault, and M. Remoissenet, Observation of nonlinear localized modes in an
electrical lattice, Phys. Rev. E (3) 51 (1995), no. 6, 6127–6133.

[57] H. Matsuda and K. Ishii, Localization of normal modes and energy transport in the disordered
harmonic chain, Progr. Theoret. Phys. (1970), no. Suppl. 45, 56–86.



K. Kundu 629

[58] J. B. Page, Asymptotic solutions for localized vibrational modes in strongly anharmonic periodic
systems, Phys. Rev. B 41 (1990), no. 11, 7835–7838.

[59] M. Peyrard and A. R. Bishop, Statistical mechanics of a nonlinear model for DNA denaturation,
Phys. Rev. Lett. 62 (1989), no. 23, 2755–2758.

[60] K. Ø. Rasmussen, S. Aubry, A. R. Bishop, and G. P. Tsironis, Discrete nonlinear Schrödinger
breathers in a phonon bath, Eur. Phys. J. B Condens. Matter Phys. 15 (2000), no. 1, 169–175.

[61] R. Z. Sagdeev, S. S. Moiseev, A. V. Tur, and V. V. Yanevskii, Problems of the theory of string turbu-
lence and topological solitons, Nonlinear Phenomena in Plasma Physics and Hydrodynamics
(R. Z. Sagdeev, ed.), Mir Publishers, Moscow, 1986, p. 137.

[62] M. Salerno, Quantum deformations of the discrete nonlinear Schrödinger equation, Phys. Rev. A
(3) 46 (1992), no. 11, 6856–6859.

[63] K. W. Sandusky, J. B. Page, and K. E. Schmidt, Stability and motion of intrinsic localized modes
in nonlinear periodic lattices, Phys. Rev. B 46 (1992), no. 10, 6161–6168.

[64] A. Scott, Nonlinear Science. Emergence and Dynamics of Coherent Structures, Oxford Texts in
Applied and Engineering Mathematics, vol. 1, Oxford University Press, Oxford, 1999.

[65] A. J. Sievers and S. T. Takeno, Intrinsic localized modes in anharmonic crystals, Phys. Rev. Lett.
61 (1988), no. 8, 970–973.

[66] B. I. Swanson, J. A. Brozik, S. P. Love, G. F. Strouse, and A. P. Shreve, Observation of intrinsically
localized modes in a discrete low-dimensional material, Phys. Rev. Lett. 82 (1999), no. 16,
3288–3291.

[67] S. Takeno, Exact anharmonic-localized-mode solutions to the d-dimensional discrete nonlinear
Schrödinger equation, J. Phys. Soc. Japan 58 (1989), no. 3, 759–762.

[68] A. Trombettoni and A. Smerzi, Discrete solitons and breathers with dilute bose-einstein conden-
sates, Phys. Rev. Lett. 86 (2001), no. 11, 2353–2356.

[69] G. P. Tsironis and S. Aubry, Slow relaxation phenomena induced by breathers in nonlinear lattices,
Phys. Rev. Lett. 77 (1996), no. 26, 5225–5228.

[70] A. A. Vakhnenko and Y. B. Gaı̆dideı̆, The character of the motion of solitons in discrete molecular
chains, Teoret. Mat. Fiz. 68 (1986), no. 3, 350–359 (Russian), Theor. Math. Phys. 68 (1987),
873–880.

[71] V. E. Zakharov and A. B. Shabat, Exact theory of two-dimensional self-focusing and one-
dimensional self-modulation of waves in nonlinear media, Ž. Èksper. Teoret. Fiz. 61 (1971),
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