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We study the volume growth function of geodesic spheres in the universal Riemann-
ian covering of a compact manifold of hyperbolic type. Furthermore, we investigate the
growth rate of closed geodesics in compact manifolds of hyperbolic type.

1. Introduction

In this paper, we investigate asymptotic properties of universal Riemannian covering of a
compact manifold of hyperbolic type.

Definition 1.1. A compact Riemannian manifold (M,g) is called of hyperbolic type if
there exists another Riemannian metric gy such that (M, gy) has a strictly negative curva-
ture.

Note that, in dimension 2, an orientable manifold M is of hyperbolic type if and only
if its genus is greater than or equal to 2.

We say that a function f : R — R, is of purely exponential type if there exist constants
a >1and ry > 0 such that

f(r)

<
- ehr

<a Vr=r, (1.1)

Q[+~

for some constant /& > 0. The real number h is called the exponential factor of f.
In 1969, Margulis proved, for suitable constant / > 0, that

a(p) :=lim volS(p.r)

lim = (1.2)

exists at each point p in manifolds of negative curvature and that the function a is con-
tinuous (see [18]). Clearly, this result implies purely exponential growth of volume of
geodesic spheres.

If (M,g) is a compact Riemannian manifold, Manning has introduced an interest-
ing asymptotic invariant /i, (volume entropy) which is defined as follows: if vol By(p,r)
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876  Volume growth and closed geodesics

denotes the volume of the geodesic ball By (p, ) with centre p and radius r in the universal
Riemannian covering X of (M, g), then

hy i= lim logvol Bg(p,r)

r—o0 r

> (1.3)

where the limit on the right-hand side exists for all p € X and, in fact, is independent
of p. Manning showed that, in the case of nonpositive curvature, hg coincides with the
topological entropy (see [17]).

In 1997, using the notions of Busemann density and Patterson Sullivan measure, G.
Knieper proved the following result (see [16]): if (M, gy) is a rank-1 compact Riemannian
manifold of nonpositive curvature and Xj its universal Riemannian covering, there exist
constants ag > 1 and rg = 0 such that

1 - volSg, (p,7)
ag eha”

<ay Vr=ry, (1.4)
where hy, is the volume entropy of (M, gy) and S, (p, ) is the geodesic sphere in X, with
centre p and radius r.

The main result of this paper is as follows.

THEOREM 1.2. Let (M,g) be a compact Riemannian manifold of hyperbolic type without
conjugate points and let X be its universal Riemannian covering. Then the growth function
of the volume of geodesic spheres of X is of purely exponential type with the volume entropy
hg as exponential factor.

Remark 1.3. Note that the manifolds considered in Theorem 1.2 may have curvature of
both signs (see [7] or [13, page 199]). This result yields a sufficient condition for the
nonexistence of Riemannian metric with negative curvature on a compact manifold. In
Theorem 1.2 by integration an analogous growth result holds if one replaces geodesic
spheres by geodesic balls. Precisely the following holds.

CoROLLARY 1.4. Let (M,g) be a compact Riemannian manifold of hyperbolic type without
conjugate points and let X be its universal Riemannian covering. Then the growth function
of the volume of geodesic balls of X is of purely exponential type.

Remark 1.5. Corollary 1.4 implies that the critical exponent of the deck transformations
group of X is equal to the volume entropy of M. However, using a Coornaert’s result
([4, Theorem 4.3]), we get an analogous result without the assumption of no conjugate
points.

We also study the counting function %(¢) of the number of closed geodesics of period
less than or equal to ¢ (up to free homotopy) in the compact quotient M.

In the case of negative curvature, Margulis showed that P(t) ~ e"/t, where h is the
volume entropy of X.

In this paper, we prove the following.
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THEOREM 1.6. Let (M,g) be a compact Riemannian manifold of hyperbolic type without
conjugate points. Then there are constants a > 1 and ty > 0 such that

ehst
T S@(t) saehﬁt Vt>ty, (15)

Q=

where hy is the volume entropy of (M,g), P (t) the number of closed geodesics of period less
than or equal to t in M.

The corresponding result for compact rank-1 manifolds was proven by Knieper [16].

The paper is organized as follows. In Section 2, we recall some basic facts about Gro-
mov hyperbolic spaces. In particular, we study the ideal boundary and the Gromov
boundary of a manifold of hyperbolic type. In Section 3, we introduce a notion of Buse-
mann quasidensity, which is used to prove the so-called shadow lemma (see Lemma 3.6).
In Section 4, we prove Theorem 1.2. Section 5 starts with some properties of closed geo-
desics of compact manifold. Then, we give a proof of Theorem 1.6.

2. Gromov and ideal boundaries of manifolds of hyperbolic type
We recall first some basic notions about a compactification of Hadamard manifolds.

Definition 2.1. A connected, simply connected, and complete Riemannian manifold is
called Hadamard manifold.

Let (Xo,g0) be a Hadamard manifold. Two geodesics ¢1,¢; : R — X, are said to be as-
ymptotic, if there exists a constant D > 0 such that

dg, (c1(t),c2(t)) <D Vt=0. (2.1)

This defines an equivalence relation on the set of geodesics of Xp.

An equivalence class of this relation is called point at infinity of X,. If c: R — X is a
geodesic, its class is denoted by c(+). Let ¢! : R — X; defined by ¢7!(¢) := ¢(—¢) for all
t € R. The class of ¢! is denoted by c(—0).

The ideal boundary X (o) of X is the coset of the geodesics of Xj.

One defines a natural topology on the set X, := Xy U Xo(o0) as follows: consider
B(x,1) = {v € T:Xo | llvll <1} and the bijection

D, : B(x,1) — X = X U Xo(),

Il Y,
f 1, 2.2
e (7 )y i< 22)

cy(+00) if flvll =1,

where ¢, is the geodesic satisfying ¢,(0) = x and ¢,(0) = v. The following classic lemma
will also be used.

LemMa 2.2 (see [2, page 22] or [7]). Let (Xo,£0) be a Hadamard manifold, x € X, and & €
Xo(o0). Then there exists a unique geodesic ¢ : R — Xy satisfying ¢(0) = x and c(+o0) = &.
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For p € X, q1 and q; in X = Xo U Xo(o0) with p # g1 and p # q,, we define

ZP (ql’qz) = Z(Cpm (0))épqz(0))> (2.3)

where cpq, : R — X is the geodesic joining the points p and g; and Z(¢,q,(0),¢p4,(0)) is
the angle subtended by the vectors ¢y, (0) and ¢,4,(0).
For p € Xp, & € Xo(o0), € >0,and R >0, let

[,(¢,6,R):={qg€Xo=XoUXo() | q# p, £5(q,8) <€, dg,(p,q) >R}. (2.4)

For a fixed point p € X, the set of all T';(&,€,R) and the open subsets of X, generate a
topology on X = Xo U X(0). This topology is called the cone topology. With respect to
this topology, the set X := Xy U X(o0) is homeomorphic to a closed n-ball in R” (see [2,
page 22] or [7]). The induced topology on X(o0) is called the sphere topology.

Definition 2.3. Let (X;,d;) and (X3,d,) be two metric spaces. A map ¢ : X; — X is called
an (A, «)-quasi-isometric map for some constants A > 1 and a > 0 if

%dl (6, y) —a<dy(d(x),¢(y)) <Adi(x,y)+a Vx,y€X. (2.5)

In a metric space X, a (A, a)-quasigeodesic (resp., (A,«)-quasigeodesic ray) is a (A,«)-
quasi-isometric map ¢ : R — X (resp., ¢ : R* — X).

Definition 2.4. Let (X,d) be a metric space, E and F subsets of X. The Hausdorff distance
dy is defined by

dy(E,F):=inf{r >0, EC T,(F), F C T,(E)}, (2.6)
where
T,(G):={xe X, dx,G) <r} VGCX. (2.7)

THEOREM 2.5 (Morse lemma, see [14]). Let (Xo,g0) be a Hadamard manifold with sec-
tional curvature Kx, < —ki < 0 for some constant ko > 0. Then for each (A, «)-quasigeodesic
(resp., (A,«)-quasigeodesic ray) ¢ : R — Xy (resp., ¢ : Rt — X,), there exist a real number
1o >0 and a geodesic (resp., geodesic ray) ¢ : R — X, (resp., ¢ : RY — Xy) such that dp(c(R),
d(R)) < 1y (resp., du(c(R*),¢(R*)) < 10); 1o depends only on A, &, and ky.

Definition 2.6. Let (X, d) be a metric space with a reference point xy. The Gromov product

of the points x and y of X with respect to xj is the nonnegative real number (x - y)y,
defined by

(x - Y)x = = 1d(x,x0) +d(y,x0) —d(x,9)}. (2.8)

N =

A metric space (X,d) is said to be a §-hyperbolic space for some constant § > 0, if

(x Y)xo =min{(x-2)x; (¥ 2)x,} — 6 (2.9)
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for all x, y, z and every choice of reference point xy. X is a Gromov hyperbolic space if it
is a §-hyperbolic space for some & > 0. The usual hyperbolic space H” is a §-hyperbolic
space, where § = log3. More generally, every Hadamard manifold with sectional curva-
ture less than or equal to —k? for some constant k > 0 is a §-hyperbolic space, where
8 =k 'log3 (see [1,5,10] or [11]).

LeEMMaA 2.7 (see [5, page 20] or [4]). Let (X,d) be a complete geodesic §-hyperbolic space,
Xo a reference point in X, x and y two points of X. Then

d(xO)ny) -46 < (x- y)xo =< d(xO))’xy) (2-10)

for every geodesic segment yy, joining x and y.

Now let X be a Gromov hyperbolic manifold, xy a reference point in X. We say that
the sequence (x;);cn of points in X converges at infinity if

lim (x;-x;j), = oo. (2.11)

i,j—o00 Xo
If x; is another reference point in X,
(X - ¥)x, —d(x0,1) < (X y), < (X y)x, +d(x0,1). (2.12)

Then the definition of the sequence that converges at infinity does not depend on the
choice of the reference point. We recall the following equivalence relation %R on the set of
sequences of points in X that converge at infinity:

(x)R(yj) = l.)ljiggo (Xi* yj)y = (2.13)

The Gromov boundary X (o) of X is the coset of sequences that converge at infinity.
Let X be a simply connected Riemannian manifold which is a Gromov hyperbolic
space. One defines on the set X U X%(o0) a topology as follows (see [5, page 22] or [10,
page 122]):
(1) if x € X, a sequence (x;);cn converges to x with respect to the topology of X,
(2) if (x;)ien defines a point & € X(00), (x;)ien converges to &,
(3) for n € X%(o0) and k > 0, let

Vi(n) := [y € XUX(0), (y-1)x, >k}, (2.14)
where

(X Y)x = inf{lirirlionf (Xi = i) g Xi = X Yi = y} (2.15)
for x and y elements of X U X%(0).
The set of all Vi (#) and the open metric balls of X generate a topology on X U X (o).
With respect to this topology, X is dense in X U X%(o0) and X U X%(0) is compact.
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LemMa 2.8 [4]. Let X be a §-hyperbolic space. Then
(1) each geodesic y : R — X defines two distinct points at infinity y(+o0) and y(—oco),
(2) for each (17,x) € XG(o0)xX, there exists a geodesic ray y such that y(0) = x and
y(+00) = 5. For any other geodesic ray y" with y'(0) = x and y'(+o) =y, d(y’'(t),
y(t)) <40 forallt = 0.

Definition 2.9. Let £ € X%() and c¢: Ry — X be a minimal geodesic ray satisfying
c(+) = &. The function

be(x) := }1}2 (d(x,c(t)) —t) (2.16)

is well-defined on X and is called the Busemann function for the geodesic c.

LemMa 2.10 [4]. Let X be a §-hyperbolic space, &€ € X9(0), x,y € X, and c a geodesic ray
with c(0) = x and c(+o0) = &. Then there exists a neighbourhood V" of § in X U X©(0) such
that

|be(y) = (d(z,y) —d(z,x)) | <K VzeV X, (2.17)

where b. is the Busemann function for the geodesic ¢ and K is a constant depending only
oné.

LemMa 2.11 [5]. Let X, be a metric space and let (X,,d,) be a geodesic Gromov hyperbolic
space. If there exists a quasi-isometric map ¢ : X1 — X5, then X, is also a Gromov hyperbolic
space. Moreover, if the map

x — da(x,¢(X1)) (2.18)

is bounded above, X (00) =~ X§(o0), that is, XC (o) is homeomorphic to X§ (o).

Now let (M,g) be a compact Riemannian manifold of hyperbolic type and let X be
its universal Riemannian covering. Let gy denote an associated metric of strictly nega-
tive curvature on M. The universal Riemannian covering X, of (M,g) is a Hadamard
manifold satisfying Kx, < —k§ < 0 for some constant kq > 0. Then X, and X are Gromov
hyperbolic spaces. Moreover, X¢(o0) ~ X§(00).

Two geodesic rays c and ¢ are said to be asymptotic if there exists a constant D > 0 such
that dy(c(R+),¢ (Ry)) < D. This defines an equivalence relation on the set of minimizing
g-geodesic rays of X. Let X (o) be the coset of asymptotic minimizing g-geodesic rays. For
each minimizing g-geodesic ray ¢ of X, it follows from Morse lemma that there exists a
go-geodesic ray ¢y such that dy(c(Ry),co(R4)) < 19, where 1y is the constant in Morse
lemma. Let [c] be the equivalence class of minimizing g-geodesic ray ¢ and let [cy] be the

equivalence class of the gy-geodesic ¢p. The map f defined by
f:X(00) — Xo(0),

(2.19)

[c] — [co]

is bijective. Then f defines on X (o) a natural topology with respect to which X(co) and
Xo(c0) are homeomorphic, that is, X (00) =~ Xp(o0) (see [8]).
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Lemma 2.12 [3]. Let Xy be a Hadamard manifold with sectional curvature Kx, < —k% < 0
for some constant ko > 0. There exists a natural homeomorphism

¢: Xo UX§(00) — Xo U Xo(c0). (2.20)

In particular, X§'(00) =~ Xy (o).

Using Morse lemma, Lemma 2.12 and the properties of the ideal boundaries, we ob-
tain the following lemma.

LemMA 2.13. Let (M,g) be a compact Riemannian manifold of hyperbolic type, and let
X be its universal Riemannian covering. Let gy be an associated metric of strictly negative
curvature on M and let X, be the universal Riemannian covering of (M,go). It holds that

X(00) = Xp(00) = XF(o0) = X%(0). (2.21)

3. Busemann quasidensities
Let (X,d) be a metric space and let I' be a discrete and infinite subgroup of the isometry

group Iso(X) of X. For xp, x € X and s € R,

(x,x0) 1= > esdmr) (3.1)
yerl

denotes the Poincaré series associated to I'. The number
a:=inf {s € R/P;(x,xq) < o} (3.2)

is called the critical exponent of I and is independent of x and x,. The group I' is called
of divergence type if Py(x,x0) diverges. The following lemma introduces a useful modifi-
cation (due to Patterson) of the Poincaré series if I' is not of divergence type.

LemMa 3.1 [19]. Let I be a discrete group with critical exponent o. There exists a function
f: Ry — Ry which is continuous, nondecreasing, and such that

. flr+a)
VYa>0, 1 =1, 3.3
a lim 0 (3.3)
and the modified series
s (%6, x0) Z £(d(x,yx0)) edtorxo) (3.4)

yel

converges for s > a and diverges for s < a.

Now let (M, g) be a compact Riemannian manifold of hyperbolic type and let X be its
universal Riemannian covering. Let gy denote a metric of negative curvature on M. The
universal Riemannian covering X, of (M,gy) is a Hadamard manifold satisfying Kx, <
—k¢ < 0 for some constant kg > 0. Let T be the group of deck transformations of X and
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let a8 be its critical exponent with respect to the metric go. It follows from [16, Theorem
5.1] that

— lim logvolBg, (p,7) '

r—o00 r

af = hy,

(3.5)

The fact that M is compact implies the existence of a constant A > 1 such that the critical
exponent af of I' with respect to the metric g belongs to [A~'hg,Ahg, ] C R (see [15]).

LemMa 3.2. Let (M,g) be a compact Riemannian manifold of hyperbolic type and let X be
its universal Riemannian covering. Let T be the group of deck transformations of X and for a
given x € X the set A$(T,x) of the accumulation points of the orbit Tx in X%(c0). Then

(1) A8(T,x) =Tx N X%(c0),

(2) y(A8(T,x)) = A$(I',x) forally €T and x € X,

(3) A8(T,x) is independent of x,

(4) A8(T,x) = XG(o0).

Proof. Using the definition of A8(T,x), we can easily check (1) and (2).
(3) For all £ € A8(T,x), by definition there is a sequence (), of points of I such that
limy,—« yux = &. Then

lim (y.x- me)xg = +o0, (3.6)

For all y € X, we have
2(ynx = yny)y, = d(ynx,%0) +d(yny,x0) = d(ynx, yny)

d(ynx,x0) +d(yny,x0) — d(x,y) (3.7)
> d(ynx,x0) +d(x, y).

[\

Hence,
lim (ynx - yny)y, = +oo,  limy,y =¢. (3.8)

(4) Let go denote a metric of strictly negative curvature on M. The universal Riemann-
ian covering X, of (M,g) is a Hadamard manifold satisfying Kx, < —k§ < 0 for some
constant ko > 0. Then A8 (T, x) = Xo(o0) (see [15]). Finally, using Lemma 2.11 we obtain
that A$(T,x) = XG(o0). O

Definition 3.3. Let X be a Gromov hyperbolic manifold, « € R, and let T be a discrete
and infinite subgroup of Iso(X). A family {p}rex of finite nontrivial Borel measures on
X UXC(00) is an a-dimensional Busemann quasidensity with reference point xy € X if

(1) suppuy C A(T,x), where A(T,x) is the limit set of the orbit I'x in X% (o),

(2) pyx(yA) = px(A) forall y € T, A € X%(o0), A measurable, x € X,

(3) there exists a constant A > 1 such that for all x € X,

L leabe(n) < ‘Z/‘Zx”(f) < de~be(x0) (3.9)
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for almost all £ € X%(0), where c is a geodesic satisfying c(0) = x, c(c0) = & and b,
is the Busemann function for the geodesic c.

The next lemma states the existence of a Busemann quasidensity.

LemMa 3.4. Let (M,g) be a compact Riemannian manifold of hyperbolic type and let X
be its universal Riemannian covering. Let T be the group of deck transformations of X and
let of be its critical exponent. Then there exists an o8 -dimensional Busemann quasidensity
{px}rex on X U X (c0).

Proof. We have to construct a family of measure {yy} cx which satisfies the axiomatic
Definition 3.3.

Construction of {pix}xex. A natural way to obtain Busemann quasidensity was given by
Patterson (see [19]) in the case of Fuchsian groups.

Let xo be a reference point of the Gromov hyperbolic manifold X. For s > of and x € X,
we consider the measure

Syer f(d(x,yx0) ) emsdr)§,,
ﬁs (xo,xo)

Hsxox i= > (3.10)

where f is a useful modification function (due to Patterson) of the Poincaré series if T is
not of divergence type and

s (x0,%0) Z f(d(x0,yx0)) e~ sd(xoyx0) (3.11)
yel

Let (s,)n be a sequence with s, > a8 and s, — of such that y;, », » converges weakly, as
well to the measure p,. For every x & I'xy, we choose a subsequence of (s,),, denoted by
(s¥), such that the measure g .« is also weakly convergent. For all points of the same
orbit I'x we can choose the same subsequence, that is, s = s* if x’ € I'x. These choices
yield a family {p,}xex of measures.

{tx}xex 1s an of -dimensional Busemann quasidensity. (i) Using the triangle inequality
and the fact that 1/2 < f(d(x,yx0))/ f (d(x0,y%0)) < 3/2 for almost all y € T, we deduce
that

ae~sdex) <y < hemsdlxx) (3.12)

where a and b depend only on d(xo,x). This implies that {g,}xcx is a family of finite
nontrivial Borel measures on X U X%().

(i) For all z € X U X%(0)\ A%(T, x), there is an open neighbourhood U of z with Tx N
WU\{z} = &. Then

fd(x,2)) e

P, (x0,%0)

n

Py, (W) < (3.13)

Since ﬁs(xo,xo) diverges for s = o8, we obtain p,(U) = 0
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(iii) Let 7 € T, and let A be a measurable subset of X U X%(). Then

2)/61", yxgENA f (d(ﬂx, Y-x()) ) efsd(qx,yxo)

Us,xo,nx ( I’IA) =

P (x0,%0)
_ Zy’el‘, Y xo€A f (d(x, Y’XO) )eisd(x’y,x()) (3.14)
- ﬁs (x0>x0)
= Us,xp,x(A).

Thus u,x(nA) = uc(A) forall y € T.
(iv) We now consider & € X%(o0) and a sequence (U,), of open sets in X U X%(c0)
with lim,,— U, = &. By Lemma 2.10, there exists 79 € N such that

| be(x0) — (d(yx0,x0) —d(x,x0)) | <K (3.15)

for all n = ny and yx, € U, where ¢ is a geodesic joining x and &, b, a Busemann func-
tion for the geodesic ¢, and K a constant depending only on the metric gy. Then, using
Lemma 3.1, we deduce the existence of a constant A > 1 such that

Foragiven y € X U X%(0), x € X, and p > 0, we introduce the shadow @‘f,(x,p) (of the
ball B, (x,p) viewed from the point y) as follows: @‘g(x, p) consists of all points £ € XY(o0)
such that all geodesic rays ¢,z connecting y and & satisfy ¢, N Bg(x,p) # @. O

LemMA 3.5. Let (M,g), X, T, and {y,}xex be as in Lemma 3.4. Then there exist constants
Ry >0 and [ >0 such that for all p > R,

e (05(x,p)) =1 Vax,y€X. (3.17)

Proof. Let gy be a metric of negative curvature on M and X, the universal Riemannian
covering of (M, go). For v € S, X, we define

CE(v) = {cw(), w € $:Xo, (v,w) <&}, (3.18)
where ¢, is the gy-geodesic satisfying ¢,,(0) = w.

Let & be a fundamental domain in X. It follows from [16, Proposition 3.6] the exis-
tence of constants Ry >0 and & > 0 such that for all x € ¥ and y € X, C¥(v) € 05 (x,Ro)
for some v € S, Xo. Hence, using Morse lemma we obtain a constant R; > 0 with

C(v) C O (x,Ry). (3.19)

Finally, because of

suppy = X9(o0) = X{(),  p(05(x,p)) = O3 (yx,p) (3.20)
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for all y €T, there exists a constant / > 0 such that for all p > Ry,

e (05(x,p)) =1 Vax,y€X. (3.21)
0

The shadow lemma was proven by Sullivan in the case of the usual hyperbolic space
(see [20]). Our version generalizes this result to all compact manifolds of hyperbolic type.

LEmMa 3.6 (shadow lemma). Let (M,g) be a compact Riemannian manifold of hyperbolic
type and let X be its universal Riemannian covering. Let T be the group of deck transforma-
tions of X, let of be its critical exponent, and let {y}cex be a Patterson-Sullivan density
associated to T on X U XC(o0). Then there exist a constant Ry > 0 and a function b > 1 such
that forall p > R, and x € X,

_ - —afd(xx0) —ofd(x,x0)
bp)° < Uy (0%, (x0,p)) < b(p)e : (3.22)

Proof. Tt follows from Lemma 3.4 that there exists a constant A > 1 such that for all { €
XG(0)and x € X,

”1J e 0t gy (£) < g, (0%, (x0,p)) = A e b gy (£),  (3.23)
5 (o) u thxo (0% (x0,p)) o (o) u

where ¢ is a geodesic joining x and &, b, the Busemann function for the geodesic c.
Morse lemma and the definition of 0%, (xo, p) imply the existence of constant D >0
such that

d(x,x0) =D < b.(x0) <d(x,x0) +D VxeX. (3.24)
Therefore
th (03, (x0,p) ) < Ae=®@@x)=2D)y (0F (x,p)) < b’ 2P dlox0), (3.25)
where b’ = sup,y px(X“(0)). Moreover,
(0% (x0,p)) = A~ e 20 Pem a8y, (05, (x,p)). (3.26)
Then using Lemma 3.4, we obtain

thx, (0%, (x0,p) ) = N1 266D gmatdlx), (3.27)

4. The growth rate of volume of spheres in manifolds of hyperbolic type

A Riemannian manifold M is said to be without conjugate points if every nonzero Jacobi
field vanishes at most one point. It is well known that if M has no conjugate points, for
each point p € M the exponential map exp,, : T,M — M is a covering map. Moreover, if
M is simply connected, exp,, is a diffcomorphism and any two points of M can be joined
by a unique geodesic segment.
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THEOREM 4.1. Let (M,g) be a compact Riemannian manifold of hyperbolic type without
conjugate points and let X be its universal Riemannian covering. Let S(xo, 1) be the geodesic
sphere about xo € X of radius r and let hy be the volume entropy of (M, g). Then there exist
constants a = 1 and ro > 0 such that

volS(xo,7)

T <a Vr=ry, (4.1)

1

- <

a
that is, the growth function of the volume of the geodesic spheres S(xo,r) is of purely expo-
nential type.

The following lemmas will be useful for the proof of Theorem 4.1. Their proofs use
similarly arguments like those given in [3].

LemMa 4.2. Let (M,g) be a compact Riemannian manifold of hyperbolic type without con-
jugate points, let X be its universal Riemannian covering, and let n = dimX. Let S(x,1) be
the geodesic sphere about xo € X of radius r. Then for all p < (1/2)r, there exists a constant
Li(p) >0 such that all (n — 1)-dimensional subdomains B in S(xo,r) with diam B = p satisfy

vol,—1(B) < L(p). (4.2)

Proof. We will use in Ty, X the geodesic polar coordinate system (t,6), where 6 € S, X.
Since the Riemannian manifold X is simply connected without conjugate points, the ex-
ponential map exp, realizes a diffeomorphism from Ty, X to X. Let (Dexp, )(t0) denote
the differential of exp, evaluated at a point (¢,6) € Ty, X. The fact that M is compact im-
plies the existence of a constant k > 0 with Ric(X) > —(n — 1)k. Let X", denote the sim-
ply connected space form with constant sectional curvature —k2. Using Bishop-Gromov
theorem (see [12]), we obtain

sinh (ks1)

det (Dexp,, ) (s10) < [m

]det (Dexp,, ) (s:0) (4.3)

forall s; > s, > 0. We consider a (n — 1)-dimensional subdomain B in the geodesic sphere
S(xo,7) with diam B = p and the following set:

F:= U P:(B) where P(y) = exp,, [; exp;ol(y)] (4.4)

r—p<t<r

for all y € S(x¢,r). For each point x € B, the set F is contained in the geodesic ball
B(x,2p). Therefore using Bishop-Gunther theorem (see [9, page 140]), we obtain a con-
stant fy € [r — p,r] such that

vol,, P, (B) < f—l)V,kz(Zp) where V_j2(2p) (4.5)

is the volume of a ball with radius 2p in the space form X”,,. Then using (4.3), we obtain

sinh(2kp) ]”71 V_i2(2p)

vol,-1(B) = [ sinh(kp)

(4.6)
P 0
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Let B(xo,7) be the open geodesic ball of radius r about a point xy in X. For x,y €
X\B(xp,r), we define

d,(x,y) :=inf {I(0), o is a piecewise smooth curve connecting x, y,0 C X\B(xo,7)}.
(4.7)

For x € S(xy,7), let
Bj(x):= {y € S(xo,7), dr(x,y) < p}. (4.8)

LemMma 4.3. Let (M,g) be a compact Riemannian manifold of hyperbolic type without con-
jugate points, let X be its universal Riemannian covering, and let n = dimX. Suppose that
X is a §-hyperbolic manifold. A constant K >0 can be found such that for all p > K and
r = 2p, there exists a constant L,(p) > 0 with

vol,—1 (B (x)) = L(p) (4.9)
for all x € S(xo,7).
Proof. We consider the set
H:= |J P(Bjx). (4.10)
r<t<r+4p

Using (4.3) in Lemma 4.2, we obtain

sinh(kt)
sinh(kr)

n—1
vol, (P, (B}(x))) < [ ] vol, 1 (By(x)). (4.11)

Hence,

vol,(H) [ sinh(kt) ]”71
4p  Lsinh(kr +4kp)

But there exist some point z € H and a constant K > 0 such that B(z,p/4) ¢ H for all
p = K. Therefore

vol,-1 (Bj(x)) = (4.12)

vol,, (B(z,p/4)) [ sinh(kt) ]"71 (4.13)

vol,—; (Bp (x)) = 4p sinh(kr +4kp)

Since M is compact, there exists a constant k; >0 with Kx < k;. Then using Bishop-
Gunther theorem (see [9, page 140]), we obtain

vol, (B (z,%)) > Vi, (%), (4.14)

where Vi, (p/4) is the volume of a ball of radius p/4 in the space form X. Hence,

Vi, (p/4) [sinh(ka) ]”_1 v

vol, (Bp(x)) = 4p sinh(6kp)

r=2p. (4.15)
|
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Proof of Theorem 4.1. Choose p = max{6R;,3K, 1348}, where R, is as in Lemma 3.6, K is
as in Lemma 4.3, and § > 0 such that X is a §-hyperbolic space. Let x1,x2,...,X, be a
maximal p-separating set in S(xo,7). Then

X6(o0) = 0%, (xi1,p+49). (4.16)

i=1
Since p = 6R;, Lemma 3.6 implies the existence of a constant b(p +49) with

bO eozé' r

e _ G
m> b(p+49) where by = py, (X9(00)), (4.17)

and of is the critical exponent of the group of deck transformations. Note that the balls
B;/3(xi) are pairwise disjoint subsets of S(x,7). Then since p = 3K, by Lemma 4.3 we
obtain a constant ,,(p/3) > 0 such that

bolz(p/.’i)eagr Z_p
vol S(xo,7) > “hp+a0) Vr> 3 (4.18)

Furthermore, Lemma 4.2 implies the existence of a constant [; (p) > 0 with

volS(xo,7) < ml(p) (4.19)

for all r > 2p. Since p > 136, the shadows 0%, (x;,p/6) are pairwise disjoint subsets of
XG(0). Because of p > 6R;, Lemma 3.6 implies that there exists a constant b(p/6) with

m
by ———. 4.20
"= bp/6)ex (420
Finally, since
vol B (xg,7) = J vol S(xo, t)dt, (4.21)
0
there exist constants a; > 1 and r; > 0, such that
1 1B (xo,
— < w <a Vrx=r. (4.22)
a; e
Hence af = h. O

CoROLLARY 4.4. Let (M,g) be a compact orientable surface of genus greater than or equal to
2, without conjugate points and let X be its universal Riemannian covering. Then the growth
function of the volume of geodesic spheres of X is of pure exponential type.

CoROLLARY 4.5. Let (M,g) be a compact manifold of hyperbolic type without conjugate
points and let X be its universal Riemannian covering. Then the growth function of geodesic
balls of X is of purely exponential type with the volume entropy as exponential factor.
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5. Closed geodesics in compact manifolds of hyperbolic type

Let M be a complete, simply connected manifold and let d be the induced metric of the
Riemannian structure. A geodesic ¢ : R —M is closed, if there exists a constant u > 0 such
that c(¢t + u) = c¢(u) for all t € R. The period Per(c) of ¢ is the smallest constant u >0
satisfying this property.

Definition 5.1. Consider two closed geodesics c¢; of period t; and ¢, of period ¢, as equiva-
. . -1
lent, if there exist n;,n, € N such that ¢y, and ¢3,,,,,,) OF €115,y and 63 are freely

homotopic, where ¢; ' (t) = c;(—t) for all t € R.

Let [c] denote the equivalence class of the closed geodesic c,

I([¢]) = inf {Per (co), co € [c]},
P(t) = #{lc], I([c]) <t}

Let (M,g) be a compact manifold, let X be its universal Riemannian covering, let
7:X — M be the covering map, and let ' be the group of deck transformations; I' =
m(M). For all y €T, since the manifold M is compact, there exists py € X such that
d(po,y(po)) =:I(y). The geodesic ¢ connecting po and y(po) is called an axis of y and the
projection 7 o ¢ is a closed geodesic of M of period I(y).

(5.1)

Definition 5.2. Two elements y; and y, of T are equivalent (y; ~ y»), if there exist m,n € Z
and an isometry f8 € T such that y] = Sy5'f~1.

The projections of the axes of two equivalent elements y; and y, of T define two equiv-
alent closed geodesics on M. Conversely, the lifts of two equivalent closed geodesics are
axes of two equivalent isometries. Hence, we obtain the following well-known result.

ProrosITION 5.3 [16]. The coset of closed geodesics is in one-to-one correspondence with
the equivalence classes of the elements in the fundamental group.

LEmMA 5.4. Let (M,g) be a compact Riemannian manifold of hyperbolic type without con-
jugate points and let X be its universal Riemannian covering. Let P(t) denote the number
of equivalence classes of closed geodesics of M with length less than or equal to t. Then there
exist constants a > 1 and ty > 0 such that P(t) < aels* for all t > ty, where hy is the volume
entropy of X.

Proof. LetT be the group of deck transformations of X and & C X a fundamental domain
of I' with diam & = D. Using Proposition 5.3, we obtain for a fixed p in &,

P(t) <#{y €T, yF C Bapwt(p)}. (5.2)

Since the y;F are pairwise disjoint, we obtain by Corollary 4.5

VOlBZD+t(P)< 1 el (5.3)

PO lF = TelF 2

LEmMA 5.5. Let (M,g) be a compact Riemannian manifold of hyperbolic type without con-
jugate points, X its universal Riemannian covering, and I the group of deck transformations
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of X. Forpe X andr =0, let
Ii(p):={yel, r<d(p,y(p)) <t} (5.4)

Then there exist constants b > 0 and ty > 0 such that #I';(p) = belst for all t > to, where hg is
the volume entropy of X.

Proof. Let & be a fundamental domain of I' in X with diam% = D. For all p € %, using
the definition of I'; (p) and the triangle inequality, we have

Bi(p)\B:(p) C Uyerr-p(p)y(Bo(p)). (5.5)
Let rg be as in Theorem 4.1 and r; = max(r,ry). We have
volB:(p)\B,(p) = vol B;(p)\B,, (p) = % [1 - aieT’:i’l]. (5.6)
Then there exist constants A > 0 and o > 0 such that
vol B;(p)\B,, (p) = Aels* (5.7)
forall t = t,. O

LEMMA 5.6. Let (M,g) be a compact Riemannian manifold of hyperbolic type without con-
jugate points, X its universal Riemannian covering, and I the group of deck transformations
of X. Let gy be a metric of negative curvature on M and X, the universal Riemannian cov-
ering of (M, gy). Let n €T, let ¢ : R — X, be a go-axis of n, and let py = c(0). Then there
exist constants r,k > 0 and neighbourhoods W of co(—o0) and V" of co(+00) in Xy U Xo(c0)
such that

1
#ly €T, (po), ) N = @} = T (po), (5.8)
where

X(p):={yeT, k<d(p,y(p)) <t} (5.9)

Proof. Using Morse lemma and [16, Lemma 5.6], there exist § € ' and neighbourhoods
WU of cg(—o0) and V" of ¢y(+o0) such that

{Bc(—00),Be(+00)} N {e(—00),c(+0)} = @. (5.10)

Then using Morse lemma, we find neighbourhoods AU of ¢(—c0) and V" of ¢(+0c0) such
that
(1) (B N B N (AUNT) = 2,
(2) there is a constant L > 0 such that for all x € U and y € V, there is a g-geodesic h
connecting x and y satisfying d(h, py) < L.
Fort € R, let

AWV, t) = {y €T (po), (V) nU = T},

A() = AQLY 1) U AV, A1) UAQ, V1) U A, 1) (5.11)
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Using Morse lemma and the triangle inequality, we prove that
#A(t) = a#{y € TV, (po), y(V)nU = D} (5.12)
Moreover, there is a constant k > 0 such that

A(t) T (po) \I§ (po) = T¥ (po). (5.13)
O

LEMMA 5.7. Let (M,g), (M,g0), X, Xo, T, 4, ¢, and py be as in Lemma 5.6. Then there exist
n € N, neighbourhoods W of co(—o0) and V" of ¢o(+00) in Xy U Xo(o0) and some constants
p, a >0 such that the endpoints of each element

BeD(t):={n"yn", y(V)NU =10,y TP (po)} (5.14)

belong to U, respectively, V' and I(3) < p +1t.

Proof. The fact that co(—o0) # co(+00) implies the existence of neighbourhoods AU of
co(—o0) and V' of ¢y(+o0) and n € N such that

_ . (5.15)
YV cXx\au, UCX\V
Let y € T such that (V) nW = @ and d(h,y(po)) < t. We have
'y (V) <V, gy Ty () cu,
(5.16)
d(pon"yn"(po)) <p+t.
Finally, using [16, Lemma 5.6] we obtain the result. O

THEOREM 5.8. Let (M,g) be a compact Riemannian manifold of hyperbolic type without
conjugate points and let X be its universal Riemannian covering. Let P(t) be the number of
equivalence classes of closed geodesics of M of period less than or equal to t. Then there exist
constant b > 1 and ty > 0 such that

~— < P(t) < bel! (5.17)

for all t > ty, where hy is the volume entropy of X.

Proof. Let 9(t) be as in Lemma 5.7. If § € %(t), we have d(po,(po)) < p +t for some
constant p > 0. Then, I([]) < p +t. Hence,

#D(t)

Plt+p)z#yelyedt)f = ——— .
(t+p) = #{y y €D} maxyeq () #[y]

(5.18)
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Finally, using Lemma 5.6, there exist constants ,s > 0 such that

P(t) 4T3, _,(p) (5.19)

N
4a(t—p)

for some constant a > 1. O
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