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We identify some strong commutativity-preserving maps on semiprime rings. Among
other results, we prove the following. (i) A centralizing homomorphism f of a semiprime
ring R onto itself is strong commutativity preserving. (ii) A centralizing antihomomor-
phism f of a 2-torsion-free semiprime ring R onto itself is strong commutativity preserv-
ing.

1. Introduction and preliminaries

Let R be a ring with center Z(R). We write the commutator [x, y]= xy− yx, (x, y ∈ R).
The following commutator identities hold: [xy,z] = x[y,z] + [x,z]y; [x, yz] = y[x,z] +
[x, y]z for all x, y,z ∈ R. We recall that R is prime if aRb = (0) implies that a= 0 or b = 0;
it is semiprime if aRa = (0) implies that a = 0. A prime ring is clearly a semiprime ring.
A mapping f : R→ R is called centralizing if [ f (x),x]∈ Z(R) for all x ∈ R; in particular if
[ f (x),x]= 0 for all x ∈ R, then it is called commuting. A commuting map is centralizing
but the converse is not true, in general. It is easy to see that if f : R→ R is an additive and
commuting map, then [ f (x), y]= [x, f (y)] for all x, y ∈ R.

A mapping f : R→ R is called commutativity preserving if [ f (x), f (y)] = 0 whenever
[x, y] = 0. Commutativity-preserving maps have been extensively studied on operator
algebras (see [7, 9, 11, 12, 13] and the references therein). Many authors have also worked
on commutativity-preserving maps on rings (see [1, 2, 6, 8], where further references are
also given).

There has also been considerable interest in strong commutativity-preserving maps.
A mapping f : R→ R is called strong commutativity preserving if [ f (x), f (y)]= [x, y] for
all x, y ∈ R. A strong commutativity-preserving map is commutativity preserving but the
converse does not hold, in general.

We recall that an additive map f from a ring R into itself is called an antihomomor-
phism if f (xy)= f (y) f (x) for all x, y ∈ R. We will follow Herstein [10] for other unde-
fined notations and terminology used here.

In this paper, we mainly study commutativity-preserving and strong commutativity-
preserving properties of homomorphisms and antihomomorphisms of certain rings. We
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show (Proposition 2.1) that an epimorphism of a semiprime ring is strong commutativ-
ity preserving if and only if it is centralizing. Furthermore, we prove that if R is a 2-
torsion-free semiprime ring and f is a centralizing antihomomorphism of R onto it-
self, then f is in fact strong commutativity preserving (Proposition 2.4). These and some
other related results are proved in Section 2.

2. The results

Proposition 2.1. Let R be a semiprime ring and f an epimorphism of R. Then f is cen-
tralizing if and only if it is strong commutativity preserving.

Proof. Assume that f is centralizing. Then, by [3, Lemma 2], f is commuting and hence
[ f (x), y]= [x, f (y)] for all x, y ∈ R. So,

[
f (xy),x

]= [xy, f (x)
]= x

[
y, f (x)

]
+
[
x, f (x)

]
y = x

[
y, f (x)

]= x
[
f (y),x

]
. (2.1)

That is,

[
f (xy),x

]= x
[
f (y),x

] ∀x, y ∈ R. (2.2)

Also, [ f (xy),x]= [ f (x) f (y),x]= f (x)[ f (y),x] + [ f (x),x] f (y)= f (x)[ f (y),x]. That is,

[
f (xy),x

]= f (x)
[
f (y),x

] ∀x, y ∈ R. (2.3)

By (2.2) and (2.3), we get f (x)[ f (y),x] = x[ f (y),x]. Since f is onto, therefore we have
f (x)[y,x]= x[y,x] for all x, y ∈ R. That is,

(
f (x)− x

)
[y,x]= 0 ∀x, y ∈ R. (2.4)

Replacing y by uy in (2.4) and using (2.4) again, we get

0= ( f (x)− x
)
[uy,x]= ( f (x)− x

)
u[y,x] +

(
f (x)− x

)
[u,x]y = ( f (x)− x

)
u[y,x].

(2.5)

So,

(
f (x)− x

)
u[y,x]= 0 ∀x, y,u∈ R. (2.6)

Replacing x by x+ z in (2.4), we get

0= ( f (x)− x
)
[y,x] +

(
f (x)− x

)
[y,z] +

(
f (z)− z

)
[y,x] +

(
f (z)− z

)
[y,z]

= ( f (x)− x
)
[y,z] +

(
f (z)− z

)
[y,x].

(2.7)

So,

(
f (x)− x

)
[y,z]=−( f (z)− z

)
[y,x] ∀x, y,z ∈ R. (2.8)

Equation (2.8) implies that for all x, y,z,v ∈ R, we have

(
f (x)− x

)
[y,z]v

(
f (x)− x

)
[y,z]=−( f (x)− x

)
[y,z]v

(
f (z)− z

)
[y,x]. (2.9)
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Putting u= [y,z]v( f (z)− z) in (2.6) and using (2.9), we get

(
f (x)− x

)
[y,z]v

(
f (x)− x

)
[y,z]= 0 ∀v ∈ R. (2.10)

R being semiprime implies that

(
f (x)− x

)
[y,z]= 0 ∀x, y,z ∈ R. (2.11)

Replacing y by wy in (2.11), we get

0= ( f (x)− x
)
[wy,z]= ( f (x)− x

)
w[y,z] +

(
f (x)− x

)
[w,z]y = ( f (x)− x

)
w[y,z].

(2.12)

Thus,

(
f (x)− x

)
w[y,z]= 0 ∀x, y,z,w ∈ R. (2.13)

Multiplying (2.13) on the left by [y,z] and on the right by ( f (x)− x), we get [y,z]( f (x)−
x)w[y,z]( f (x)− x) = 0 for all w ∈ R. By the semiprimeness of R, we get [y,z]( f (x)−
x)= 0 and hence by (2.11), we have ( f (x)− x)[y,z]= [y,z]( f (x)− x)= 0 for all x, y,z ∈
R. So, by Herstein [10, Lemma 1.1.8], ( f (x)− x)∈ Z(R). Therefore, [ f (x)− x, y]= 0 for
all x, y ∈ R. That is,

[
f (x), y

]= [x, y] ∀x, y ∈ R. (2.14)

Replacing y by f (y) in (2.14), and using (2.14) again, we get [ f (x), f (y)]= [x, f (y)]=
[x, y] for all x, y ∈ R. This proves that f is strong commutativity preserving.

Conversely, assume that f is strong commutativity preserving. Then,

[
f (x), f (y)

]− [x, y]= 0 ∀x, y ∈ R. (2.15)

Replacing y by xy in (2.15) and using the strong commutativity-preserving property of
f , we get

0= [ f (x), f (xy)
]− [x,xy]= [ f (x), f (x) f (y)

]− [x,xy]

= f (x)
[
f (x), f (y)

]
+
[
f (x), f (x)

]
f (y)− x[x, y]− [x,x]y

= f (x)[x, y]− x[x, y]= ( f (x)− x
)
[x, y].

(2.16)

So,

(
f (x)− x

)
[x, y]= 0 ∀x, y ∈ R. (2.17)

Replacing y by zy in (2.17) and using (2.17) again, we get

0= ( f (x)− x
)
[x,zy]= ( f (x)− x

)
z[x, y] +

(
f (x)− x

)
[x,z]y = ( f (x)− x

)
z[x, y].

(2.18)
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That is,

(
f (x)− x

)
z[x, y]= 0 ∀x, y,z ∈ R. (2.19)

Replacing y by f (x) in (2.19), we get

(
f (x)− x

)
z[ f (x),x]= 0 ∀x ∈ R. (2.20)

Replacing z by xz in (2.20), we get

(
f (x)x− x2)z

[
f (x),x

]= 0 ∀x ∈ R. (2.21)

Multiplying (2.20) on the left by x, we get

(
x f (x)− x2)z

[
f (x),x

]= 0 ∀x ∈ R. (2.22)

Subtracting (2.22) from (2.21), we get [ f (x),x]z[ f (x),x] = 0 for all x,z ∈ R. Since R is
semiprime, therefore, [ f (x),x]= 0 for all x ∈ R. So, f is commuting and hence central-
izing. �

Remark 2.2. In Proposition 2.1, the implication that f is strong commutativity preserv-
ing implying that it is centralizing also follows from Brešar and Miers [7, Theorem 1];
however, the proof in the case of homomorphisms is simple and we have included it here
for the sake of completeness. Furthermore, it may be of independent interest.

Remark 2.3. Let R be a ring and f : R→ R an antihomomorphism. Then clearly, f is
commutativity preserving.

The following proposition shows that under some additional assumptions, an antiho-
momorphism must be strong commutativity preserving.

Proposition 2.4. Let R be a 2-torsion-free semiprime ring and f a centralizing antihomo-
morphism of R onto itself. Then f is strong commutativity preserving.

Proof. By [5, Proposition 3.1], f is commuting and hence, [ f (x), y] = [x, f (y)] for all
x, y ∈ R. So, [ f (xy),x]= [xy, f (x)]= x[y, f (x)] + [x, f (x)]y = x[y, f (x)]. That is,

[
f (xy),x

]= x
[
y, f (x)

] ∀x, y ∈ R. (2.23)

Also, [ f (xy),x]= [ f (y) f (x),x]= f (y)[ f (x),x] + [ f (y),x] f (x)= [ f (y),x] f (x). That is,

[
f (xy),x

]= [ f (y),x
]
f (x) ∀x, y ∈ R. (2.24)

From (2.23) and (2.24), we get [ f (y),x] f (x)= x[y, f (x)]; that is, [ f (y),x] f (x)= x[ f (y),
x] for all x, y ∈ R. Now f being onto implies that [y,x] f (x)= x[y,x]. So,

[y,x] f (x)= x[y,x] ∀x, y ∈ R. (2.25)

Replacing y by uy in (2.25), we get [uy,x] f (x)= x[uy,x]. That is,

u[y,x] f (x) + [u,x]y f (x)= xu[y,x] + x[u,x]y ∀x, y ∈ R. (2.26)
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By (2.25) and (2.26), we get ux[y,x] + [u,x]y f (x)= xu[y,x] + x[u,x]y.That is, ux[y,x] +
[u,x]y f (x)= xu[y,x] + [u,x] f (x)y. This implies that

ux[y,x]− xu[y,x] + [u,x]y f (x)− [u,x] f (x)y = 0. (2.27)

That is,

[u,x][y,x] + [u,x]
[
y, f (x)

]= 0. (2.28)

Using the fact that f is commuting, we get

0= [u,x][y,x] + [u,x]
[
y, f (x)

]= [u,x]
(
[y,x] +

[
f (y),x

])= [u,x]
[
y + f (y),x

]
.
(2.29)

So,

[u,x]
[
y + f (y),x

]= 0 ∀x, y,u∈ R. (2.30)

Replacing u by uz in (2.30) and using (2.30) again, we get

0= [uz,x]
[
y + f (y),x

]= [u,x]z
[
y + f (y),x

]
+u[z,x]

[
y + f (y),x

]

= [u,x]z
[
y + f (y),x

]
.

(2.31)

That is,

[u,x]z
[
y + f (y),x

]= 0 ∀x, y,u,z ∈ R. (2.32)

Replacing u by y + f (y) in (2.32), we get [y + f (y),x]z[y + f (y),x]= 0 for all x, y,z ∈ R.
Since R is semiprime, we get

[
y + f (y),x

]= 0 ∀x, y ∈ R. (2.33)

Rewriting (2.33), we get 0= [y,x] + [ f (y),x]= [y,x] + [y, f (x)]= [y,x]− [ f (x), y]. So,

[
f (x), y

]= [y,x] ∀x, y ∈ R. (2.34)

That f is strong commutativity preserving follows from (2.34). Indeed, [ f (x), f (y)] =
[ f (y),x]= [x, y] for all x, y ∈ R. �

Remark 2.5. Brešar [4, Proposition 4.1] has proved the following result.

Theorem 2.6. Let R be a 2-torsion-free semiprime ring and let f : R→ R be a centralizing
antihomomorphism. Then,

(a) S= {x ∈ R : f (x)= x} ⊆ Z(R),
(b) if R is prime and f does not map R into Z(R), then S= Z(R).

We note that Theorem 2.6 can also be obtained as an application of Proposition 2.4 if f
is onto. Thus our proof (below) can be regarded as an alternate argument for Theorem 2.6
which may also be of independent interest.
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Proof. (a) By (2.33), f (y) + y ∈ Z(R) for all y ∈ R. Therefore, for z in S, f (z) + z = 2z ∈
Z(R). So, [2z,x] = 2[z,x] = 0 for all x ∈ R. As R is 2-torsion-free, so [z,x] = 0 for all
x ∈ R. Therefore, z ∈ Z(R) and hence S⊆ Z(R).

(b) Assume that R is prime and let z ∈ Z(R). If z = 0, then f (0)= 0 implies that 0∈ S.
So, assume that z �= 0. Then f (z) + z ∈ Z(R), z ∈ Z(R). So, f (z)∈ Z(R). Now replacing x
by zx in (2.25), we get [y,zx] f (zx)= (zx)[y,zx]. That is,

z[y,x] f (x) f (z) + [y,z]x f (x) f (z)= zxz[y,x] + zx[y,z]x. (2.35)

As z ∈ Z(R), by (2.35), we get z[y,x] f (x) f (z)= zxz[y,x]. That is,

[y,x] f (x) f (z)z = x[y,x]z2 ∀x, y ∈ R, z ∈ Z(R). (2.36)

By (2.25) and (2.36), we get [y,x] f (x) f (z)z = [y,x] f (x)z2. That is,

[y,x] f (x)
(
f (z)z− z2)= 0 ∀x, y ∈ R, z ∈ Z(R). (2.37)

Since R is prime, then any nonzero central element is not a zero divisor. Hence, if f (z)z−
z2 �= 0, then [y,x] f (x)= 0 for all x, y ∈ R. Then by [10, corollary, page 8], either f (x)= 0
or x ∈ Z(R). In any case, f (x)∈ Z(R) for all x ∈ R, a contradiction. So, 0= f (z)z− z2 =
( f (z)− z)z. As z �= 0, therefore by the above argument, f (z)− z = 0 and hence z ∈ S. So,
Z(R)⊆ S and by (a), we have Z(R)= S. �
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