EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A CLASS OF INFINITE-HORIZON SYSTEMS DERIVED FROM OPTIMAL CONTROL

LIANWEN WANG

Received 4 May 2004 and in revised form 14 February 2005

This paper deals with the existence and uniqueness of solutions for a class of infinitehorizon systems derived from optimal control. An existence and uniqueness theorem is proved for such Hamiltonian systems under some natural assumptions.

1. Introduction

We begin with a simple example to introduce the background of the considered problem. Let *U* be a bounded closed subset of \mathbb{R}^m and let functions $f : \mathbb{R}^n \times \mathbb{R}^m \times [a, \infty) \to \mathbb{R}^n$, $L : \mathbb{R}^n \times \mathbb{R}^m \times [a, \infty) \to \mathbb{R}$ be differentiable with respect to the first variable. Consider an optimal control system of the form

Minimize
$$J[u(\cdot)] = \int_{a}^{\infty} L(x(t), u(t), t) dt$$
 (1.1)

over all admissible controls $u(\cdot) \in L^2([a,\infty);U)$, where the trajectories $x : [a,\infty) \to \mathbb{R}^n$ are differentiable on $[a,\infty)$ and satisfy the dynamic system

$$\dot{x}(t) = f(x(t), u(t), t), \qquad x(a) = x_0.$$
 (1.2)

From control theory, the well-known Pontryagin maximum principle, an important necessary optimality condition, is usually applied to get optimal controls for this system. By doing this, the following infinite-horizon Hamiltonian system is derived:

$$\dot{x}(t) = \frac{\partial H(x(t), p(t), t)}{\partial p},$$

$$x(a) = x_0,$$

$$\dot{p}(t) = \frac{-\partial H(x(t), p(t), t)}{\partial x},$$

$$x(\cdot) \in L^2([a, \infty); \mathbb{R}^n), \qquad p(\cdot) \in L^2([a, \infty); \mathbb{R}^n).$$
(1.3)

Copyright © 2005 Hindawi Publishing Corporation

International Journal of Mathematics and Mathematical Sciences 2005:6 (2005) 837–843 DOI: 10.1155/IJMMS.2005.837

838 Solvability of Hamiltonian systems

Here, $H(x, p, t) = \lambda L(x, \bar{u}, t) + \langle p, f(x, \bar{u}, t) \rangle$ is the Hamiltonian function for (1.1)-(1.2), $\langle \cdot, \cdot \rangle$ stands for inner product in \mathbb{R}^n , \bar{u} is an optimal control, and x(t) is the optimal trajectory corresponding to the optimal control \bar{u} .

The existence and uniqueness of solutions for system (1.3) is a very interesting question; if solutions to (1.3) are unique, then the optimal control for system (1.1)-(1.2) can be solved analytically or numerically through (1.3). When we consider the generalization of (1.3) in infinite-dimensional spaces, the following Hamiltonian system is obtained:

$$\dot{x}(t) = A(t)x(t) + F(x(t), p(t), t),$$

$$x(a) = x_0,$$

$$\dot{p}(t) = -A^*(t)p(t) + G(x(t), p(t), t),$$

$$x(\cdot) \in L^2([a, \infty); X), \qquad p(\cdot) \in L^2([a, \infty); X),$$
(1.4)

where both x(t) and p(t) take values in a Hilbert space X for $a \le t < \infty$. It is always assumed that $F, G: X \times X \times [a, \infty) \to X$ are nonlinear operators, that A(t) is a closed operator for each $t \in [a, \infty)$, and that $A^*(t)$ is the adjoint operator of A(t).

The following system is called a linear Hamiltonian system, which is a special case of (1.4),

$$\dot{x}(t) = A(t)x(t) + B(t)p(t) + \varphi(t),$$

$$x(a) = x_0,$$

$$\dot{p}(t) = -A^*(t)p(t) + C(t)x(t) + \psi(t),$$

$$x(\cdot) \in L^2([a,\infty);X), \qquad p(\cdot) \in L^2([a,\infty);X),$$
(1.5)

where $\varphi(\cdot), \psi(\cdot) \in L^2([a, \infty); X)$, and B(t), C(t) are selfadjoint linear operators from X to X for all $t \in [a, \infty)$.

In [2], Lions has discussed the existence and uniqueness of solutions for system (1.5) and gave an existence and uniqueness result. In [1], Hu and Peng considered the existence and uniqueness of solutions for a class of nonlinear forward-backward stochastic differential equations similar to (1.3) but on finite horizon, they provided an existence and uniqueness theorem for (1.3). Peng and Shi in [3] dealt with the existence and uniqueness of solutions for (1.3) using the techniques developed in [1]. In this paper, we consider the existence and uniqueness of solutions for infinite-dimensional system (1.4).

Throughout the paper, the following basic assumptions hold.

(I) There exists a real number L > 0 such that

$$||F(x_1, p_1, t) - F(x_2, p_2, t)|| \le L(||x_1 - x_2|| + ||p_1 - p_2||),$$

||G(x_1, p_1, t) - G(x_2, p_2, t)|| \le L(||x_1 - x_2|| + ||p_1 - p_2||) (1.6)

for all $x_1, p_1, x_2, p_2 \in X$ and $t \in [a, \infty)$.

(II) There exists a real number $\alpha > 0$ such that

$$\langle F(x_1, p_1, t) - F(x_2, p_2, t), p_1 - p_2 \rangle + \langle G(x_1, p_1, t) - G(x_2, p_2, t), x_1 - x_2 \rangle$$

$$\leq -\alpha(||x_1 - x_2|| + ||p_1 - p_2||)$$
 (1.7)

for all $x_1, p_1, x_2, p_2 \in X$ and $t \in [a, \infty)$.

2. Lemmas

Two lemmas are given in this section. They are essential to prove the main theorem.

LEMMA 2.1. Consider the Hamiltonian system

$$\dot{x}(t) = A(t)x(t) + F_{\beta}(x, p, t) + \varphi(t),
x(a) = x_0,
\dot{p}(t) = -A^*(t)p(t) + G_{\beta}(x, p, t) + \psi(t),
x(\cdot) \in L^2([a, \infty); X), \qquad p(\cdot) \in L^2([a, \infty); X),$$
(2.1)

where $\varphi(\cdot), \psi(\cdot) \in L^2([a, \infty); X)$. The functions F_β and G_β are defined as

$$F_{\beta}(x, p, t) := -(1 - \beta)\alpha p + \beta F(x, p, t),$$

$$G_{\beta}(x, p, t) := -(1 - \beta)\alpha x + \beta G(x, p, t).$$
(2.2)

Assume that (2.1) has a unique solution for some real number $\beta = \beta_0 \ge 0$ and any $\varphi(t)$, $\psi(t)$. There exists a real number $\delta > 0$, which is independent of β_0 , such that (2.1) has a unique solution for any $\varphi(t)$, $\psi(t)$, and $\beta \in [\beta_0, \beta_0 + \delta]$.

Proof. For any given $\varphi(\cdot), \psi(\cdot), x(\cdot), p(\cdot) \in L^2([a, \infty); X)$ and $\delta > 0$, construct the following Hamiltonian system:

$$\dot{X}(t) = A(t)X(t) + F_{\beta_0}(X, P, t) + F_{\beta_0 + \delta}(x, p, t) - F_{\beta_0}(x, p, t) + \varphi(t),$$

$$X(a) = x_0,$$

$$\dot{P}(t) = -A^*(t)P(t) + G_{\beta_0}(X, P, t) + G_{\beta_0 + \delta}(x, p, t) - G_{\beta_0}(x, p, t) + \psi(t),$$

$$X(\cdot) \in L^2([a, \infty); X), \qquad P(\cdot) \in L^2([a, \infty); X).$$
(2.3)

Note that

$$F_{\beta_{0}+\delta}(x, p, t) - F_{\beta_{0}}(x, p, t) = -(1 - \beta_{0} - \delta)\alpha p + (\beta_{0} + \delta)F(x, p, t) + (1 - \beta_{0})\alpha p - \beta_{0}F(x, p, t) = \alpha\delta p + \delta F(x, p, t),$$

$$G_{\beta_{0}+\delta}(x, p, t) - G_{\beta_{0}}(x, p, t) = -(1 - \beta_{0} - \delta)\alpha x + (\beta_{0} + \delta)G(x, p, t) + (1 - \beta_{0})\alpha x - \beta_{0}G(x, p, t) = \alpha\delta x + \delta G(x, p, t).$$
(2.4)

The assumption of Lemma 2.1 implies that (2.3) has a unique solution for each pair $(x(\cdot), p(\cdot)) \in L^2([a, \infty); X) \times L^2([a, \infty); X)$. Therefore, the mapping *J*,

$$L^{2}([a,\infty);X) \times L^{2}([a,\infty);X) \longrightarrow L^{2}([a,\infty);X) \times L^{2}([a,\infty);X),$$
(2.5)

given by

$$J(x(\cdot), p(\cdot)) := (X(\cdot), P(\cdot))$$
(2.6)

is well defined.

Let $J(x_1(\cdot), p_1(\cdot)) = (X_1(\cdot), P_1(\cdot))$ and $J(x_2(\cdot), p_2(\cdot)) = (X_2(\cdot), P_2(\cdot))$. Since $X_1(\cdot) - X_2(\cdot) \in L^2([a, \infty); X)$ and $P_1(\cdot) - P_2(\cdot) \in L^2([a, \infty); X)$, there exists a sequence of real numbers $a < t_1 < t_2 < \cdots < t_k < \cdots$ such that $t_k \to \infty$ as $k \to \infty$ and

$$X_1(t_k) - X_2(t_k) \longrightarrow 0, \quad P_1(t_k) - P_2(t_k) \longrightarrow 0, \quad \text{as } k \longrightarrow \infty.$$
 (2.7)

Note that

$$\frac{d}{dt} \langle X_{1}(t) - X_{2}(t), P_{1}(t) - P_{2}(t) \rangle
= \langle F_{\beta_{0}}(X_{1}, P_{1}, t) - F_{\beta_{0}}(X_{2}, P_{2}, t) + \alpha \delta(p_{1} - p_{2}) + \delta(F(x_{1}, p_{1}, t) - F(x_{2}, p_{2}, t)), P_{1} - P_{2} \rangle
+ \langle G_{\beta_{0}}(X_{1}, P_{1}, t) - G_{\beta_{0}}(X_{2}, P_{2}, t) + \alpha \delta(x_{1} - x_{2}) + \delta(G(x_{1}, p_{1}, t) - G(x_{2}, p_{2}, t)), X_{1} - X_{2} \rangle
:= I_{1} + I_{2}.$$
(2.8)

Since

$$F_{\beta_0}(X_1, P_1, t) - F_{\beta_0}(X_2, P_2, t) = -\alpha(1 - \beta_0)(P_1 - P_2) + \beta_0(F(X_1, P_1, t) - F(X_2, P_2, t))$$
(2.9)

implies that

$$I_{1} = -\alpha(1-\beta_{0})||P_{1}-P_{2}||^{2} + \beta_{0}\langle F(X_{1},P_{1},t) - F(X_{2},P_{2},t),P_{1}-P_{2}\rangle + \alpha\delta\langle p_{1}-p_{2},P_{1}-P_{2}\rangle + \delta\langle F(x_{1},p_{1},t) - F(x_{2},p_{2},t),P_{1}-P_{2}\rangle,$$
(2.10)

similarly,

$$G_{\beta_0}(X_1, P_1, t) - G_{\beta_0}(X_2, P_2, t) = -\alpha(1 - \beta_0)(X_1 - X_2) + \beta_0(G(X_1, P_1, t) - G(X_2, P_2, t))$$
(2.11)

implies that

$$I_{2} = -\alpha(1-\beta_{0})||X_{1}-X_{2}||^{2} + \beta_{0}\langle G(X_{1},P_{1},t) - G(X_{2},P_{2},t),X_{1}-X_{2}\rangle + \alpha\delta\langle x_{1}-x_{2},X_{1}-X_{2}\rangle + \delta\langle G(x_{1},p_{1},t) - G(x_{2},p_{2},t),X_{1}-X_{2}\rangle.$$
(2.12)

It follows from the estimates for I_1 , I_2 , and the assumption (I) that

$$I_{1} + I_{2} \leq -\alpha (||X_{1} - X_{2}||^{2} + ||P_{1} - P_{2}||^{2}) + \alpha \delta (||p_{1} - p_{2}|| ||P_{1} - P_{2}|| + ||x_{1} - x_{2}|| ||X_{1} - X_{2}||) + \delta ||F(x_{1}, p_{1}, t) - F(x_{2}, p_{2}, t)|| ||P_{1} - P_{2}|| + \delta ||G(x_{1}, p_{1}, t) - G(x_{2}, p_{2}, t)|| ||X_{1} - X_{2}|| \leq -\alpha (||X_{1} - X_{2}||^{2} + ||P_{1} - P_{2}||^{2}) + \delta (2L + \alpha) (||X_{1} - X_{2}||^{2} + ||P_{1} - P_{2}||^{2} + ||x_{1} - x_{2}||^{2} + ||p_{1} - p_{2}||^{2}).$$

$$(2.13)$$

Therefore,

$$\frac{d}{dt} \langle X_{1}(t) - X_{2}(t), P_{1}(t) - P_{2}(t) \rangle
\leq -\alpha (||X_{1} - X_{2}||^{2} + ||P_{1} - P_{2}||^{2})
+ \delta(2L + \alpha) (||X_{1} - X_{2}||^{2} + ||P_{1} - P_{2}||^{2} + ||x_{1} - x_{2}||^{2} + ||p_{1} - p_{2}||^{2}).$$
(2.14)

Integrating between a and t_k , we have

$$\langle X_{1}(t_{k}) - X_{2}(t_{k}), P_{1}(t_{k}) - P_{2}(t_{k}) \rangle - \langle X_{1}(a) - X_{2}(a), P_{1}(a) - P_{2}(a) \rangle$$

$$\leq -\alpha \int_{a}^{t_{k}} \left(\left| \left| X_{1} - X_{2} \right| \right|^{2} + \left| \left| P_{1} - P_{2} \right| \right|^{2} \right) dt + \delta(2L + \alpha)$$

$$\times \int_{a}^{t_{k}} \left(\left| \left| X_{1} - X_{2} \right| \right|^{2} + \left| \left| P_{1} - P_{2} \right| \right|^{2} + \left| \left| x_{1} - x_{2} \right| \right|^{2} + \left| \left| p_{1} - p_{2} \right| \right|^{2} \right) dt.$$

$$(2.15)$$

Letting $k \to \infty$ and noting that (2.7), we obtain

$$\int_{a}^{\infty} \left(\left| \left| X_{1} - X_{2} \right| \right|^{2} + \left| \left| P_{1} - P_{2} \right| \right|^{2} \right) dt \leq \frac{2\delta L + \delta \alpha}{\alpha - 2\delta L - \delta \alpha} \int_{a}^{\infty} \left(\left| \left| x_{1} - x_{2} \right| \right|^{2} + \left| \left| p_{1} - p_{2} \right| \right|^{2} \right) dt.$$
(2.16)

Choose a small δ (independent of β_0) such that

$$\frac{2\delta L + \delta \alpha}{\alpha - 2\delta L - \delta \alpha} \le \frac{1}{2},\tag{2.17}$$

then J is a contractive mapping and hence has a unique fixed point. Thus, (2.3) becomes

$$\begin{aligned} \dot{x}(t) &= A(t)x(t) + F_{\beta_0 + \delta}(x, p, t) + \varphi(t), \\ x(a) &= x_0, \\ \dot{p}(t) &= -A^*(t)p(t) + G_{\beta_0 + \delta}(x, p, t) + \psi(t), \\ x(\cdot) &\in L^2([a, \infty); X), \qquad p(\cdot) \in L^2([a, \infty); X). \end{aligned}$$
(2.18)

This shows that system (2.1) has a unique solution on $[a, \infty)$ for $\beta \in [\beta_0, \beta_0 + \delta]$. The proof is complete.

LEMMA 2.2. System (2.1) has a unique solution on $[a, \infty)$ for $\beta = 0$, that is, the system

$$\dot{x}(t) = A(t)x(t) - \alpha p(t) + \varphi(t),$$

$$x(0) = x_0,$$

$$\dot{p}(t) = -A^*(t)p(t) - \alpha x(t) + \psi(t),$$

$$x(\cdot) \in L^2([a,\infty);X), \qquad p(\cdot) \in L^2([a,\infty);X),$$

(2.19)

has a unique solution on $[a, \infty)$ *.*

For the proof, see [2, Section 6.2, Chapter III].

3. Main theorem

THEOREM 3.1. System (1.4) has a unique solution under assumptions (I) and (II).

Proof. By Lemma 2.2, system (2.1) has a unique solution on $[a, \infty)$ in the case $\beta_0 = 0$. It follows from Lemma 2.1 that there exists a real number $\delta > 0$ such that (2.1) has a unique solution on $[a, \infty)$ for any $\beta \in [0, \delta]$ and $\varphi, \psi \in L^2([a, \infty); X)$. Let $\beta_0 = \delta$ in Lemma 2.1. Repeating this procedure implies that (2.1) has a unique solution on $[a, \infty)$ for any $\beta \in [\delta, 2\delta]$ and $\varphi, \psi \in L^2([a, \infty); X)$. After finitely many steps, one can show that system (2.1) has a unique solution for $\beta = 1$. Therefore, it is proved that system (1.4) has a unique solution on $[a, \infty)$ by letting $\beta = 1$, $\varphi(t) \equiv 0$, and $\psi(t) \equiv 0$.

Remark 3.2. Consider system (1.5). Note that

$$\langle F(x_1, p_1, t) - F(x_2, p_2, t), p_1 - p_2 \rangle + \langle G(x_1, p_1, t) - G(x_2, p_2, t), x_1 - x_2 \rangle$$

= $\langle B(t)(p_1 - p_2), p_1 - p_2 \rangle + \langle C(t)(x_1 - x_2), x_1 - x_2 \rangle.$ (3.1)

By Theorem 3.1, system (1.5) has a unique solution if it is assumed that both B(t) and C(t) are uniformly negative definite on $[a, \infty)$, that is, there exists a real number $\gamma > 0$ such that $\langle B(t)x, x \rangle \le -\gamma ||x||^2$ and $\langle C(t)x, x \rangle \le -\gamma ||x||^2$ for all $x \in X$, $x \ne 0$, and $t \in [a, \infty)$.

Remark 3.3. Consider the control system

$$\dot{x}(t) = A(t)x(t) + Bu(t), \qquad x(a) = x_0,$$
(3.2)

with a quadratic cost functional

$$J[u(\cdot)] = \int_{a}^{\infty} \left[\left\langle Qx(t), x(t) \right\rangle + \left\langle Ru(t), u(t) \right\rangle \right] dt,$$
(3.3)

where u(t) and x(t) take values in Hilbert spaces U and X, where $B \in \mathcal{L}[U,X]$, and where $Q \in \mathcal{L}[X,X]$ and $R \in \mathcal{L}[U,U]$ are selfadjoint operators.

From optimal control theory, the following Hamiltonian system is derived:

$$\dot{x}(t) = A(t)x(t) - BR^{-1}Bp(t),$$

$$x(a) = x_0,$$

$$\dot{p}(t) = -A^*(t)p(t) - Qx(t),$$

$$x(\cdot) \in L^2([a,\infty);X), \qquad p(\cdot) \in L^2([a,\infty);X).$$
(3.4)

This is a special case of system (1.5). Therefore, system (3.4) has a unique solution if both $BR^{-1}B$ and Q are positive definite.

References

- [1] Y. Hu and S. Peng, Solution of forward-backward stochastic differential equations, Probab. Theory Related Fields 103 (1995), no. 2, 273-283.
- J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Die [2] Grundlehren der mathematischen Wissenschaften, vol. 170, Springer, New York, 1971.
- [3] S. Peng and Y. Shi, Infinite horizon forward-backward stochastic differential equations, Stochastic Process. Appl. 85 (2000), no. 1, 75-92.

Lianwen Wang: Department of Mathematics and Computer Science, College of Arts and Sciences, Central Missouri State University, Warrensburg, MO 64093, USA

E-mail address: lwang@cmsu1.cmsu.edu