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We study the volume growth function of geodesic spheres in the universal Riemann-
ian covering of a compact manifold of hyperbolic type. Furthermore, we investigate the
growth rate of closed geodesics in compact manifolds of hyperbolic type.

1. Introduction

In this paper, we investigate asymptotic properties of universal Riemannian covering of a
compact manifold of hyperbolic type.

Definition 1.1. A compact Riemannian manifold (M,g) is called of hyperbolic type if
there exists another Riemannian metric g0 such that (M,g0) has a strictly negative curva-
ture.

Note that, in dimension 2, an orientable manifold M is of hyperbolic type if and only
if its genus is greater than or equal to 2.

We say that a function f :R+ →R+ is of purely exponential type if there exist constants
a > 1 and r0 > 0 such that

1
a
≤ f (r)

ehr
≤ a ∀r ≥ r0, (1.1)

for some constant h > 0. The real number h is called the exponential factor of f .
In 1969, Margulis proved, for suitable constant h > 0, that

a(p) := lim
r→∞

volS(p,r)
ehr

(1.2)

exists at each point p in manifolds of negative curvature and that the function a is con-
tinuous (see [18]). Clearly, this result implies purely exponential growth of volume of
geodesic spheres.

If (M,g) is a compact Riemannian manifold, Manning has introduced an interest-
ing asymptotic invariant hg (volume entropy) which is defined as follows: if volBg(p,r)
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denotes the volume of the geodesic ball Bg(p,r) with centre p and radius r in the universal
Riemannian covering X of (M,g), then

hg := lim
r→∞

logvolBg(p,r)

r
, (1.3)

where the limit on the right-hand side exists for all p ∈ X and, in fact, is independent
of p. Manning showed that, in the case of nonpositive curvature, hg coincides with the
topological entropy (see [17]).

In 1997, using the notions of Busemann density and Patterson Sullivan measure, G.
Knieper proved the following result (see [16]): if (M,g0) is a rank-1 compact Riemannian
manifold of nonpositive curvature and X0 its universal Riemannian covering, there exist
constants a0 ≥ 1 and r0 ≥ 0 such that

1
a0
≤ volSg0 (p,r)

ehg0 r
≤ a0 ∀r ≥ r0, (1.4)

where hg0 is the volume entropy of (M,g0) and Sg0 (p,r) is the geodesic sphere in X0 with
centre p and radius r.

The main result of this paper is as follows.

Theorem 1.2. Let (M,g) be a compact Riemannian manifold of hyperbolic type without
conjugate points and let X be its universal Riemannian covering. Then the growth function
of the volume of geodesic spheres of X is of purely exponential type with the volume entropy
hg as exponential factor.

Remark 1.3. Note that the manifolds considered in Theorem 1.2 may have curvature of
both signs (see [7] or [13, page 199]). This result yields a sufficient condition for the
nonexistence of Riemannian metric with negative curvature on a compact manifold. In
Theorem 1.2 by integration an analogous growth result holds if one replaces geodesic
spheres by geodesic balls. Precisely the following holds.

Corollary 1.4. Let (M,g) be a compact Riemannian manifold of hyperbolic type without
conjugate points and let X be its universal Riemannian covering. Then the growth function
of the volume of geodesic balls of X is of purely exponential type.

Remark 1.5. Corollary 1.4 implies that the critical exponent of the deck transformations
group of X is equal to the volume entropy of M. However, using a Coornaert’s result
([4, Theorem 4.3]), we get an analogous result without the assumption of no conjugate
points.

We also study the counting function �(t) of the number of closed geodesics of period
less than or equal to t (up to free homotopy) in the compact quotient M.

In the case of negative curvature, Margulis showed that �(t) ∼ eht/t, where h is the
volume entropy of X .

In this paper, we prove the following.
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Theorem 1.6. Let (M,g) be a compact Riemannian manifold of hyperbolic type without
conjugate points. Then there are constants a > 1 and t0 > 0 such that

1
a

ehg t

t
≤�(t)≤ aehg t ∀t > t0, (1.5)

where hg is the volume entropy of (M,g), �(t) the number of closed geodesics of period less
than or equal to t in M.

The corresponding result for compact rank-1 manifolds was proven by Knieper [16].
The paper is organized as follows. In Section 2, we recall some basic facts about Gro-

mov hyperbolic spaces. In particular, we study the ideal boundary and the Gromov
boundary of a manifold of hyperbolic type. In Section 3, we introduce a notion of Buse-
mann quasidensity, which is used to prove the so-called shadow lemma (see Lemma 3.6).
In Section 4, we prove Theorem 1.2. Section 5 starts with some properties of closed geo-
desics of compact manifold. Then, we give a proof of Theorem 1.6.

2. Gromov and ideal boundaries of manifolds of hyperbolic type

We recall first some basic notions about a compactification of Hadamard manifolds.

Definition 2.1. A connected, simply connected, and complete Riemannian manifold is
called Hadamard manifold.

Let (X0,g0) be a Hadamard manifold. Two geodesics c1,c2 : R→ X0 are said to be as-
ymptotic, if there exists a constant D ≥ 0 such that

dg0

(
c1(t),c2(t)

)
< D ∀t ≥ 0. (2.1)

This defines an equivalence relation on the set of geodesics of X0.
An equivalence class of this relation is called point at infinity of X0. If c : R→ X0 is a

geodesic, its class is denoted by c(+∞). Let c−1 :R→ X0 defined by c−1(t) := c(−t) for all
t ∈R. The class of c−1 is denoted by c(−∞).

The ideal boundary X0(∞) of X0 is the coset of the geodesics of X0.
One defines a natural topology on the set X0 := X0 ∪ X0(∞) as follows: consider

B(x,1)= {v ∈ TxX0 | ‖v‖ ≤ 1} and the bijection

Φx : B(x,1)−→ X0 = X0∪X0(∞),

v 
−→



expx

( ‖v‖
1−‖v‖

)
v if ‖v‖ < 1,

cv(+∞) if ‖v‖ = 1,

(2.2)

where cv is the geodesic satisfying cv(0) = x and ċv(0) = v. The following classic lemma
will also be used.

Lemma 2.2 (see [2, page 22] or [7]). Let (X0,g0) be a Hadamard manifold, x ∈ X0, and ξ ∈
X0(∞). Then there exists a unique geodesic c :R→ X0 satisfying c(0)= x and c(+∞)= ξ.
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For p ∈ X0, q1 and q2 in X0 = X0∪X0(∞) with p �= q1 and p �= q2, we define

∠p
(
q1,q2

)
:=∠

(
ċpq1 (0), ċpq2 (0)

)
, (2.3)

where cpqi : R→ X0 is the geodesic joining the points p and qi and ∠(ċpq1 (0), ċpq2 (0)) is
the angle subtended by the vectors ċpq1 (0) and ċpq2 (0).

For p ∈ X0, ξ ∈ X0(∞), ε > 0, and R > 0, let

Γp(ξ,ε,R) := {q ∈ X0 = X0∪X0(∞) | q �= p, ∠p(q,ξ) < ε, dg0 (p,q) > R
}
. (2.4)

For a fixed point p ∈ X0, the set of all Γp(ξ,ε,R) and the open subsets of X0 generate a
topology on X0 = X0∪X0(∞). This topology is called the cône topology. With respect to
this topology, the set X0 := X0∪X0(∞) is homeomorphic to a closed n-ball in Rn (see [2,
page 22] or [7]). The induced topology on X0(∞) is called the sphere topology.

Definition 2.3. Let (X1,d1) and (X2,d2) be two metric spaces. A map φ : X1 → X2 is called
an (A,α)-quasi-isometric map for some constants A > 1 and α > 0 if

1
A
d1(x, y)−α≤ d2

(
φ(x),φ(y)

)≤Ad1(x, y) +α ∀x, y ∈ X1. (2.5)

In a metric space X , a (A,α)-quasigeodesic (resp., (A,α)-quasigeodesic ray) is a (A,α)-
quasi-isometric map φ :R→ X (resp., φ :R+ → X).

Definition 2.4. Let (X ,d) be a metric space, E and F subsets of X . The Hausdorff distance
dH is defined by

dH(E,F) := inf
{
r > 0, E ⊂ Tr(F), F ⊂ Tr(E)

}
, (2.6)

where

Tr(G) := {x ∈ X , d(x,G)≤ r
} ∀G⊂ X. (2.7)

Theorem 2.5 (Morse lemma, see [14]). Let (X0,g0) be a Hadamard manifold with sec-
tional curvature KX0 ≤−k2

0 < 0 for some constant k0 > 0. Then for each (A,α)-quasigeodesic
(resp., (A,α)-quasigeodesic ray) φ : R→ X0 (resp., φ : R+ → X0), there exist a real number
r0 > 0 and a geodesic (resp., geodesic ray) c :R→ X0 (resp., c :R+ → X0) such that dH(c(R),
φ(R))≤ r0 (resp., dH(c(R+),φ(R+))≤ r0); r0 depends only on A, α, and k0.

Definition 2.6. Let (X ,d) be a metric space with a reference point x0. The Gromov product
of the points x and y of X with respect to x0 is the nonnegative real number (x · y)x0

defined by

(x · y)x0 =
1
2

{
d
(
x,x0

)
+d
(
y,x0

)−d(x, y)
}
. (2.8)

A metric space (X ,d) is said to be a δ-hyperbolic space for some constant δ ≥ 0, if

(x · y)x0 ≥min
{

(x · z)x0 ; (y · z)x0

}− δ (2.9)
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for all x, y, z and every choice of reference point x0. X is a Gromov hyperbolic space if it
is a δ-hyperbolic space for some δ ≥ 0. The usual hyperbolic space Hn is a δ-hyperbolic
space, where δ = log3. More generally, every Hadamard manifold with sectional curva-
ture less than or equal to −k2 for some constant k > 0 is a δ-hyperbolic space, where
δ = k−1 log3 (see [1, 5, 10] or [11]).

Lemma 2.7 (see [5, page 20] or [4]). Let (X ,d) be a complete geodesic δ-hyperbolic space,
x0 a reference point in X , x and y two points of X . Then

d
(
x0,γxy

)− 4δ ≤ (x · y)x0 ≤ d
(
x0,γxy

)
(2.10)

for every geodesic segment γxy joining x and y.

Now let X be a Gromov hyperbolic manifold, x0 a reference point in X . We say that
the sequence (xi)i∈N of points in X converges at infinity if

lim
i, j→∞

(
xi · xj

)
x0
=∞. (2.11)

If x1 is another reference point in X ,

(x · y)x0 −d
(
x0,x1

)≤ (x · y)x1 ≤ (x · y)x0 +d
(
x0,x1

)
. (2.12)

Then the definition of the sequence that converges at infinity does not depend on the
choice of the reference point. We recall the following equivalence relation � on the set of
sequences of points in X that converge at infinity:

(
xi
)
�
(
yj
)⇐⇒ lim

i, j→∞
(
xi · yj

)
x0
=∞. (2.13)

The Gromov boundary XG(∞) of X is the coset of sequences that converge at infinity.
Let X be a simply connected Riemannian manifold which is a Gromov hyperbolic

space. One defines on the set X ∪XG(∞) a topology as follows (see [5, page 22] or [10,
page 122]):

(1) if x ∈ X , a sequence (xi)i∈N converges to x with respect to the topology of X ,
(2) if (xi)i∈N defines a point ξ ∈ XG(∞), (xi)i∈N converges to ξ,
(3) for η ∈ XG(∞) and k > 0, let

Vk(η) := {y ∈ X ∪XG(∞), (y ·η)x0 > k
}

, (2.14)

where

(x · y)x0 = inf
{

liminf
i→∞

(
xi · yi

)
x0

, xi→ x, yi→ y
}

(2.15)

for x and y elements of X ∪XG(∞).
The set of all Vk(η) and the open metric balls of X generate a topology on X ∪XG(∞).

With respect to this topology, X is dense in X ∪XG(∞) and X ∪XG(∞) is compact.
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Lemma 2.8 [4]. Let X be a δ-hyperbolic space. Then
(1) each geodesic γ :R→ X defines two distinct points at infinity γ(+∞) and γ(−∞),
(2) for each (η,x) ∈ XG(∞)×X , there exists a geodesic ray γ such that γ(0) = x and

γ(+∞) = η. For any other geodesic ray γ′ with γ′(0) = x and γ′(+∞) = η, d(γ′(t),
γ(t))≤ 4δ for all t ≥ 0.

Definition 2.9. Let ξ ∈ XG(∞) and c : R+ → X be a minimal geodesic ray satisfying
c(+∞)= ξ. The function

bc(x) := lim
t→∞

(
d
(
x,c(t)

)− t
)

(2.16)

is well-defined on X and is called the Busemann function for the geodesic c.

Lemma 2.10 [4]. Let X be a δ-hyperbolic space, ξ ∈ XG(∞), x, y ∈ X , and c a geodesic ray
with c(0)= x and c(+∞)= ξ. Then there exists a neighbourhood � of ξ in X ∪XG(∞) such
that

∣∣bc(y)− (d(z, y)−d(z,x)
)∣∣≤ K ∀z ∈�∩X , (2.17)

where bc is the Busemann function for the geodesic c and K is a constant depending only
on δ.

Lemma 2.11 [5]. Let X1 be a metric space and let (X2,d2) be a geodesic Gromov hyperbolic
space. If there exists a quasi-isometric map φ : X1 → X2, then X1 is also a Gromov hyperbolic
space. Moreover, if the map

x 
−→ d2
(
x,φ
(
X1
))

(2.18)

is bounded above, XG
1 (∞)� XG

2 (∞), that is, XG
1 (∞) is homeomorphic to XG

2 (∞).

Now let (M,g) be a compact Riemannian manifold of hyperbolic type and let X be
its universal Riemannian covering. Let g0 denote an associated metric of strictly nega-
tive curvature on M. The universal Riemannian covering X0 of (M,g0) is a Hadamard
manifold satisfying KX0 ≤−k2

0 < 0 for some constant k0 > 0. Then X0 and X are Gromov
hyperbolic spaces. Moreover, XG(∞)� XG

0 (∞).
Two geodesic rays c and c′ are said to be asymptotic if there exists a constantD ≥ 0 such

that dH(c(R+),c′(R+))≤D. This defines an equivalence relation on the set of minimizing
g-geodesic rays of X . Let X(∞) be the coset of asymptotic minimizing g-geodesic rays. For
each minimizing g-geodesic ray c of X , it follows from Morse lemma that there exists a
g0-geodesic ray c0 such that dH(c(R+),c0(R+)) ≤ r0, where r0 is the constant in Morse
lemma. Let [c] be the equivalence class of minimizing g-geodesic ray c and let [c0] be the
equivalence class of the g0-geodesic c0. The map f defined by

f : X(∞)−→ X0(∞),

[c] 
−→ [c0
] (2.19)

is bijective. Then f defines on X(∞) a natural topology with respect to which X(∞) and
X0(∞) are homeomorphic, that is, X(∞)� X0(∞) (see [8]).
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Lemma 2.12 [3]. Let X0 be a Hadamard manifold with sectional curvature KX0 ≤−k2
0 < 0

for some constant k0 > 0. There exists a natural homeomorphism

φ : X0∪XG
0 (∞)−→ X0∪X0(∞). (2.20)

In particular, XG
0 (∞)� X0(∞).

Using Morse lemma, Lemma 2.12 and the properties of the ideal boundaries, we ob-
tain the following lemma.

Lemma 2.13. Let (M,g) be a compact Riemannian manifold of hyperbolic type, and let
X be its universal Riemannian covering. Let g0 be an associated metric of strictly negative
curvature on M and let X0 be the universal Riemannian covering of (M,g0). It holds that

X(∞)� X0(∞)� XG
0 (∞)� XG(∞). (2.21)

3. Busemann quasidensities

Let (X ,d) be a metric space and let Γ be a discrete and infinite subgroup of the isometry
group Iso(X) of X . For x0, x ∈ X and s∈R,

Ps
(
x,x0

)
:=
∑
γ∈Γ

e−sd(x,γx0) (3.1)

denotes the Poincaré series associated to Γ. The number

α := inf
{
s∈R/Ps

(
x,x0

)
<∞} (3.2)

is called the critical exponent of Γ and is independent of x and x0. The group Γ is called
of divergence type if Pα(x,x0) diverges. The following lemma introduces a useful modifi-
cation (due to Patterson) of the Poincaré series if Γ is not of divergence type.

Lemma 3.1 [19]. Let Γ be a discrete group with critical exponent α. There exists a function
f :R+ →R+ which is continuous, nondecreasing, and such that

∀a > 0, lim
r→+∞

f (r + a)
f (r)

= 1, (3.3)

and the modified series

P̃s
(
x,x0

)
:=
∑
γ∈Γ

f
(
d
(
x,γx0

))
e−sd(x,γx0) (3.4)

converges for s > α and diverges for s≤ α.

Now let (M,g) be a compact Riemannian manifold of hyperbolic type and let X be its
universal Riemannian covering. Let g0 denote a metric of negative curvature on M. The
universal Riemannian covering X0 of (M,g0) is a Hadamard manifold satisfying KX0 ≤
−k2

0 < 0 for some constant k0 > 0. Let Γ be the group of deck transformations of X and
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let αg0 be its critical exponent with respect to the metric g0. It follows from [16, Theorem
5.1] that

αg0 = hg0 := lim
r→∞

logvolBg0 (p,r)

r
. (3.5)

The fact that M is compact implies the existence of a constant λ≥ 1 such that the critical
exponent αg of Γ with respect to the metric g belongs to [λ−1hg0 ,λhg0 ]⊂R∗+ (see [15]).

Lemma 3.2. Let (M,g) be a compact Riemannian manifold of hyperbolic type and let X be
its universal Riemannian covering. Let Γ be the group of deck transformations of X and for a
given x ∈ X the set Λg(Γ,x) of the accumulation points of the orbit Γx in XG(∞). Then

(1) Λg(Γ,x)= Γx∩XG(∞),
(2) γ(Λg(Γ,x))=Λg(Γ,x) for all γ ∈ Γ and x ∈ X ,
(3) Λg(Γ,x) is independent of x,
(4) Λg(Γ,x)= XG(∞).

Proof. Using the definition of Λg(Γ,x), we can easily check (1) and (2).
(3) For all ξ ∈Λg(Γ,x), by definition there is a sequence (γn)n of points of Γ such that

limn→∞ γnx = ξ. Then

lim
m,n→∞

(
γnx · γmx

)
x0
= +∞. (3.6)

For all y ∈ X , we have

2
(
γnx · γny

)
x0
= d

(
γnx,x0

)
+d
(
γny,x0

)−d
(
γnx,γny

)
≥ d

(
γnx,x0

)
+d
(
γny,x0

)−d(x, y)

≥ d
(
γnx,x0

)
+d(x, y).

(3.7)

Hence,

lim
n→∞

(
γnx · γny

)
x0
= +∞, lim

n→∞γny = ξ. (3.8)

(4) Let g0 denote a metric of strictly negative curvature on M. The universal Riemann-
ian covering X0 of (M,g0) is a Hadamard manifold satisfying KX0 ≤ −k2

0 < 0 for some
constant k0 > 0. Then Λg0 (Γ,x)= X0(∞) (see [15]). Finally, using Lemma 2.11 we obtain
that Λg(Γ,x)= XG(∞). �

Definition 3.3. Let X be a Gromov hyperbolic manifold, α ∈ R+, and let Γ be a discrete
and infinite subgroup of Iso(X). A family {µx}x∈X of finite nontrivial Borel measures on
X ∪XG(∞) is an α-dimensional Busemann quasidensity with reference point x0 ∈ X if

(1) supµx ⊂Λ(Γ,x), where Λ(Γ,x) is the limit set of the orbit Γx in XG(∞),
(2) µγx(γA)= µx(A) for all γ ∈ Γ, A⊂ XG(∞), A measurable, x ∈ X ,
(3) there exists a constant λ≥ 1 such that for all x ∈ X ,

λ−1e−αbc(x0) ≤ dµx0

dµx
(ξ)≤ λe−αbc(x0) (3.9)
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for almost all ξ ∈ XG(∞), where c is a geodesic satisfying c(0)= x, c(∞)= ξ and bc
is the Busemann function for the geodesic c.

The next lemma states the existence of a Busemann quasidensity.

Lemma 3.4. Let (M,g) be a compact Riemannian manifold of hyperbolic type and let X
be its universal Riemannian covering. Let Γ be the group of deck transformations of X and
let αg be its critical exponent. Then there exists an αg-dimensional Busemann quasidensity
{µx}x∈X on X ∪XG(∞).

Proof. We have to construct a family of measure {µx}x∈X which satisfies the axiomatic
Definition 3.3.

Construction of {µx}x∈X . A natural way to obtain Busemann quasidensity was given by
Patterson (see [19]) in the case of Fuchsian groups.

Let x0 be a reference point of the Gromov hyperbolic manifoldX . For s > αg and x ∈ X ,
we consider the measure

µs,x0,x :=
∑

γ∈Γ f
(
d
(
x,γx0

))
e−sd(x,γx0)δγx0

P̃s
(
x0,x0

) , (3.10)

where f is a useful modification function (due to Patterson) of the Poincaré series if Γ is
not of divergence type and

P̃s
(
x0,x0

)=∑
γ∈Γ

f
(
d
(
x0,γx0

))
e−sd(x0,γx0). (3.11)

Let (sn)n be a sequence with sn > αg and sn → αg such that µsn,x0,x converges weakly, as
well to the measure µx. For every x /∈ Γx0, we choose a subsequence of (sn)n, denoted by
(sxn), such that the measure µsxn,x0,x is also weakly convergent. For all points of the same
orbit Γx we can choose the same subsequence, that is, sx

′
n = sxn if x′ ∈ Γx. These choices

yield a family {µx}x∈X of measures.

{µx}x∈X is an αg-dimensional Busemann quasidensity. (i) Using the triangle inequality
and the fact that 1/2 ≤ f (d(x,γx0))/ f (d(x0,γx0)) ≤ 3/2 for almost all γ ∈ Γ, we deduce
that

ae−sd(x,x0) ≤ µs,x0,x ≤ be−sd(x,x0), (3.12)

where a and b depend only on d(x0,x). This implies that {µx}x∈X is a family of finite
nontrivial Borel measures on X ∪XG(∞).

(ii) For all z ∈ X ∪XG(∞)\Λg(Γ,x), there is an open neighbourhood � of z with Γx∩
�\{z} =∅. Then

µsn,x0,x(�)≤ f
(
d(x,z)

)
e−snd(x,z)

P̃sn
(
x0,x0

) . (3.13)

Since P̃s(x0,x0) diverges for s= αg , we obtain µx(�)= 0.
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(iii) Let η ∈ Γ, and let A be a measurable subset of X ∪XG(∞). Then

µs,x0,ηx(ηA)=
∑

γ∈Γ, γx0∈ηA f
(
d
(
ηx,γx0

))
e−sd(ηx,γx0)

P̃s
(
x0,x0

)
=
∑

γ′∈Γ, γ′x0∈A f
(
d
(
x,γ′x0

))
e−sd(x,γ′x0)

P̃s
(
x0,x0

)
= µs,x0,x(A).

(3.14)

Thus µηx(ηA)= µx(A) for all η ∈ Γ.
(iv) We now consider ξ ∈ XG(∞) and a sequence (Un)n of open sets in X ∪XG(∞)

with limn→∞Un = ξ. By Lemma 2.10, there exists n0 ∈N such that

∣∣bc(x0
)− (d(γx0,x0

)−d
(
x,x0

))∣∣≤ K (3.15)

for all n ≥ n0 and γx0 ∈ Un, where c is a geodesic joining x and ξ, bc a Busemann func-
tion for the geodesic c, and K a constant depending only on the metric g0. Then, using
Lemma 3.1, we deduce the existence of a constant λ≥ 1 such that

λ−1e−αbc(x0) ≤ dµx0

dµx
(ξ)≤ λe−αbc(x0). (3.16)

For a given y ∈ X ∪XG(∞), x ∈ X , and ρ ≥ 0, we introduce the shadow �
g
y(x,ρ) (of the

ball Bg(x,ρ) viewed from the point y) as follows: �
g
y(x,ρ) consists of all points ξ ∈ XG(∞)

such that all geodesic rays cyξ connecting y and ξ satisfy cyξ ∩Bg(x,ρ) �= ∅. �

Lemma 3.5. Let (M,g), X , Γ, and {µx}x∈X be as in Lemma 3.4. Then there exist constants
R1 > 0 and l > 0 such that for all ρ≥ R1,

µx
(
�
g
y(x,ρ)

)≥ l ∀x, y ∈ X. (3.17)

Proof. Let g0 be a metric of negative curvature on M and X0 the universal Riemannian
covering of (M,g0). For v ∈ SxX0 we define

C
g0
ε (v)= {cw(∞), w ∈ SxX0, (v,w) < ε

}
, (3.18)

where cw is the g0-geodesic satisfying ċw(0)=w.
Let � be a fundamental domain in X . It follows from [16, Proposition 3.6] the exis-

tence of constants R0 > 0 and ε > 0 such that for all x ∈� and y ∈ X , C
g0
ε (v)⊂ �

g0
y (x,R0)

for some v ∈ SxX0. Hence, using Morse lemma we obtain a constant R1 > 0 with

C
g0
ε (v)⊂ �

g0
y
(
x,R1

)
. (3.19)

Finally, because of

supµx = XG(∞)� XG
0 (∞), γ

(
�
g
y(x,ρ)

)= �
g
γy(γx,ρ) (3.20)
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for all γ ∈ Γ, there exists a constant l > 0 such that for all ρ≥ R1,

µx
(
�
g
y(x,ρ)

)≥ l ∀x, y ∈ X. (3.21)
�

The shadow lemma was proven by Sullivan in the case of the usual hyperbolic space
(see [20]). Our version generalizes this result to all compact manifolds of hyperbolic type.

Lemma 3.6 (shadow lemma). Let (M,g) be a compact Riemannian manifold of hyperbolic
type and let X be its universal Riemannian covering. Let Γ be the group of deck transforma-
tions of X , let αg be its critical exponent, and let {µx}x∈X be a Patterson-Sullivan density
associated to Γ on X ∪XG(∞). Then there exist a constant R1 > 0 and a function b ≥ 1 such
that for all ρ ≥ R1 and x ∈ X ,

1
b(ρ)

e−α
gd(x,x0) ≤ µx0

(
�
g
x0

(
x0,ρ

))≤ b(ρ)e−α
gd(x,x0). (3.22)

Proof. It follows from Lemma 3.4 that there exists a constant λ ≥ 1 such that for all ξ ∈
XG(∞) and x ∈ X ,

λ−1
∫

�
g
x0 (x0,ρ)

e−α
gbc(x0)dµx(ξ)≤ µx0

(
�
g
x0

(
x0,ρ

))≤ λ
∫

�
g
x0 (x0,ρ)

e−α
gbc(x0)dµx(ξ), (3.23)

where c is a geodesic joining x and ξ, bc the Busemann function for the geodesic c.
Morse lemma and the definition of �

g
x0 (x0,ρ) imply the existence of constant D > 0

such that

d
(
x,x0

)−D ≤ bc
(
x0
)≤ d

(
x,x0

)
+D ∀x ∈ X. (3.24)

Therefore

µx0

(
�
g
x0

(
x0,ρ

))≤ λe−α
g (d(x,x0)−2D)µx

(
�
g
x0 (x,ρ)

)≤ b′e2αgDeα
gd(x,x0), (3.25)

where b′ = supx∈X µx(XG(∞)). Moreover,

µx0

(
�
g
x0

(
x0,ρ

))≥ λ−1e−2αgDe−α
gd(x,x0)µx

(
�
g
x0 (x,ρ)

)
. (3.26)

Then using Lemma 3.4, we obtain

µx0

(
�
g
x0

(
x0,ρ

))≥ lλ−1e−2αgDe−α
gd(x,x0). (3.27)

�

4. The growth rate of volume of spheres in manifolds of hyperbolic type

A Riemannian manifold M is said to be without conjugate points if every nonzero Jacobi
field vanishes at most one point. It is well known that if M has no conjugate points, for
each point p ∈M the exponential map expp : TpM →M is a covering map. Moreover, if
M is simply connected, expp is a diffeomorphism and any two points of M can be joined
by a unique geodesic segment.
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Theorem 4.1. Let (M,g) be a compact Riemannian manifold of hyperbolic type without
conjugate points and let X be its universal Riemannian covering. Let S(x0,r) be the geodesic
sphere about x0 ∈ X of radius r and let hg be the volume entropy of (M,g). Then there exist
constants a≥ 1 and r0 > 0 such that

1
a
≤ volS

(
x0,r

)
ehg r

≤ a ∀r ≥ r0, (4.1)

that is, the growth function of the volume of the geodesic spheres S(x0,r) is of purely expo-
nential type.

The following lemmas will be useful for the proof of Theorem 4.1. Their proofs use
similarly arguments like those given in [3].

Lemma 4.2. Let (M,g) be a compact Riemannian manifold of hyperbolic type without con-
jugate points, let X be its universal Riemannian covering, and let n= dimX . Let S(x0,r) be
the geodesic sphere about x0 ∈ X of radius r. Then for all ρ ≤ (1/2)r, there exists a constant
l1(ρ) > 0 such that all (n− 1)-dimensional subdomains B in S(x0,r) with diamB = ρ satisfy

voln−1(B)≤ l1(ρ). (4.2)

Proof. We will use in Tx0X the geodesic polar coordinate system (t,θ), where θ ∈ Sx0X .
Since the Riemannian manifold X is simply connected without conjugate points, the ex-
ponential map expx0

realizes a diffeomorphism from Tx0X to X . Let (Dexpx0
)(tθ) denote

the differential of expx0
evaluated at a point (t,θ)∈ Tx0X . The fact that M is compact im-

plies the existence of a constant k > 0 with Ric(X)≥−(n− 1)k2. Let Xn
−k2 denote the sim-

ply connected space form with constant sectional curvature −k2. Using Bishop-Gromov
theorem (see [12]), we obtain

det
(
Dexpx0

)(
s1θ
)≤ [ sinh

(
ks1
)

sinh
(
ks2
)]det

(
Dexpx0

)(
s2θ
)

(4.3)

for all s1 ≥ s2 > 0. We consider a (n− 1)-dimensional subdomain B in the geodesic sphere
S(x0,r) with diamB = ρ and the following set:

F :=
⋃

r−ρ≤t≤r
Pt(B) where Pt(y)= expx0

[
t

r
exp−1

x0
(y)
]

(4.4)

for all y ∈ S(x0,r). For each point x ∈ B, the set F is contained in the geodesic ball
B(x,2ρ). Therefore using Bishop-Gunther theorem (see [9, page 140]), we obtain a con-
stant t0 ∈ [r− ρ,r] such that

volnPt0 (B)≤ 1
ρ
V−k2 (2ρ) where V−k2 (2ρ) (4.5)

is the volume of a ball with radius 2ρ in the space form Xn
−k2 . Then using (4.3), we obtain

voln−1(B)≤
[

sinh(2kρ)
sinh(kρ)

]n−1 V−k2 (2ρ)
ρ

. (4.6)
�
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Let B(x0,r) be the open geodesic ball of radius r about a point x0 in X . For x, y ∈
X\B(x0,r), we define

dr(x, y) := inf
{
l(σ), σ is a piecewise smooth curve connecting x, y,σ ⊂ X\B(x0,r

)}
.

(4.7)

For x ∈ S(x0,r), let

Br
ρ(x) := {y ∈ S

(
x0,r

)
, dr(x, y) < ρ

}
. (4.8)

Lemma 4.3. Let (M,g) be a compact Riemannian manifold of hyperbolic type without con-
jugate points, let X be its universal Riemannian covering, and let n = dimX . Suppose that
X is a δ-hyperbolic manifold. A constant K > 0 can be found such that for all ρ ≥ K and
r ≥ 2ρ, there exists a constant l2(ρ) > 0 with

voln−1
(
Br
ρ(x)

)≥ l2(ρ) (4.9)

for all x ∈ S(x0,r).

Proof. We consider the set

H :=
⋃

r≤t≤r+4ρ

Pt
(
Br
ρ(x)

)
. (4.10)

Using (4.3) in Lemma 4.2, we obtain

voln
(
Pt
(
Br
ρ(x)

))≤ [ sinh(kt)
sinh(kr)

]n−1

voln−1
(
Br
ρ(x)

)
. (4.11)

Hence,

voln−1
(
Br
ρ(x)

)≥ voln(H)
4ρ

[
sinh(kt)

sinh(kr + 4kρ)

]n−1

. (4.12)

But there exist some point z ∈H and a constant K > 0 such that B(z,ρ/4) ⊂H for all
ρ ≥ K . Therefore

voln−1
(
Br
ρ(x)

)≥ voln
(
B(z,ρ/4)

)
4ρ

[
sinh(kt)

sinh(kr + 4kρ)

]n−1

. (4.13)

Since M is compact, there exists a constant k1 > 0 with KX ≤ k1. Then using Bishop-
Gunther theorem (see [9, page 140]), we obtain

voln

(
B
(
z,
ρ

4

))
≥Vk1

(
ρ

4

)
, (4.14)

where Vk1 (ρ/4) is the volume of a ball of radius ρ/4 in the space form Xk1
n . Hence,

voln−1
(
Br
ρ(x)

)≥ Vk1 (ρ/4)
4ρ

[
sinh(2kρ)
sinh(6kρ)

]n−1

∀r ≥ 2ρ. (4.15)
�
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Proof of Theorem 4.1. Choose ρ =max{6R1,3K ,13δ}, where R1 is as in Lemma 3.6, K is
as in Lemma 4.3, and δ > 0 such that X is a δ-hyperbolic space. Let x1,x2, . . . ,xm be a
maximal ρ-separating set in S(x0,r). Then

XG(∞)=
m⋃
i=1

�
g
x0

(
xi,ρ+ 4δ

)
. (4.16)

Since ρ≥ 6R1, Lemma 3.6 implies the existence of a constant b(ρ+ 4δ) with

m≥ b0eα
g r

b(ρ+ 4δ)
where b0 = µx0

(
XG(∞)

)
, (4.17)

and αg is the critical exponent of the group of deck transformations. Note that the balls
Br
ρ/3(xi) are pairwise disjoint subsets of S(x0,r). Then since ρ ≥ 3K , by Lemma 4.3 we

obtain a constant l2(ρ/3) > 0 such that

volS
(
x0,r

)≥ b0l2(ρ/3)eα
g r

b(ρ+ 4δ)
∀r ≥ 2ρ

3
. (4.18)

Furthermore, Lemma 4.2 implies the existence of a constant l1(ρ) > 0 with

volS
(
x0,r

)≤ml1(ρ) (4.19)

for all r ≥ 2ρ. Since ρ ≥ 13δ, the shadows �
g
x0 (xi,ρ/6) are pairwise disjoint subsets of

XG(∞). Because of ρ≥ 6R1, Lemma 3.6 implies that there exists a constant b(ρ/6) with

b0 ≥ m

b(ρ/6)eαg r
. (4.20)

Finally, since

volB
(
x0,r

)= ∫ r

0
volS

(
x0, t

)
dt, (4.21)

there exist constants a1 ≥ 1 and r1 > 0, such that

1
a1
≤ volB

(
x0,r

)
eαg r

≤ a1 ∀r ≥ r1. (4.22)

Hence αg = hg . �

Corollary 4.4. Let (M,g) be a compact orientable surface of genus greater than or equal to
2, without conjugate points and let X be its universal Riemannian covering. Then the growth
function of the volume of geodesic spheres of X is of pure exponential type.

Corollary 4.5. Let (M,g) be a compact manifold of hyperbolic type without conjugate
points and let X be its universal Riemannian covering. Then the growth function of geodesic
balls of X is of purely exponential type with the volume entropy as exponential factor.
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5. Closed geodesics in compact manifolds of hyperbolic type

Let M be a complete, simply connected manifold and let d be the induced metric of the
Riemannian structure. A geodesic c :R→M is closed, if there exists a constant u > 0 such
that c(t + u) = c(u) for all t ∈ R. The period Per(c) of c is the smallest constant u > 0
satisfying this property.

Definition 5.1. Consider two closed geodesics c1 of period t1 and c2 of period t2 as equiva-
lent, if there exist n1,n2 ∈N such that c1|[0,n1 t1] and c2|[0,n2 t2] or c1|[0,n1 t1] and c−1

2|[0,n2 t2]
are freely

homotopic, where c−1
2 (t)= c2(−t) for all t ∈R.

Let [c] denote the equivalence class of the closed geodesic c,

l
(
[c]
)= inf

{
Per
(
c0
)
, c0 ∈ [c]

}
,

�(t)= #
{

[c], l
(
[c]
)≤ t

}
.

(5.1)

Let (M,g) be a compact manifold, let X be its universal Riemannian covering, let
π : X →M be the covering map, and let Γ be the group of deck transformations; Γ �
π1(M). For all γ ∈ Γ, since the manifold M is compact, there exists p0 ∈ X such that
d(p0,γ(p0))=: l(γ). The geodesic c connecting p0 and γ(p0) is called an axis of γ and the
projection π ◦ c is a closed geodesic of M of period l(γ).

Definition 5.2. Two elements γ1 and γ2 of Γ are equivalent (γ1 ∼ γ2), if there exist m,n∈ Z
and an isometry β ∈ Γ such that γn1 = βγm2 β

−1.

The projections of the axes of two equivalent elements γ1 and γ2 of Γ define two equiv-
alent closed geodesics on M. Conversely, the lifts of two equivalent closed geodesics are
axes of two equivalent isometries. Hence, we obtain the following well-known result.

Proposition 5.3 [16]. The coset of closed geodesics is in one-to-one correspondence with
the equivalence classes of the elements in the fundamental group.

Lemma 5.4. Let (M,g) be a compact Riemannian manifold of hyperbolic type without con-
jugate points and let X be its universal Riemannian covering. Let �(t) denote the number
of equivalence classes of closed geodesics of M with length less than or equal to t. Then there
exist constants a > 1 and t0 > 0 such that �(t)≤ aehg t for all t > t0, where hg is the volume
entropy of X .

Proof. Let Γ be the group of deck transformations of X and �⊂ X a fundamental domain
of Γ with diam�=D. Using Proposition 5.3, we obtain for a fixed p in �,

�(t)≤ #
{
γ ∈ Γ, γ�⊂ B2D+t(p)

}
. (5.2)

Since the γi� are pairwise disjoint, we obtain by Corollary 4.5

�(t)≤ volB2D+t(p)
vol�

≤ 1
vol�

a0e
hg t. (5.3)

�

Lemma 5.5. Let (M,g) be a compact Riemannian manifold of hyperbolic type without con-
jugate points, X its universal Riemannian covering, and Γ the group of deck transformations
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of X . For p ∈ X and r ≥ 0, let

Γrt (p) := {γ ∈ Γ, r < d
(
p,γ(p)

)≤ t
}
. (5.4)

Then there exist constants b > 0 and t0 > 0 such that #Γrt (p)≥ behg t for all t ≥ t0, where hg is
the volume entropy of X .

Proof. Let � be a fundamental domain of Γ in X with diam� =D. For all p ∈�, using
the definition of Γrt (p) and the triangle inequality, we have

Bt(p)\Br(p)⊂∪γ∈Γr−Dt+D (p)γ
(
BD(p)

)
. (5.5)

Let r0 be as in Theorem 4.1 and r1 =max(r,r0). We have

volBt(p)\Br(p)≥ volBt(p)\Br1 (p)≥ ehg t

a

[
1− a2ehg r1

ehg t

]
. (5.6)

Then there exist constants A > 0 and t0 > 0 such that

volBt(p)\Br1 (p)≥Aehg t (5.7)

for all t ≥ t0. �

Lemma 5.6. Let (M,g) be a compact Riemannian manifold of hyperbolic type without con-
jugate points, X its universal Riemannian covering, and Γ the group of deck transformations
of X . Let g0 be a metric of negative curvature on M and X0 the universal Riemannian cov-
ering of (M,g0). Let η ∈ Γ, let c : R→ X0 be a g0-axis of η, and let p0 = c(0). Then there
exist constants r,k > 0 and neighbourhoods � of c0(−∞) and � of c0(+∞) in X0∪X0(∞)
such that

#
{
γ ∈ Γ0

t+r

(
p0
)
, γ(�)∩�=∅}≥ 1

4
Γkt
(
p0
)
, (5.8)

where

Γkt (p) := {γ ∈ Γ, k < d
(
p,γ(p)

)≤ t
}
. (5.9)

Proof. Using Morse lemma and [16, Lemma 5.6], there exist β ∈ Γ and neighbourhoods
� of c0(−∞) and � of c0(+∞) such that{

βc(−∞),βc(+∞)
}∩ {c(−∞),c(+∞)

}=∅. (5.10)

Then using Morse lemma, we find neighbourhoods � of c(−∞) and � of c(+∞) such
that

(1) (β(�)∩β(�))∩ (�∩�)=∅,
(2) there is a constant L > 0 such that for all x ∈� and y ∈�, there is a g-geodesic h

connecting x and y satisfying d(h, p0)≤ L.
For t ∈R, let

A(�,�, t)= {γ ∈ Γ0
t

(
p0
)
, γ(�)∩�=∅},

A(t)= A(�,�, t)∪A(�,�, t)∪A(�′,�′, t)∪A(�′,�′, t).
(5.11)
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Using Morse lemma and the triangle inequality, we prove that

#A(t)= 4#
{
γ ∈ Γ0

t+r

(
p0
)
, γ(�)∩�=∅}. (5.12)

Moreover, there is a constant k > 0 such that

A(t)⊂ Γ0
t

(
p0
)\Γ0

k

(
p0
)= Γkt

(
p0
)
. (5.13)

�

Lemma 5.7. Let (M,g), (M,g0), X , X0, Γ, η, c, and p0 be as in Lemma 5.6. Then there exist
n∈N, neighbourhoods � of c0(−∞) and � of c0(+∞) in X0∪X0(∞) and some constants
ρ, a > 0 such that the endpoints of each element

β ∈�(t) := {ηnγηn, γ(�)∩�= ø, γ ∈ Γ0
t

(
p0
)}

(5.14)

belong to �, respectively, � and l(β)≤ ρ+ t.

Proof. The fact that c0(−∞) �= c0(+∞) implies the existence of neighbourhoods � of
c0(−∞) and � of c0(+∞) and n∈N such that

ηn
(
X \�

)⊂�, η−n
(
X \�

)⊂�,

�⊂ X \�, �⊂ X \�.
(5.15)

Let γ ∈ Γ such that γ(�)∩�=∅ and d(h,γ(p0))≤ t. We have

ηnγηn
(
�
)⊂�, η−nγ−1η−n

(
�
)⊂�,

d
(
p0,ηnγηn

(
p0
))≤ ρ+ t.

(5.16)

Finally, using [16, Lemma 5.6] we obtain the result. �

Theorem 5.8. Let (M,g) be a compact Riemannian manifold of hyperbolic type without
conjugate points and let X be its universal Riemannian covering. Let �(t) be the number of
equivalence classes of closed geodesics of M of period less than or equal to t. Then there exist
constant b > 1 and t0 > 0 such that

1
b

ehg t

t
≤�(t)≤ behg t (5.17)

for all t > t0, where hg is the volume entropy of X .

Proof. Let �(t) be as in Lemma 5.7. If β ∈�(t), we have d(p0,β(p0)) ≤ ρ + t for some
constant ρ > 0. Then, l([β])≤ ρ+ t. Hence,

�(t+ ρ)≥ #
{
γ ∈ Γ, γ ∈�(t)

}≥ #�(t)
maxγ∈�(t) #[γ]

. (5.18)
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Finally, using Lemma 5.6, there exist constants r,s > 0 such that

�(t)≥ 1
4a(t− ρ)

#Γst−r−ρ(p) (5.19)

for some constant a > 1. �
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