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Let S = {x1,x2, . . . ,xn} be a set of positive integers, and let f be an arithmetical func-
tion. The matrices (S) f = [ f (gcd(xi,xj))] and [S] f = [ f (lcm[xi,xj])] are referred to as
the greatest common divisor (GCD) and the least common multiple (LCM) matrices on
S with respect to f , respectively. In this paper, we assume that the elements of the matri-
ces (S) f and [S] f are integers and study the divisibility of GCD and LCM matrices and
their unitary analogues in the ring Mn(Z) of the n×n matrices over the integers.

1. Introduction

Let S= {x1,x2, . . . ,xn} be a set of positive integers with x1 < x2 < ··· < xn, and let f be an
arithmetical function. Let (S) f denote the n×n matrix having f evaluated at the greatest
common divisor (xi,xj) of xi and xj as its i j entry, that is, (S) f = [ f ((xi,xj))]. Analo-
gously, let [S] f denote the n×n matrix having f evaluated at the least common multiple
[xi,xj] of xi and xj as its i j entry, that is, [S] f = [ f ([xi,xj])]. The matrices (S) f and [S] f
are referred to as the GCD and LCM matrices on S with respect to f , respectively. If
f (m) =m for all positive integers m, we denote (S) f = (S) and [S] f = [S]. Smith [16]
calculated det(S) f when S is a factor-closed set and det[S] f in a more special case. Since
Smith, a large number of results on GCD and LCM matrices have been presented in the
literature. For general accounts, see, for example, [7, 12].

In this paper, we assume that the elements of the matrices (S) f and [S] f are integers
and study the divisibility of GCD and LCM matrices in the ring Mn(Z) of the n×n ma-
trices over the integers. This study was begun by Bourque and Ligh [2, 4], who showed
that

(i) if S is a factor-closed set, then (S) | [S], see [2, Theorem 3], and, more generally,
(ii) if S is a factor-closed set and f is a multiplicative function such that f (xi) and

( f �µ)(xi) are nonzero for all xi ∈ S, then (S) f | [S] f , see [4, Theorem 4].
Hong [8, 9, 10] has studied the divisibility of GCD and LCM matrices exten-

sively. We review these results here:
(iii) if n≤ 3, then for any gcd-closed set S with n elements, (S) | [S], see [8, Theorem

3.1(i)],
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(iv) for each n≥ 4 there exists a gcd-closed set S with n elements such that (S) � [S],
see [8, Theorem 3.1(ii)],

(v) for each n ≥ 4 there exists a gcd-closed set S with n elements such that det(S) �
det[S] (in the ring of integers), see [9, Theorem 3.3(ii)]. Note that (iv) is a con-
sequence of (v),

(vi) if S is a gcd-closed set such that each member of S is less than 12, then det(S) |
det[S], see [9, Theorem 3.5],

(vii) if S is a multiple-closed set and if f is a completely multiplicative function satisfy-
ing certain conditions or if S is a divisor chain of positive integers and f satisfies
a divisibility condition, then (S) f | [S] f , see [10, Theorems 4.5 and 5.1].

In this paper, we present some generalizations and analogues of the statements (i)–
(v). Our results involve GCD, LCM, GCUD, and LCUM matrices, where GCUD stands
for the “greatest common unitary divisor” and LCUM stands for the “least common uni-
tary multiple.” (The number-theoretic concepts used in the introduction are explained in
Section 2.)

2. Preliminaries

In this section, we review the basic results on arithmetical functions needed in this paper.
For more comprehensive treatments of arithmetical functions, we refer to [1, 13, 15].

The Dirichlet convolution f � g of two arithmetical functions f and g is defined as

( f � g)(n)=
∑
d|n

f (d)g
(
n

d

)
. (2.1)

The identity under the Dirichlet convolution is the arithmetical function δ defined as
δ(1)= 1 and δ(n)= 0 for n �= 1. An arithmetical function f possesses a Dirichlet inverse
f −1 if and only if f (1) �= 0. Let ζ denote the arithmetical function defined as ζ(n)= 1 for
all n∈ Z+. The Möbius function µ is the Dirichlet inverse of ζ . The divisor functions σk
are defined as σk(n)=∑d|n dk for all n∈ Z+.

A divisor d of n is said to be a unitary divisor of n and is denoted by d‖n if (d,n/d)= 1.
The unitary convolution of arithmetical functions f and g is defined as

( f ⊕ g)(n)=
∑
d‖n

f (d)g
(
n

d

)
. (2.2)

The identity under the unitary convolution is again the arithmetical function δ. An arith-
metical function f possesses a unitary inverse if and only if f (1) �= 0. We denote the
inverse of ζ under the unitary convolution as µ∗. The function µ∗ is referred to as the
unitary analogue of the Möbius function.

An arithmetical function f is said to be multiplicative if f (1)= 1 and

f (mn)= f (m) f (n) (2.3)



P. Haukkanen and I. Korkee 927

whenever (m,n)= 1, and an arithmetical function f is said to be completely multiplica-
tive if f (1)= 1 and (2.3) holds for all m and n. An arithmetical function f is multiplica-
tive if and only if f (1)= 1 and

f (n)=
∏
p∈P

f
(
pn(p)) (2.4)

for all n > 1, where n=∏p∈P pn(p) is the canonical factorization of n. (Here P is the set of
all prime numbers.) For example, the Möbius function µ and its unitary analogue µ∗ are
multiplicative functions. The Dirichlet inverse of a completely multiplicative function f
is given as f −1 = µ f . (Likewise, the unitary inverse of a multiplicative function f is µ∗ f
but we do not need this result here.)

An arithmetical function f is said to be semimultiplicative if

f
(
(m,n)

)
f
(
[m,n]

)= f (m) f (n) (2.5)

for all m and n. See [12, 14, 15]. Multiplicative functions f are semimultiplicative func-
tions f with f (1)= 1.

An arithmetical function f is said to be a totient if there exist completely multiplicative
functions ft and fv such that

f = ft� f −1
v

(= ft�µ fv
)
. (2.6)

The functions ft and fv are referred to as the integral and inverse parts of f , respectively.
Euler’s φ-function is a famous example of a totient. It is well known that φt = N and
φv = ζ , whereN(n)= n for all n∈ Z+. Dedekind’s ψ-function defined as ψ(n)=∏p|n(1 +
1/p) is another example of a totient. It is easy to see that ψt = N and ψv = λ, where λ is
Liouville’s function (see, e.g., [13]). Each completely multiplicative function f is a totient
with ft = f and fv = δ, and each totient is a multiplicative function. In Theorem 3.4, we
consider semimultiplicative functions f satisfying

xi
∣∣xj =⇒ f

(
xi
)∣∣ f (xj) (2.7)

and f (xi)∈ Z \ {0} for all xi,xj ∈ S. Integer-valued totients f are examples of semimul-
tiplicative functions satisfying (2.7) for all xi,xj ∈ Z+, see [6, Corollary 3].

We denote the greatest common unitary divisor (gcud) of m and n as (m,n)∗∗. The
least common unitary multiple (lcum) of m and n, written as [m,n]∗∗, is defined as the
least positive integer x such that m‖x and n‖x. It is easy to see that (m,n)∗∗ exists for all
m and n, and [m,n]∗∗ exists if and only if for all prime numbers p, we have m(p)= n(p),
m(p)= 0, or n(p)= 0. If [m,n]∗∗ exists, then [m,n]∗∗ = [m,n] and (m,n)∗∗ = (m,n).

The n× n matrix having f evaluated at the gcud (xi,xj)∗∗ of xi and xj as its i j entry
is denoted by (S)∗∗f , and the n×n matrix having f evaluated at the lcum [xi,xj]∗∗ of xi
and xj as its i j entry is denoted by [S]∗∗f provided that [xi,xj]∗∗ exists for all xi and xj .
The matrices (S)∗∗f and [S]∗∗f are referred to as the GCUD and LCUM matrices on Swith
respect to f , respectively. If f (m)=m for all positive integersm, we denote (S)∗∗f = (S)∗∗

and [S]∗∗f = [S]∗∗.
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The concepts of a factor-closed, a gcd-closed, an lcm-closed, a unitary divisor-closed,
a gcud-closed, and an lcum-closed set are evident. The set S is said to be multiple-closed
if S is lcm-closed and if xi | d | xn⇒ d ∈ S holds for all xi ∈ S.

We need the following results on GCD and related matrices. Bourque and Ligh [3,
Corollary 1] show that if S is a factor-closed set and f is an arithmetical function such
that ( f �µ)(xi) �= 0 for all xi ∈ S, then (S) f is invertible and (S)−1

f = [ai j], where

ai j =
∑
xi|xk
x j |xk

µ
(
xk/xi

)
µ
(
xk/xj

)
(
f �µ

)(
xk
) . (2.8)

It follows from [5, Theorem 6] that if S is a unitary divisor-closed set and f is an arith-
metical function such that ( f ⊕ µ)(xi) �= 0 for all xi ∈ S, then (S)∗∗f is invertible and
((S)∗∗f )−1 = [bi j], where

bi j =
∑
xi‖xk
x j ‖xk

µ∗
(
xk/xi

)
µ∗
(
xk/xj

)
(
f ⊕µ∗)(xk) . (2.9)

3. Results

In this section, we consider the divisibility of GCD, LCM, GCUD, and LCUM matrices
in the ring Mn(Z) of the n× n matrices over the integers and the divisibility of their
determinants in the ring of integers. Therefore, we assume that f ((xi,xj)), f ([xi,xj]),
f ((xi,xj)∗∗), and f ([xi,xj]∗∗) are integers for all xi,xj ∈ S.

In Theorem 3.1, we note that in the statement (ii) one need not assume that f (xi) �= 0
for all xi ∈ S, and in Theorem 3.2, we propose a unitary analogue of (ii).

Theorem 3.1. Suppose that S is a factor-closed set and f is a multiplicative function such
that ( f �µ)(xi) �= 0 for all xi ∈ S. Then (S) f | [S] f .

Proof. From (2.8), we see that the i j element of the matrix [S] f (S)−1
f is

(
[S] f (S)−1

f

)
i j =

n∑
m=1

f
([
xi,xm

]) ∑
xm|xk
x j |xk

µ
(
xk/xm

)
µ
(
xk/xj

)
(
f �µ

)(
xk
)

=
∑
xj |xk

µ
(
xk/xj

)
(
f �µ

)(
xk
) ∑
d|xk

f
([
xi,d

])
µ
(
xk
d

)
.

(3.1)

We show that

(
f �µ

)(
xk
)∣∣∑

d|xk
f
([
xi,d

])
µ
(
xk
d

)
(3.2)
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for all k = 1,2, . . . ,n in the ring of integers. From (2.4), we obtain

∑
d|xk

f
([
xi,d

])
µ
(
xk
d

)

=
∑
d|xk

∏
p∈P

f
(
pmax{xi(p),d(p)})µ(pxk(p)−d(p))

=
∏
p|xk

xk(p)∑
v=0

f
(
pmax{xi(p),v})µ(pxk(p)−v)∏

p|xi
p�xk

f
(
pxi(p))

=
∏
p|xk

(
f
(
pmax{xi(p),xk(p)})− f

(
pmax{xi(p),xk(p)−1}))∏

p|xi
p�xk

f
(
pxi(p))

=




∏
p|xk

(
f
(
pxk(p))− f

(
pxk(p)−1))∏

p|xi
p�xk

f
(
pxi(p)), if∀p|xk : xk(p) > xi(p),

0, if ∃p|xk : xk(p)≤ xi(p).

(3.3)

Thus

∑
d|xk

f
([
xi,d

])
µ
(
xk
d

)
=


(
f �µ

)(
xk
)
f
(

xi(
xk,xi

)), if∀p|xk : xk(p) > xi(p),

0, if ∃p|xk : xk(p)≤ xi(p).
(3.4)

Thus (3.2) holds. This shows that [S] f (S)−1
f ∈Mn(Z). �

Theorem 3.2. Suppose that S is a unitary divisor-closed set such that [xi,xj]∗∗ exists for
all i, j = 1,2, . . . ,n and suppose that f is a multiplicative function such that ( f ⊕µ∗)(xi) �= 0
for all xi ∈ S. Then (S)∗∗f | [S]∗∗f .

Proof. From (2.9), we see that the i j element of the matrix [S]∗∗f ((S)∗∗f )−1 is

(
[S]∗∗f

(
(S)∗∗f

)−1)
i j =

n∑
m=1

f
([
xi,xm

]∗∗) ∑
xm‖xk
x j ‖xk

µ∗
(
xk/xm

)
µ∗
(
xk/xj

)
(
f ⊕µ∗)(xk)

=
∑
xj‖xk

µ∗
(
xk/xj

)
(
f ⊕µ∗)(xk)

∑
d‖xk

f
([
xi,d

]∗∗)
µ∗
(
xk
d

)
.

(3.5)

We show that

(
f ⊕µ∗)(xk)∣∣ ∑

d‖xk
f
([
xi,d

]∗∗)
µ∗
(
xk
d

)
(3.6)
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for all k = 1,2, . . . ,n in the ring of integers. From (2.4), we obtain

∑
d‖xk

f
([
xi,d

]∗∗)
µ∗
(
xk
d

)

=
∑
d‖xk

∏
p∈P

f
(
pmax{xi(p),d(p)})µ∗(pxk(p)−d(p))

=
∏
p|xk
p|xi

(
f
(
pxi(p))− f

(
pxi(p)))∏

p|xk
p�xi

(
f
(
pxk(p))− f (1)

)∏
p�xk
p|xi

f
(
pxi(p))

=



0, if ∃p : p
∣∣xk ∧ p

∣∣xi,(
f ⊕µ∗)(xk) f (xi), otherwise.

(3.7)

Thus (3.6) holds. This shows that [S]∗∗f ((S)∗∗f )−1 ∈Mn(Z). �

Remark 3.3. If [xi,xj]∗∗ exists as assumed in Theorem 3.2, then [xi,xj]∗∗ = [xi,xj] and
(xi,xj)∗∗ = (xi,xj). However, the concepts of a factor-closed set and a unitary divisor-
closed set do not coincide. Thus Theorem 3.2 is not a special case of Theorem 3.1.

In Theorem 3.4, we present a generalization and an lcm analogue of the statement (iii)
in the introduction. If f (m) =m for all m ∈ Z+ and S is gcd-closed, then Theorem 3.4
reduces to the statement (iii). In Remark 3.5, Theorem 3.6, and Remark 3.7, we propose
unitary analogues of (iii).

Theorem 3.4. Let S be a gcd-closed or an lcm-closed set with n elements, where n ≤ 3.
Let f be a semimultiplicative function satisfying (2.7) and f (xi) �= 0 for all xi,xj ∈ S. Then
(S) f | [S] f .

Proof. Suppose first that S is a gcd-closed set with n elements. If n= 1, then (S) f = [S] f .
Let n= 2. Then x1 | x2 and thus according to (2.7) we have f (x1) | f (x2) and further

[S] f (S)−1
f =

[
f
(
x1
)

f
(
x2
)

f
(
x2
)

f
(
x2
)
][

f
(
x1
)

f
(
x1
)

f
(
x1
)

f
(
x2
)
]−1

=



0 1

f
(
x2
)

f
(
x1
) 0


∈M3(Z). (3.8)

Let n= 3. Then either x1 | x2 | x3 or (x2,x3)= x1. Let x1 | x2 | x3. Then according to (2.7)
we have f (x1) | f (x2) | f (x3) and further

[S] f (S)−1
f =



f
(
x1
)

f
(
x2
)

f
(
x3
)

f
(
x2
)

f
(
x2
)

f
(
x3
)

f
(
x3
)

f
(
x3
)

f
(
x3
)




f
(
x1
)

f
(
x1
)

f
(
x1
)

f
(
x1
)

f
(
x2
)

f
(
x2
)

f
(
x1
)

f
(
x2
)

f
(
x3
)


−1

=




0 0 1

f
(
x2
)

f
(
x1
) −1 1

f
(
x3
)

f
(
x1
) 0 0



∈M3(Z).

(3.9)
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Let (x2,x3)= x1. Then, applying (2.5), we obtain f ([x2,x3])= f (x2) f (x3)/ f (x1) and ap-
plying (2.7), we obtain f (x1) | f (x2), f (x3). Thus

[S] f (S)−1
f =




f
(
x1
)

f
(
x2
)

f
(
x3
)

f
(
x2
)

f
(
x2
) f

(
x2
)
f
(
x3
)

f
(
x1
)

f
(
x3
) f

(
x2
)
f
(
x3
)

f
(
x1
) f

(
x3
)






f
(
x1
)

f
(
x1
)

f
(
x1
)

f
(
x1
)

f
(
x2
)

f
(
x1
)

f
(
x1
)

f
(
x1
)

f
(
x3
)


−1

=




−1 1 1

0 0
f
(
x2
)

f
(
x1
)

0
f
(
x3
)

f
(
x1
) 0



∈M3(Z).

(3.10)

Suppose second that S is an lcm-closed set with n elements. The cases n= 1 and n= 2
are exactly the same as for a gcd-closed set. Let n= 3. Then either x1 | x2 | x3 or [x1,x2]=
x3. The case x1 | x2 | x3 is again exactly the same as for a gcd-closed set. Let [x1,x2]= x3.
Then, applying (2.5), we obtain f ((x1,x2)) = f (x1) f (x2)/ f (x3) and applying (2.7), we
obtain f (x1), f (x2) | f (x3). Thus

[S] f (S)−1
f =



f
(
x1
)

f
(
x3
)

f
(
x3
)

f
(
x3
)

f
(
x2
)

f
(
x3
)

f
(
x3
)

f
(
x3
)

f
(
x3
)






f
(
x1
) f

(
x1
)
f
(
x2
)

f
(
x3
) f

(
x1
)

f
(
x1
)
f
(
x2
)

f
(
x3
) f

(
x2
)

f
(
x2
)

f
(
x1
)

f
(
x2
)

f
(
x3
)




−1

=




0
f
(
x3
)

f
(
x2
) 0

f
(
x3
)

f
(
x1
) 0 0

f
(
x3
)

f
(
x1
) f

(
x3
)

f
(
x2
) −1



∈M3(Z).

(3.11)

�

Remark 3.5. It follows from Remark 3.3 and Theorem 3.4 that if S is a gcud-closed or an
lcum-closed set with less than or equal to 3 elements, [xi,xj]∗∗ exists for all xi,xj ∈ S,
and f is a semimultiplicative function satisfying (2.7) and f (xi) �= 0 for all xi,xj ∈ S, then
(S)∗∗ | [S]∗∗.

Theorem 3.6. Suppose that S is a gcud-closed set with n elements, where n ≤ 3, and that
[xi,xj]∗∗ exists for all xi,xj ∈ S. Then det(S)∗∗‖det[S]∗∗ (i.e., det(S)‖det[S]).
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Proof. If n = 1, then (S)∗∗ = [S]∗∗. If n = 2, then x1‖x2 and further det(S)∗∗ = x1(x2−
x1) and det[S]∗∗ = x2(x1− x2). Since x1‖x2, we have x1a‖± x2a for all a and, in particular,
det(S)∗∗‖det[S]∗∗.

Suppose that n= 3. Then either x1‖x2‖x3 or (x2,x3)∗∗ = x1. If x1‖x2‖x3, then det(S)∗∗

= x1(x1x2− x1x3− x2
2 + x2x3) and det[S]∗∗ = x3(x1x2− x1x3− x2

2 + x2x3). Since x1‖x3, we
have det(S)∗∗‖det[S]∗∗. If (x2,x3)∗∗ = x1, then det(S)∗∗ = x2

1(x1 − x2 − x3 + x2x3/x1)
and det[S]∗∗ = x2x3(x1 − x2 − x3 + x2x3/x1). Since x1‖x2,x3, we have x2

1‖x2x3 and fur-
ther det(S)∗∗‖det[S]∗∗. From Remark 3.3, we see that (S)∗∗ = (S) and [S]∗∗ = [S], and
therefore det(S)∗∗ = det(S) and det[S]∗∗ = det[S]. �

Remark 3.7. There exist lcum-closed (i.e., lcm-closed) sets S such that n= 3, [xi,xj]∗∗ ex-
ists for all i, j and det(S)∗∗ ∦ det[S]∗∗ (i.e., det(S) ∦ det[S]). For example, if S= {2,3,6},
then det(S)∗∗ = 12 ∦ 72= det[S]∗∗.

In Theorem 3.8, we present unitary and lcm analogues of statements (iv) and (v) in
the introduction.

Theorem 3.8. For each n≥ 4, there exist
(a) an lcum-closed set S with n elements such that det(S)∗∗ � det[S]∗∗ (and so (S)∗∗ �

[S]∗∗),
(b) a gcud-closed set S with n elements such that det(S)∗∗ � det[S]∗∗ (and so (S)∗∗ �

[S]∗∗),
(c) an lcm-closed set S with n elements such that det(S) � det[S] (and so (S) � [S]),
(d) a gcd-closed set S with n elements such that det(S) � det[S] (and so (S) � [S]).

Proof. We first prove (a). Let S= {x0,x1,x2, . . . ,xn}, n≥ 3, where x0 = 1, x1 = p1p2, x2 =
p1p3, xi = p1p2 ··· pi for i = 3,4, . . . ,n. Here p1, p2, . . . , pn are some distinct prime num-
bers in increasing order. It is clear that S is lcum-closed. Then

(S)∗∗ =




1 1 1 1 ··· 1
1 p1p2 p1 p1p2 ··· p1p2

1 p1 p1p3 p1p3 ··· p1p3

1 p1p2 p1p3 x3 ··· x3
...

...
...

...
. . .

...
1 p1p2 p1p3 x3 ··· xn




,

[S]∗∗ =




1 p1p2 p1p3 x3 ··· xn
p1p2 p1p2 x3 x3 ··· xn
p1p3 x3 p1p3 x3 ··· xn
x3 x3 x3 x3 ··· xn
...

...
...

...
. . .

...
xn xn xn xn ··· xn



.

(3.12)

By row reduction, we obtain

det(S)∗∗ = (detA4
)[
x3
(
p4− 1

)···xn−1
(
pn− 1

)]
, (3.13)
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where A4 is the leading principal 4× 4 submatrix of (S)∗∗, and thus

det(S)∗∗ = p2
1

(
p2− 1

)(
p3− 1

)(
1− p3− p2 + p1p2p3

)[
x3
(
p4− 1

)···xn−1
(
pn− 1

)]
.

(3.14)

Similarly,

det[S]∗∗ = (detB4
)[
x4
(
1− p4

)···xn(1− pn
)]

, (3.15)

where B4 is the leading principal 4× 4 submatrix of [S]∗∗, and thus

det[S]∗∗ = p3
1p

2
2p

2
3

(
p2− 1

)(
p3− 1

)
× (1− p1p2− p1p3 + p1p2p3

)[
x4
(
1− p4

)···xn(1− pn
)]
.

(3.16)

If we let p1 = 2, p2 = 3, and p3 = 5, then

det[S]∗∗

det(S)∗∗
= (−1)n−1p1p

2
2p

2
3

[
1− p1p2− p1p3 + p1p2p3

]
p4p5 ··· pn

1− p3− p2 + p1p2p3

= (−1)n−12 · 3353p4p5 ··· pn
23

.

(3.17)

Let p4, p5, . . . , pn �= 23. Then det(S)∗∗ � det[S]∗∗ and so (S)∗∗ � [S]∗∗. Thus (a) holds.
Next we prove (b). Consider the set S = {x0,x1,x2, . . . ,xn}, n ≥ 3, where x0 = 1, x1 =

p1, x2 = p2, xi = p1p2 ··· pi for i = 3,4, . . . ,n. Here p1, p2, . . . , pn are some distinct prime
numbers in increasing order. Clearly, S is gcud-closed. For the sake of brevity, we do not
present the matrices (S)∗∗ and [S]∗∗ explicitly. By row reduction, we obtain

det(S)∗∗ = (detA4
)[
x3
(
p4− 1

)···xn−1
(
pn− 1

)]
, (3.18)

where A4 is the leading principal 4× 4 submatrix of (S)∗∗, and thus

det(S)∗∗ = (p1− 1
)(
p2− 1

)(
1− p1− p2 + p1p2p3

)[
x3
(
p4− 1

)···xn−1
(
pn− 1

)]
.

(3.19)

Similarly,

det[S]∗∗ = (detB4
)[
x4
(
1− p4

)···xn(1− pn
)]

, (3.20)

where B4 is the leading principal 4× 4 submatrix of [S]∗∗, and thus

det[S]∗∗ = p2
1p

2
2p3
(
p1− 1

)(
p2− 1

)
× (1− p1p3− p2p3 + p1p2p3

)[
x4
(
1− p4

)···xn(1− pn
)]
.

(3.21)
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If we let p1 = 2, p2 = 3 and p3 = 5, then

det[S]∗∗

det(S)∗∗
= (−1)n−1p2

1p
2
2p3
(
1− p1p3− p2p3 + p1p2p3

)
p4p5 ··· pn

1− p1− p2 + p1p2p3

= (−1)n−122335p4p5 ··· pn
13

.

(3.22)

Let p4, p5, . . . , pn �= 13. Then det(S)∗∗ � det[S]∗∗ and so (S)∗∗ � [S]∗∗. Thus (b) holds.
Since S in (a) is also lcm-closed and since (S)= (S)∗∗ and [S]= [S]∗∗, we have det(S) �

det[S] and so (S) � [S]. Thus (c) holds. Since S in (b) is also gcd-closed and since (S) =
(S)∗∗ and [S]= [S]∗∗, we have det(S) � det[S] and so (S) � [S]. Thus (d) holds. �

Next we present some minor notes on the statements (ii), (iv), (v), and (vii) in the
introduction.

The statement (ii) does not hold in general if f is not a multiplicative function. For
example, if f (1) = 2, f (2) = 1, and S = {1,2}, then f is not a multiplicative function,
S is a factor-closed set, det(S) f � det[S] f and (S) f � [S] f . The choice f (1) = 2, f (2) = 1,
f (3)= 4, and S= {1,2,3} is an example such that f is not a multiplicative function, S is
a factor-closed set, det(S) f | det[S] f but (S) f � [S] f .

Further, the statement (ii) does not hold in general if S is a gcd-closed set, that is, not
factor-closed. The statement (iv) gives counterexamples for each n≥ 4. We can also find
counterexamples for n= 2 and n= 3. In fact, for n= 2 let f be a multiplicative function
such that f (2)= 2 and f (4)= 1 and let S be the gcd-closed set given as S= {2,4}. Then
det(S) f � det[S] f and so (S) f � [S] f . For n= 3 let f be a multiplicative function such that
f (2)= 2, f (4)= 1, and f (8)= 1 and let S be the gcd-closed set given as S= {2,4,8}. Then
det(S) f � det[S] f and so (S) f � [S] f . If f is a multiplicative function such that f (2) = 2,
f (4) = 1, and f (8) = 2 and if S is again the gcd-closed set given as S = {2,4,8}, then
det(S) f | det[S] f but (S) f � [S] f .

In the statements (iv) and (v), we note that there exist gcd-closed sets S such that
det(S) | det[S] but (S) � [S], for example, S = {1,2,3,12}. Similarly, S = {1,4,6,12} is an
example of an lcm-closed set such that det(S) | det[S] but (S) � [S].

In the statement (vii), Hong [10] notes that there exist multiplicative functions f and
multiple closed sets S such that (S) f � [S] f , for example, f = σ1 and S = {6,8,12,24}. A
more simple example is f = σ0 and S = {2,4}. The pair f = σ0 and S = {2,4,8} is an
example such that det(S) f | det[S] f but (S) f � [S] f .

Finally, we note that [11, Conjectures 5.3 and 5.4] do not hold. In fact, let k be a
positive integer and let f be an arithmetical function defined as f (n)= nk. Let S be a finite
set of odd positive integers. Conjectures 5.3 and 5.4 state that if S is gcd-closed or lcm-
closed, then (S) f | [S] f . However, if S= {1,3,5,45}, then S is gcd-closed but (S) f � [S] f .
Namely, calculation with the Mathematica system shows that, for example, the (2, 4)
entry of the matrix [S] f (S)−1

f is

(
1− 3k − 5k + 15k

)(− 15k + 45k
)

1− 2 · 3k − 2 · 5k + 31+k 5k + 9k + 25k − 75k − 135k − 225k + 675k
, (3.23)
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which is never an integer. Similarly, if S = {1,9,15,45}, then S is lcm-closed but (S) f �

[S] f . Again, calculation with the Mathematica system shows that, for example, the (2, 4)
entry of the matrix [S] f (S)−1

f is

(
3k − 2 · 9k + 27k

)(− 9k + 45k
)

31+3k5k + 9k − 2 · 27k − 2 · 45k + 81k + 225k − 675k − 1215k − 2025k + 6075k
, (3.24)

which is never an integer. The authors have already announced these two counterexam-
ples {1,3,5,45} and {1,9,15,45} in review on [11] by P. Haukkanen.
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