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A discrete periodic mutualism model with time delays is investigated. By using Gaines and
Mawhin’s continuation theorem of coincidence degree theory, the existence of positive
periodic solutions of the model is established.

1. Introduction

Two species cohabit a common habitat and each species enhances the average growth rate
of the other, this type of ecological interaction is known as facultative mutualism [8]. In
[6], the author has studied the existence of positive periodic solutions of the periodic
mutualism model

dN1(t)
dt

= r1(t)N1(t)
[
K1(t) +α1(t)N2

(
t− τ2(t)

)
1 +N2

(
t− τ2(t)

) −N1
(
t− σ1(t)

)]
,
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= r2(t)N2(t)
[
K2(t) +α2(t)N1

(
t− τ1(t)

)
1 +N1

(
t− τ1(t)

) −N2
(
t− σ2(t)

)]
,

(1.1)

where ri,Ki,αi ∈ C(R,R+), αi > Ki, i = 1,2, τi,σi ∈ C(R,R+), i = 1,2, ri, Ki, αi, τi, σi(i =
1,2) are functions of period ω > 0. Since the study on periodic solutions of a popula-
tion model is of great interest in mathematical biology [5] and many authors [1, 7] have
argued that the discrete-time models governed by difference equations are more appro-
priate than the continuous ones when the populations have nonoverlapping generations,
then, discrete-time models can provide efficient computational types of continuous mod-
els for numerical simulations. It is reasonable to study the discrete-time mutualism model
governed by difference equations.

One of the ways of deriving difference equations modeling the dynamics of popu-
lations with nonoverlapping generations is based on appropriate modifications of the
corresponding models with overlapping generations [2, 4]. In this approach, differential
equations with piecewise constant arguments have been proved to be useful. Following
the same idea and the same method in [2, 4], one can easily derive the following discrete
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analog of (1.1), which takes the form of

x1(k+ 1)= x1(k)exp
[
r1(k)K1(k) + r1(k)α1(k)x2

(
k− τ2(k)

)
1 + x2

(
k− τ2(k)

) − r1(k)x1
(
k− σ1(k)

)]
,

x2(k+ 1)= x2(k)exp
[
r2(k)K2(k) + r2(k)α2(k)x1

(
k− τ1(k)

)
1 + x1

(
k− τ1(k)

) − r2(k)x2
(
k− σ2(k)

)]
.

(1.2)

The exponential form of (1.2) is more biologically reasonable than that directly derived
by replacing the differential by difference in (1.1). Our purpose in this paper is to use
Mawhin’s continuous theorem [3] to study the existence of positive periodic solutions
of (1.2).

Let Z, R, and R2 denote the sets of all integers and two-dimensional Euclidean vector
space, respectively. Throughout this paper, we always assume that the following hold.

(H1) For i= 1,2, ri,Ki,αi : Z→ (0,∞) and τi,σi : Z→ [0,∞) are all ω-periodic, that is,

ri(k+ω)= ri(k), Ki(k+ω)= Ki(k), αi(k+ω)= αi(k),

τi(k+ω)= τi(k), σi(k+ω)= σi(k), k ∈ Z. (1.3)

(H2) For i= 1,2, αi(k) > Ki(k), k ∈ Z.

2. Existence of a positive periodic solution

In order to use Mawhin’s continuous theorem to establish the existence of at least one
positive periodic solution of (1.2), we need to make some preparations.

Let X ,Y be normed vector spaces, let L : DomL⊂ X → Y be a linear mapping, and let
N : X → Y be a continuous mapping. The mapping L will be called a Fredholm mapping
of index zero if dimKerL= codimImL < +∞ and ImL is closed in Y . If L is a Fredholm
mapping of index zero, there exist continuous projectors P : X → X and Q : Y → Y such
that ImP = KerL, KerQ = ImL = Im(I −Q). It follows that the mapping L|DomL

⋂
KerP :

(I − P)X → ImL is invertible. We denote the inverse of the mapping by KP . If Ω is an
open bounded subset of X , the mapping N will be called L-compact on Ω̄ if QN(Ω̄) is
bounded and KP(I −Q)N : Ω̄→ X is compact. Since ImQ is isomorphic to KerL, there
exists an isomorphism J : ImQ→ KerL.

For convenience, we introduce Mawhin’s continuous theorem [3, page 40] as follows.

Lemma 2.1. Let L be a Fredholm mapping of index zero and let N be L-compact on Ω̄.
Assume that

(i) for each λ∈ (0,1), every solution x of Lx = λNx is such that x /∈ ∂Ω;
(ii) QNx �= 0 for each x ∈ ∂Ω

⋂
KerL and

deg
(
JNQ,Ω

⋂
KerL,0

)
�= 0. (2.1)

Then the operator equation Lx =Nx has at least one solution in Ω̄
⋂

DomL.
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In what follows, we will use the notations

Iω = {0,1, . . . ,ω− 1}, ū= 1
ω

ω−1∑
k=0

u(k), (2.2)

where {u(k)} is an ω-periodic sequence of real numbers defined for k ∈ Z.
The following result was given by [2, Lemma 3.2].

Lemma 2.2. Let f : Z → R be ω-periodic, that is, f (k + ω) = f (k). Then for any fixed
k1,k2 ∈ Iω, and any k ∈ Z,

f (k)≤ f
(
k1
)

+
ω−1∑
s=0

∣∣ f (s+ 1)− f (s)
∣∣,

f (k)≥ f
(
k2
)− ω−1∑

s=0

∣∣ f (s+ 1)− f (s)
∣∣.

(2.3)

The following result was given by [6, Lemma 2.2].

Lemma 2.3. Let

f (x, y)=
(
a1− a1− b1

1 + ey
− c1e

x,a2− a2− b2

1 + ex
− c2e

y
)

(2.4)

and Ω = {(x, y)T ∈ R2 : |x|+ |y| < M}, where M,ai,bi,ci ∈ R+ are constants, ai > bi, i =
1,2, and M > max{| ln(ai/ci)|,| ln(bi/ci)|, i= 1,2}. Then

deg
{
f ,Ω, (0,0)

} �= 0. (2.5)

Now we state our fundamental theorem about the existence of a positive ω-periodic
solution of (1.2).

Theorem 2.4. Assume that (H1) and (H2) hold, then (1.2) has at least one positive ω-
periodic solution.

Proof. Consider the following system of difference equations with delays:

y1(k+ 1)− y1(k)= r1(k)
[
K1(k) +α1(k)exp

{
y2
(
k− τ2(k)

)}
1 + exp

{
y2
(
k− τ2(k)

)} − exp
{
y1
(
k− σ1(k)

)}]
,

y2(k+ 1)− y2(k)= r2(k)
[
K2(k) +α2(k)exp

{
y1
(
k− τ1(k)

)}
1 + exp

{
y1
(
k− τ1(k)

)} − exp
{
y2
(
k− σ2(k)

)}]
,

(2.6)

where ri, Ki, αi, τi, σi(i= 1,2) are the same as those in (1.2). It is easy to see that if (2.6)
has an ω-periodic solution {(y∗1 (k), y∗2 (k))T}, then {(x∗1 (k),x∗2 (k))T} = {(exp{y∗1 (k)},
exp{y∗2 (k)})T} is a positiveω-periodic solution of (1.2). Therefore, to complete the proof,
it suffices to show that system (2.6) has at least one ω-periodic solution.

Define

l2 =
{
y = {y(k)

}
: y(k)∈R2, k ∈ Z}. (2.7)
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Let lω ⊂ l2 denote the subspace of all ω-periodic sequences equipped with the norm ‖ · ‖,
that is,

‖y‖ =
∥∥∥(y1, y2

)T∥∥∥=max
k∈Iω

∣∣y1(k)
∣∣+ max

k∈Iω

∣∣y2(k)
∣∣,

for any y = {(y1(k), y2(k)
)
, k ∈ Z}∈ lω.

(2.8)

It is not difficult to show that lω is a finite-dimensional Banach space.
Let

lω0 =
{
y = {y(k)

}∈ lω :
ω−1∑
k=0

y(k)= 0

}
,

lωc =
{
y = {y(k)

}∈ lω : y(k)= h∈R2, k ∈ Z},

(2.9)

then it is easy to check that lω0 and lωc are both closed linear subspaces of lω and

lω = lω0 ⊕ lωc , dim lωc = 2. (2.10)

Take X = Y = lω and let

(Ny)(k)

=



r1(k)

[
K1(k) +α1(k)exp

{
y2
(
k− τ2(k)

)}
1 + exp

{
y2
(
k− τ2(k)

)} − exp
{
y1
(
k− σ1(k)

)}]

r2(k)
[
K2(k) +α2(k)exp

{
y1
(
k− τ1(k)

)}
1 + exp

{
y1
(
k− τ1(k)

)} − exp
{
y2
(
k− σ2(k)

)}]

 , y ∈ X , k ∈ Z,

(Ly)(k)= y(k+ 1)− y(k), y ∈ X , k ∈ Z,
(2.11)

then it is easy to see that L is a bounded linear operator with

KerL= lωc , ImL= lω0 , dimKerL= 2= codimImL, (2.12)

then it follows that L is a Fredholm mapping of index zero.
Define

Py = 1
ω

ω−1∑
s=0

y(s), y ∈ X , Qz = 1
ω

ω−1∑
s=0

z(s), z ∈ Y. (2.13)

It is not difficult to show that P and Q are continuous projectors such that

ImP = KerL, ImL= KerQ = Im(I −Q). (2.14)

Furthermore, the generalized inverse (to L) KP : ImL→ KerP
⋂

DomL exists, which is
given by

(
KPz

)
(n)=

n−1∑
i=0

z(i)− 1
ω

ω∑
i=1

i−1∑
s=0

z(s), n∈ Z. (2.15)
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Obviously, QN and KP(I −Q)N are continuous. Since X is a finite-dimensional Banach
space, one can easily show that KP(I −Q)N(Ω̄) is compact for any open bounded set
Ω ⊂ X . Moreover, QN(Ω̄) is bounded, and hence N is L-compact on Ω̄ with any open
bounded set Ω⊂ X .

Now we are in a position to search for an appropriate open bounded subset Ω⊂ X for
the continuation theorem. Corresponding to the operator equation Lx = λNx, λ∈ (0,1),
we have

y1(k+ 1)− y1(k)= λr1(k)
[
K1(k) +α1(k)exp

{
y2
(
k− τ2(k)

)}
1 + exp

{
y2
(
k− τ2(k)

)} − exp
{
y1
(
k− σ1(k)

)}]
,

y2(k+ 1)− y2(k)= λr2(k)
[
K2(k) +α2(k)exp

{
y1
(
k− τ1(k)

)}
1 + exp

{
y1
(
k− τ1(k)

)} − exp
{
y2
(
k− σ2(k)

)}]
.

(2.16)

Assume that {(y1(k), y2(k))T} ∈ X is a solution of system (2.16) for a certain λ∈ (0,1).
Summing on both sides of (2.16) from 0 to ω− 1 with respect to k, we obtain

ω−1∑
k=0

r1(k)
[
K1(k) +α1(k)exp

{
y2
(
k− τ2(k)

)}
1 + exp

{
y2
(
k− τ2(k)

)} − exp
{
y1
(
k− σ1(k)

)}]= 0, (2.17)

ω−1∑
k=0

r2(k)
[
K2(k) +α2(k)exp

{
y1
(
k− τ1(k)

)}
1 + exp

{
y1
(
k− τ1(k)

)} − exp
{
y2
(
k− σ2(k)

)}]= 0. (2.18)

It is easy to see that we can rewrite (2.17) and (2.18), respectively, as

ω−1∑
k=0

r1(k)
(
α1(k)−K1(k)

)
1 + exp

{
y2
(
k− τ2(k)

)} +
ω−1∑
k=0

r1(k)exp
{
y1
(
k− σ1(k)

)}= ω−1∑
k=0

r1(k)α1(k), (2.19)

ω−1∑
k=0

r2(k)
(
α2(k)−K2(k)

)
1 + exp

{
y1
(
k− τ1(k)

)} +
ω−1∑
k=0

r2(k)exp
{
y2
(
k− σ2(k)

)}= ω−1∑
k=0

r2(k)α2(k). (2.20)

Thus, from (2.16) and (2.19), it follows that

ω−1∑
k=0

∣∣y1(k+ 1)− y1(k)
∣∣

< λ
ω−1∑
k=0

r1(k)
[
K1(k) +α1(k)exp

{
y2
(
k− τ2(k)

)}
1 + exp

{
y2
(
k− τ2(k)

)} + exp
{
y1
(
k− σ1(k)

)}]

<
ω−1∑
k=0

r1(k)α1(k) +
ω−1∑
k=0

r1(k)
(
α1(k)−K1(k)

)
1 + exp

{
y2
(
k− τ2(k)

)}

+
ω−1∑
k=0

r1(k)exp
{
y1
(
k− σ1(k)

)}

= 2
ω−1∑
k=0

r1(k)α1(k) :=M1,

(2.21)
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that is,

ω−1∑
k=0

∣∣y1(k+ 1)− y1(k)
∣∣ <M1. (2.22)

In a similar way, by (2.16) and (2.20), we have

ω−1∑
k=0

∣∣y2(k+ 1)− y2(k)
∣∣ < 2

ω−1∑
k=0

r2(k)α2(k) :=M2. (2.23)

Moreover, from (2.19), it follows that

ω−1∑
k=0

r1(k)α1(k)≥
ω−1∑
k=0

r1(k)exp
{
y1
(
k− σ1(k)

)}≥ ω−1∑
k=0

r1(k)K1(k), (2.24)

hence

r∗1 α
∗
1

r1
ω ≥

ω−1∑
k=0

exp
{
y1
(
k− σ1(k)

)}≥ r1K1

r∗1
ω, (2.25)

which implies that there exist points k′1,k′2 ∈ Iω such that

y1
(
k′1− σ1

(
k′1
))≤ ln

[
r∗1 α

∗
1

r1

]
:= C1,

y1
(
k′2− σ1

(
k′2
))≥ ln

[
r1K1

r∗1

]
:= C2,

(2.26)

where r∗1 =max{r1(k), k ∈ Iω}, α∗1 =max{α1(k), k ∈ Iω}, r1 =min{r1(k), k ∈ Iω}, K1 =
min{K1(k), k ∈ Iω}. Denote k′i − σ1(k′i ) = ki + niω, ki ∈ Iω and ni is an integer, i = 1,2.
Then

y1
(
k1
)≤ C1, y1

(
k2
)≥ C2. (2.27)

Similarly, by (2.20), we can obtain that there exist points k3,k4 ∈ Iω such that

y2
(
k3
)≤ ln

[
r∗2 α

∗
2

r2

]
:= C3, y2

(
k4
)≥ ln

[
r2K2

r∗2

]
:= C4, (2.28)

where r∗2 =max{r2(k), k ∈ Iω}, α∗2 =max{α2(k), k ∈ Iω}, r2 =min{r2(k), k ∈ Iω}, and
K2 =min{K2(k), k ∈ Iω}.

Therefore, in view of (2.22)–(2.27) and Lemma 2.2, we have

y1(k)≤ y1
(
k1
)

+
ω−1∑
s=0

∣∣y1(s+ 1)− y1(s)
∣∣ < C1 +M1,

y1(k)≥ y1
(
k2
)− ω−1∑

s=0

∣∣y1(s+ 1)− y1(s)
∣∣ > C2−M1.

(2.29)
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Hence,

max
k∈Iω

∣∣y1(k)
∣∣ < max

{∣∣C1 +M1|,
∣∣C2−M1

∣∣} :=A1. (2.30)

Similarly, it follows from (2.23)–(2.28) and Lemma 2.2 that

max
k∈Iω

∣∣y2(k)
∣∣ < max

{∣∣C3 +M2
∣∣,
∣∣C4−M2

∣∣} := A2. (2.31)

Clearly, A1 and A2 are independent of λ. Denote M = A1 +A2 +D, where D > 0 is taken
sufficiently large such that M > max{| ln(ai/ci)|,| ln(bi/ci)|, i = 1,2}. Now we take Ω =
{y = {y(k)} ∈ X : ‖y‖ < M}. This satisfies condition (i) in Lemma 2.1. When y =
{(y1, y2)T} ∈ ∂Ω

⋂
KerL= ∂Ω

⋂
R2, (y1, y2)T is a constant vector in R2 with |y1|+ |y2| =

M. Then

QN

[
y1

y2

]
=



r1α1− r1α1− r1K1

1 + ey2
− r̄1ey1

r2α2− r2α2− r2K2

1 + ey1
− r̄2ey2


 �=

[
0
0

]
. (2.32)

Furthermore, by Lemma 2.3, we have

deg
{
JQN

(
y1, y2

)T
,Ω, (0,0)

}
�= 0, (2.33)

where the degree is Brouwer degree and the isomorphism J can be chosen to be the iden-
tity mapping, since ImQ = KerL. By now we know that Ω verifies all the requirements
in Lemma 2.1 and then (2.6) has at least one ω-periodic solution. Therefore, (1.2) has at
least one positive ω-periodic solution. The proof is complete. �
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