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Let X1,X2, . . . ,Xn be independent Bernoulli random variables with P(Xj = 1) = 1 −
P(Xj = 0)= pj and let Sn := X1 +X2 + ···+Xn. Sn is called a Poisson binomial random
variable and it is well known that the distribution of a Poisson binomial random variable
can be approximated by the standard normal distribution. In this paper, we use Taylor’s
formula to improve the approximation by adding some correction terms. Our result is
better than before and is of order 1/n in the case p1 = p2 = ··· = pn.

1. Introduction and main result

Let X1,X2, . . . ,Xn be independent Bernoulli random variables with P(Xj = 1) = pj and
P(Xj = 0) = qj , where 0 < pj < 1 and pj + qj = 1 for j = 1,2, . . . ,n. Let Sn := X1 + X2 +
···+Xn, µ := ESn = p1 + p2 + ···+ pn, and σ2 := VarSn = p1q1 + p2q2 + ···+ pnqn. In
connection with Bernoulli’s theorem, the following important question arises: when the
number of trials is large, how can one find, at least approximately, the probability

P
(
a≤ Sn ≤ b

)
, (1.1)

where a,b = 1,2, . . . ,n?
De Moivre [3] was the first one who successfully attacked this difficult problem in case

of p1 = p2 = ··· = pn by using the standard normal distribution

Φ(x)= 1√
2π

∫ x

−∞
e−(1/2)t2

dt. (1.2)

After him, in essentially the same way, but using more powerful analytical tools, Laplace
[7] succeeded in establishing a simple approximation formula which is given in all books
on probability. A general bound was given by Feller [5] for independent and nonidenti-
cally distributed random variables with finite third moments and by Chen and Shao [2]
without assuming the existence of third moments. In the case when the random variables
are identically distributed, it has long been known that the best bound is of order 1/

√
n.
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In this paper, we investigate the approximation of Sn by its asymptotic expansions. If
two terms,

G(x) :=Φ(x) +
1

6
√

2πσ3

n∑
j=1

pjqj
(
pj − qj

)(
1− x2)e−x2/2, (1.3)

are used, then the accuracy of the approximation is better. The use of asymptotic expan-
sions is one of the most natural ways of refinement (see, e.g., Uspensky [12], Kolassa [6],
Petrov [11], and Bhattacharya and Rao [1]). The refinement of the central limit theorem
for sums of independent Bernoulli random variables has a long history.

In what follows, let

∆n := ∣∣P(a≤ Sn ≤ b
)− (G(x2

)−G
(
x1
))∣∣, (1.4)

where

x1 = 1
σ

(
a−µ− 1

2

)
, x2 = 1

σ

(
b−µ+

1
2

)
. (1.5)

In the case when Sn is a binomial random variable, that is, p1 = p2 = ··· = pn, Uspensky
[12] shows that

∆n ≤ 0.26 + 0.36 |q− p|
σ2

+ 2e−(3/2)σ (1.6)

under the condition that

σ2 ≥ 25 (1.7)

and in 1955, Makabe [8] improved the result of Uspensky in the form of

∆n ≤ 0.106 + 0.054(q− p) + 0.108(q− p)2

σ2
+ 2e−(3/2)σ (1.8)

under the conditions that

p <
1
2

, σ2 ≥ 25, n≥ 100. (1.9)

In this paper, we consider the correction terms in the case when pi’s are not necessarily
equal, that is, Sn is a Poisson binomial random variable. In this case, Makabe [9] shows
that

∆n ≤ C

σ2
(1.10)

for some constant C > 0 under the conditions that

σ2 ≥ 25, pi <
1
2

for i= 1,2, . . . ,n. (1.11)
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Mikhaı̆lov [10] calculated the constant C of Makabe and found out that

∆n ≤ 2(σ + 3)
σ3

(1.12)

under the condition that

σ2 ≥ 100. (1.13)

In 1995, Volkova showed that

∆n ≤ 2
σ2

(
0.05β4 + 0.1β2

3 + 0.08
)

+
2
σ3

(
0.05β3 + 0.17β3β4 + 0.056

)
+

2
σ4

(
0.06β2

4 + 0.27β4 + 0.002
)
,

(1.14)

where β3 and β4 are the third and fourth semi-invariants of Sn, respectively. The bound
of Volkova is valid under the condition (1.13).

In the present work, we improve the bounds in (1.6), (1.8), (1.10), (1.12), and (1.14)
under the condition (1.13). Here is our main results.

Theorem 1.1. For σ2 ≥ 100,

∆n ≤ 0.1618
σ2

. (1.15)

In the proof of the main theorem, we use the idea of Uspensky which uses only Taylor’s for-
mula without using any high-power analytical tools.

Remarks 1.2. (1) In Theorem 1.1, we estimate ∆n in case of σ2 ≥ 100. In fact, the bound
is valid in the range 0 < σ2 < 100 as well. For example, if σ2 ∈ [25,100), by using the
argument of Theorem 1.1, one can get the bound of the form

∆n ≤ 0.3056
σ2

. (1.16)

In this case, Volkova [14] showed that

∆n ≤ 2(2σ + 5)
5σ3

, (1.17)

which is larger than our result.
(2) The bound in Theorem 1.1 is correct in order (see Deheuvels et al. [4]) and in the

case p1 = p2 = ··· = pn, the order of the bound is 1/n.

2. Proof of main result

Let ϕ1,ϕ2, . . . ,ϕn and ϕ be the characteristic functions of X1,X2, . . . ,Xn and Sn, respectively.
Hence

ϕj(t)= qj + pje
it for j = 1,2, . . . ,n, ϕ(t)=

n∏
j=1

(
qj + pje

it
)
, (2.1)
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where i=√−1. We note that the complex number ϕ(t) can be represented in the form

ϕj(t)= ρj(t)eiΘ j (t), (2.2)

where

ρj(t) := ∣∣ϕj(t)
∣∣= (p2

j + q2
j + 2pjqj cos t

)1/2 =
(

1− 4pjqj sin2 t

2

)1/2

, (2.3)

Θ j(t) := argument of ϕj(t)= arctan
(

pj sin t

q j + pj cos t

)
. (2.4)

Hence

ϕ(t)= ρ(t)eiΘ(t), (2.5)

where ρ(t)=∏n
j=1 ρj(t) and Θ(t)=∑n

j=1Θ j(t)(mod2π).
Let

α(t) :=Θ(t)−µt,

R(x) := 1
2π

∫ π

0

ρ(t)sin
(
σxt−α(t)

)
sin(t/2)

dt.
(2.6)

From Uspensky [12], we know that

P
(
a≤ Sn ≤ b

)= R
(
x2
)−R

(
x1
)
, (2.7)

where x1 and x2 are defined in (1.5).

Lemma 2.1. For j = 1,2, . . . ,n,
(1) ρj(t)≤ e−(2/π2)pjqj t2

for t ∈ [0,π),
(2) ρj(t)≤ e−(1/2)pjqj t2+(1/24)pjqj t4

for t ∈ [0,π],

(3) ρj(t)≥ e−(1/2)pjqj t2−(1/4)p2
j q

2
j t

4
for t ∈ [0,π/2].

Proof. (1) By (2.3) and the fact that |4pjqj sin2(t/2)| < 1, we have

lnρj(t)= 1
2

ln
(

1− 4pjqj sin2 t

2

)
(2.8)

=−1
2

∞∑
k=1

1
k

(
4pjqj sin2 t

2

)k
(2.9)

≤−2pjqj sin2 t

2
(2.10)

≤− 2
π2

pjqjt
2, (2.11)

where we have used the fact that

sin
t

2
≥ t

π
on [0,π) (2.12)

in the last inequality. Hence we have (1).
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(2) By Taylor’s formula, we know that sin2(t/2) ≥ t2/4− t4/48. So (2) follows by this
fact and (2.10).

(3) Let t ∈ [0,π/2]. Using Taylor’s formula for f (t) = (1/3)sin4(t/2) + sin2(t/2), we
can show that

t2

4
− sin2 t

2
≥ 1

3
sin4 t

2
. (2.13)

Hence, by (2.9), (2.13) and the fact that 0≤ sin(t/2)≤ t/2, we have

lnρj(t)=
{
− 1

2
pjqjt

2− 1
4

(
4pjqj

)2
sin4 t

2

}
+ 2pjqj

{
t2

4
− sin2 t

2

}

− 1
2

∞∑
k=3

1
k

(
4pjqj sin2 t

2

)k

≥
{
− 1

2
pjqjt

2− 1
4
p2
j q

2
j t

4
}

+
2
3
pjqj sin4 t

2
− 1

6

∞∑
k=3

(
4pjqj sin2 t

2

)k

=
{
− 1

2
pjqjt

2− 1
4
p2
j q

2
j t

4
}

+
2
3
pjqj sin4 t

2
− (1/6)

(
4pjqj

)3
sin6(t/2)

1− 4pjqj sin2(t/2)

≥
{
− 1

2
pjqjt

2− 1
4
p2
j q

2
j t

4
}

+
2
3
pjqj sin4 t

2
− 1

3

(
4pjqj

)3
sin6 t

2

=
{
− 1

2
pjqjt

2− 1
4
p2
j q

2
j t

4
}

+
2
3
pjqj sin4 t

2

(
1− 32p2

j q
2
j sin2 t

2

)

≥−1
2
pjqjt

2− 1
4
p2
j q

2
j t

4

(2.14)

which implies that ρj(t)≥ e−(1/2)pjqj t2−(1/4)p2
j q

2
j t

4
. �

We are now ready to prove the main result of this section. For convenience, we assume
σ2 ≥ 100 and divide the proof into 5 steps as follows.

Step 1. We will show that |ρ(t)− e−(1/2)σ2t2| ≤ (1/16)σ2t4e−(1/2)σ2t2
for t ∈ [0,

√
3/σ].

From Lemma 2.1(2), we have

ρ(t)=
n∏
j=1

ρj(t)≤ e−(1/2)σ2t2+(1/24)σ2t4
, (2.15)

which implies that

ρ(t)− e−(1/2)σ2t2 ≤ e−(1/2)σ2t2(
e(1/24)σ2t4 − 1

)≤ 1
24

σ2t4e−(1/2)σ2t2+(1/24)σ2t4
, (2.16)

where we have used the fact that ex − 1≤ xex for x > 0 in the last inequality.
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By Lemma 2.1(3) and the fact that 0≤ pjqj ≤ 1/4, we have

ρ(t)− e−(1/2)σ2t2 ≥ e−(1/2)σ2t2(
e−(1/4)

∑n
j=1 p

2
j q

2
j t

4 − 1
)

≥ e−(1/2)σ2t2(
e−(1/16)σ2t4 − 1

)
≥− 1

16
σ2t4e−(1/2)σ2t2

,

(2.17)

where we have used the fact that e−x − 1 >−x for x > 0 in the last inequality.
From (2.16), (2.17) and the fact that e(1/24)σ2t4 ≤ 3/2 for t ∈ [0,

√
3/σ], we have

∣∣ρ(t)− e−(1/2)σ2t2∣∣≤ 1
16

σ2t4e−(1/2)σ2t2
on

[
0,

√
3
σ

]
. (2.18)

Step 2. We will show that

sin
(
σxt−α(t)

)= sin(σxt)− 1
6

n∑
j=1

pjqj
(
pj − qj

)
t3 cos(σxt) +�1, (2.19)

where |�1| ≤ 0.0285t5 + 0.0035t6 and t ∈ [0,
√

3/σ].
From Uspensky [12, page 124], we see that

Θ(1)
j (0)= pj , Θ(2)

j (0)= 0, Θ(3)
j (0)= pjqj

(
pj − qj

)
, (2.20)

and for t ∈ [0,π/2],

∣∣Θ(3)
j (t)

∣∣≤ 9
8
pjqj

∣∣pj − qj

∣∣(1− 4pjqj sin2 t

2

)−3

,

∣∣Θ(4)
j (t)

∣∣≤ 2pjqj

∣∣pj − qj

∣∣(1− 4pjqj sin2 t

2

)−4

t.

(2.21)

Hence, for t ∈ [0,
√

3/σ] and σ2 ≥ 100, we have

∣∣Θ(3)
j (t)

∣∣≤ 9pjqj

8(1− 3/4σ)3
≤ 1.4215pjqj ,

∣∣Θ(4)
j (t)

∣∣≤ 2pjqjt

(1− 3/4σ)4
≤ 2.7319pjqjt.

(2.22)

Hence

α(t)= 1
6

n∑
j=1

pjqj
(
pj − qj

)
t3 +M1(t)t5,

α(t)=M2(t)t3,

(2.23)



K. Neammanee 723

where |M1(t)| ≤ 0.0285 and |M2(t)| ≤ 0.0593. So

sin
(
σxt−α(t)

)
= sin(σxt)cos

(
α(t)

)− sin
(
α(t)

)
cos(σxt)

= sin(σxt)
(

1− 1
2

cos
(
t0
)
α2(t)

)

−
(
α(t)− 1

2
sin
(
t1
)
α2(t)

)
cos(σxt), for some t0 and t1,

= sin(σxt)− 1
6

n∑
j=1

pjqj
(
pj − qj

)
t3 cos(σxt) +�1,

(2.24)

where |�1| ≤ |M1(t)|t5 + |α2(t)| ≤ 0.0285t5 + 0.0035t6.

Step 3. We will show that

R(x)= 1
π

∫ √3/σ

0
e−(1/2)σ2t2 sin

(
σxt−α(t)

)
t

dt+�2, (2.25)

where |�2| ≤ 0.0713/σ2.
By Lemma 2.1(1) and (2.12), we have

1
2π

∫ π

√
(3/4σ)π

ρ(t)sin
(
σxt−α(t)

)
sin(t/2)

dt ≤ 1
2

∫∞
√

(3/4σ)π

e−(2/π2)σ2t2

t
dt

= 1
2

∫∞
√

3σ/2

e−t2

t
dt

≤ 1
3σ

∫∞
√

3σ/2
te−t

2
dt

= 1
6σ

e−3σ/2

≤ 0.0167e−3σ/2.

(2.26)

By (2.12) and the fact that ρ(t) is decreasing on [0,π/2], we have

1
2π

∫√(3/4σ)π

√
3/σ

ρ(t)sin
(
σxt−α(t)

)
sin(t/2)

dt

≤ 1
2

∫√(3/4σ)π

√
3/σ

ρ(t)
t

dt

≤ 1
2
ρ

(√
3
σ

)∫√(3/4σ)π

√
3/σ

1
t
dt which by Lemma 2.1(2)

≤ 3
4
e−(3/2)σ ln

π

2
= 0.3383e−(3/2)σ .

(2.27)
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From (2.26), (2.27) and the fact that

e(3/2)σ ≥ 1
10!

(
3
2
σ
)10

≥ 1589σ2 for σ2 ≥ 100, (2.28)

we have

R(x)= 1
2π

∫ √3/σ

0

ρ(t)sin
(
σxt−α(t)

)
sin(t/2)

dt+�21, (2.29)

where |�21| ≤ 0.00024/σ2.
Since sinx = x− cos(x0)(x3/6) for some x0, we have

∣∣∣∣ 1
sinx

− 1
x

∣∣∣∣=
∣∣∣∣ sinx− x

x sinx

∣∣∣∣≤ x2

6sinx
, (2.30)

which implies that

1
2π

∫ √3/σ

0

ρ(t)sin
(
σxt−α(t)

)
sin(t/2)

dt = 1
π

∫ √3/σ

0

ρ(t)sin
(
σxt−α(t)

)
t

dt+�22, (2.31)

where

∣∣�22
∣∣≤ 1

48π

∣∣∣∣∣
∫ √3/σ

0

ρ(t)sin
(
σxt−α(t)

)
t2

sin(t/2)
dt

∣∣∣∣∣ which by (2.12)

≤ 1
48

∫ √3/σ

0
tρ(t)dt which by Lemma 2.1(2)

≤ 1
32

∫∞
0
te−(1/2)σ2t2

dt

= 1
32σ2

.

(2.32)

By Step 1, we see that

1
π

∫ √3/σ

0

ρ(t)sin
(
σxt−α(t)

)
t

dt = 1
π

∫ √3/σ

0

e−(1/2)σ2t2
sin
(
σxt−α(t)

)
t

dt+�23, (2.33)

where

∣∣�23
∣∣≤ σ2

16π

∫ √3/σ

0
t3e−(1/2)σ2t2

dt

≤ σ2

16π

∫∞
0
t3e−(1/2)σ2t2

dt

= 0.0398
σ2

.

(2.34)

Hence, by (2.29)–(2.34), we have the conclusion of Step 3.
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Step 4. We will show that

1
π

∫ √3/σ

0
e−(1/2)σ2t2 sin(σxt)

t
dt = 1√

2π

∫ x

0
e−(1/2)t2

dt+�3, (2.35)

where |�3| ≤ (6.68× 10−6)/σ2.
Note that

1
π

∫ √3/σ

0
e−(1/2)σ2t2 sin(σxt)

t
dt = 1

π

∫∞
0
e−(1/2)σ2t2 sin(σxt)

t
dt+�3, (2.36)

where

∣∣�3
∣∣≤ 1

π

∫∞
√

3/σ

e−(1/2)σ2t2

t
dt

≤ σ

3π

∫∞
√

3/σ
te−(1/2)σ2t2

dt

= 0.1061
σ

e−(3/2)σ which by (2.28)

≤ 6.68× 10−6

σ2
.

(2.37)

Let L(x)= ∫∞0 e−(1/2)t2
(sin(xt)/t)dt. From the well-known integral

∫∞
0
e−at

2
cos(bt)dt = 1

2

√
π

a
e−b

2/4a for a > 0, (2.38)

we have

L′(x)=
∫∞

0
e−(1/2)t2

cos(xt)dt =
√
π√
2
e−x

2/2 (2.39)

which implies that

L(x)=
√
π√
2

∫ x

0
e−(1/2)t2

dt. (2.40)

Hence

1
π

∫∞
0
e−(1/2)σ2t2 sin(σxt)

t
dt = 1

π

∫∞
0
e−(1/2)t2 sin(xt)

t
dt

= 1√
2π

∫ x

0
e−(1/2)t2

dt.
(2.41)

From (2.36) and (2.41), Step 4 is proved.
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Step 5. We will show that

1
π

∫ √3/σ

0
e−(1/2)σ2t2 sin

(
σxt−α(t)

)
t

dt = 1√
2π

∫ x

0
e−(1/2)t2

dt−G(x) +�4, (2.42)

where |�4| ≤ 0.0218/σ2.
Differentiating (2.38) twice with respect to b, we have

∫∞
0
t2e−at

2
cos(bt)dt = 1

4a

√
π

a

(
1− b2

2a

)
e−b

2/4a. (2.43)

Putting a= 1/2 and b = x, we have

∫∞
0
t2e−(1/2)t2

cos(xt)dt =
√
π

2

(
1− x2)e−x2/2. (2.44)

Hence

1
6π

n∑
j=1

pjqj
(
pj − qj

)∫ √3/σ

0
t2e−(1/2)σ2t2

cos(σxt)dt

= 1
6πσ3

n∑
j=1

pjqj
(
pj − qj

)∫∞
0
t2e−(1/2)t2

cos(xt)dt

− 1
6πσ3

n∑
j=1

pjqj
(
pj − qj

)∫∞
√

3σ
t2e−(1/2)t2

cos(xt)dt

= 1
6
√

2πσ3

(
1− x2) n∑

j=1

pjqj
(
pj − qj

)
e−x

2/2 +�41,

(2.45)

where

∣∣�41
∣∣≤ 1

6πσ

∫∞
√

3σ
t2e−(1/2)t2

dt

≤ 1
6
√

3πσ3/2

∫∞
√

3σ
t3e−(1/2)t2

dt

= 2
3
√

3π
√
σ
e−(3/2)σ which by (2.28)

≤ 2.4× 10−5

σ2
.

(2.46)

From (2.45), Steps 2 and 4,

1
π

∫ √3/σ

0
e−(1/2)σ2t2 sin

(
σxt−α(t)

)
t

dt

= 1√
2π

∫ x

0
e−(1/2)t2

dt− 1
6
√

2πσ3

(
1− x2) n∑

j=1

pjqj
(
pj − qj

)
e−x

2/2 +�4,
(2.47)
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where

∣∣�4
∣∣≤ 1

π

∫ √3/σ

0

(
0.0285t4 + 0.0035t5)e−(1/2)σ2t2

dt+
6.68× 10−6

σ2
+

2.4× 10−5

σ2

≤ 0.0095
σ2

+
3.068× 10−5

σ2
≤ 0.0096

σ2
.

(2.48)

From Steps 3 and 5,

R(x)= 1√
2π

∫ x

0
e−(1/2)t2

dt−G(x) +�5, (2.49)

where |�5| < |�2|+ |�4| ≤ 0.0809/σ2. Hence, by (2.7), we have Theorem 1.1.

3. Example

We will demonstrate a possible application of approximation in Theorem 1.1 with the
problem of estimating the distribution function of the number of empty cells in an
equiprobable scheme for group allocation of particles introduced by Vatutin and
Mikhaı̆lov [13] as follows.

Suppose that n groups of s particles are allocated independently in N cells labelled by
the numbers 1,2, . . . ,N . It is assumed that these particles are allocated one to a cell. Let

Sn := number of cells remaining empty after n groups are allocated. (3.1)

Vatutin and Mikhaı̆lov [13] showed that the distribution function of Sn coincides with
that for a sum of independent Bernoulli random variables with

µ=N
(

1− s

N

)n
,

σ2 =N
(

1− s

N

)n[
1−N

(
1− s

N

)n
+ (N − 1)

(
1− s

N − 1

)n]
.

(3.2)

From Theorem 1.1, we see that

∆n ≤ 0.1618
σ2

, (3.3)

where σ2 is defined in (3.2). We note that our bound is simpler than that in Volkova [14]
and easy to evaluate.
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