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We construct a number of semiparametric duality models and establish appropriate du-
ality results under various generalized (�,b,φ,ρ,θ)-univexity assumptions for a multiob-
jective fractional subset programming problem.

1. Introduction

In this paper, we will present a number of semiparametric duality results under various
generalized (�,b,φ,ρ,θ)-univexity hypotheses for the following multiobjective fractional
subset programming problem:

(P)

Minimize
(
F1(S)
G1(S)

,
F2(S)
G2(S)

, . . . ,
Fp(S)

Gp(S)

)
subject to Hj(S) � 0, j ∈ q, S∈An, (1.1)

whereAn is the n-fold product of the σ-algebraA of subsets of a given set X ,Fi,Gi, i∈ p ≡
{1,2, . . . , p}, and Hj , j ∈ q, are real-valued functions defined on An, and for each i ∈ p,
Gi(S) > 0 for all S∈An such that Hj(S) � 0, j ∈ q.

This paper is essentially a continuation of the investigation that was initiated in the
companion paper [6] where some information about multiobjective fractional program-
ming problems involving point-functions as well as n-set functions was presented, a fairly
comprehensive list of references for multiobjective fractional subset programming prob-
lems was provided, a brief overview of the available results pertaining to multiobjective
fractional subset programming problems was given, and numerous sets of semiparamet-
ric sufficient efficiency conditions under various generalized (�,b,φ,ρ,θ)-univexity as-
sumptions were established. These and some other related material that were discussed in
[6] will not be repeated in the present paper. Making use of the semiparametric sufficient
efficiency criteria developed in [6] in conjunction with a certain necessary efficiency re-
sult that will be recalled in the next section, here we will construct several semiparametric
duality models for (P) with varying degrees of generality and, in each case, prove appro-
priate weak, strong, and strict converse duality theorems under a number of generalized
(�,b,φ,ρ,θ)-univexity conditions.
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The rest of this paper is organized as follows. In Section 3 we consider a simple dual
problem and prove weak, strong, and strict converse duality theorems. In Section 4 we
formulate another dual problem with a relatively more flexible structure that allows for a
greater variety of generalized (�,b,φ,ρ,θ)-univexity conditions under which duality can
be established. In Sections 5 and 6 we state and discuss two general duality models which
are, in fact, two families of dual problems for (P), whose members can easily be identified
by appropriate choices of certain sets and functions.

Evidently, all of these duality results are also applicable, when appropriately special-
ized, to the following three classes of problems with multiple, fractional, and conventional
objective functions, which are particular cases of (P):

(P1)

Minimize
S∈F

(
F1(S),F2(S), . . . ,Fp(S)

)
; (1.2)

(P2)

Minimize
S∈F

F1(S)
G1(S)

; (1.3)

(P3)

Minimize
S∈F

F1(S), (1.4)

where F (assumed to be nonempty) is the feasible set of (P), that is,

F= {S∈An :Hj(S) � 0, j ∈ q}. (1.5)

Since in most cases the duality results established for (P) can easily be modified and
restated for each one of the above problems, we will not explicitly state these results.

2. Preliminaries

In this section, we gather, for convenience of reference, a few basic definitions and auxil-
iary results which will be used frequently throughout the sequel.

Let (X ,A,µ) be a finite atomless measure space with L1(X ,A,µ) separable, and let d be
the pseudometric on An defined by

d(R,S)=
[ n∑
i=1

µ2(Ri�Si)
]1/2

, R= (R1, . . . ,Rn
)
, S= (S1, . . . ,Sn

)∈An, (2.1)

where � denotes symmetric difference; thus (An,d) is a pseudometric space. For h ∈
L1(X ,A,µ) and T ∈ A with characteristic function χT ∈ L∞(X ,A,µ), the integral

∫
T hdµ

will be denoted by 〈h,χT〉.
We next define the notion of differentiability for n-set functions. It was originally in-

troduced by Morris [3] for a set function, and subsequently extended by Corley [1] for
n-set functions.
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Definition 2.1. A function F : A → R is said to be differentiable at S∗ if there exists
DF(S∗)∈ L1(X ,A,µ), called the derivative of F at S∗, such that for each S∈A,

F(S)= F(S∗)+
〈
DF

(
S∗
)
,χS− χS∗

〉
+VF

(
S,S∗

)
, (2.2)

where VF(S,S∗) is o(d(S,S∗)), that is, limd(S,S∗)→0VF(S,S∗)/d(S,S∗)= 0.

Definition 2.2. A function G : An → R is said to have a partial derivative at S∗ = (S∗1 , . . . ,
S∗n )∈An with respect to its ith argument if the function F(Si)=G(S∗1 , . . . ,S∗i−1,Si,S∗i+1, . . . ,
S∗n ) has derivativeDF(S∗i ), i∈ n; in that case, the ith partial derivative ofG at S∗ is defined
to be DiG(S∗)=DF(S∗i ), i∈ n.

Definition 2.3. A function G : An → R is said to be differentiable at S∗ if all the partial
derivatives DiG(S∗), i∈ n, exist and

G(S)=G(S∗)+
n∑
i=1

〈
DiG

(
S∗
)
,χSi − χS∗i

〉
+WG

(
S,S∗

)
, (2.3)

where WG(S,S∗) is o(d(S,S∗)) for all S∈An.
We next recall the definitions of the generalized (�,b,φ,ρ,θ)-univex n-set functions

which will be used in the statements of our duality theorems. For more information about
these and a number of other related classes of n-set functions, the reader is referred to [6].
We begin by defining a sublinear function which is an integral part of all the subsequent
definitions.

Definition 2.4. A function � : Rn → R is said to be sublinear (superlinear) if �(x + y) �
(�)�(x) + �(y) for all x, y ∈Rn, and �(ax)= a�(x) for all x ∈Rn and a∈R+ ≡ [0,∞).

Let S,S∗ ∈An, and assume that the function F :An→R is differentiable at S∗.

Definition 2.5. The function F is said to be (strictly) (�,b,φ,ρ,θ)-univex at S∗ if there
exist a sublinear function �(S,S∗;·) : Ln1(X ,A,µ)→ R, a function b : An ×An → R with
positive values, a function θ : An ×An → An ×An such that S 	= S∗ ⇒ θ(S,S∗) 	= (0,0), a
function φ :R→R, and a real number ρ such that for each S∈An,

φ
(
F(S)−F(S∗))(>) � �

(
S,S∗;b

(
S,S∗

)
DF

(
S∗
))

+ ρd2(θ(S,S∗
))
. (2.4)

Definition 2.6. The function F is said to be (strictly) (�,b,φ,ρ,θ)-pseudounivex at S∗ if
there exist a sublinear function �(S,S∗;·) : Ln1(X ,A,µ) → R, a function b : An ×An →
R with positive values, a function θ : An ×An → An ×An such that S 	= S∗ ⇒ θ(S,S∗) 	=
(0,0), a function φ :R→R, and a real number ρ such that for each S∈An (S 	= S∗),

�
(
S,S∗;b

(
S,S∗

)
DF

(
S∗
))

�−ρd2(θ(S,S∗
))=⇒ φ

(
F(S)−F(S∗))(>) � 0. (2.5)

Definition 2.7. The function F is said to be (prestrictly) (�,b,φ,ρ,θ)-quasiunivex at S∗

if there exist a sublinear function �(S,S∗;·) : Ln1(X ,A,µ)→ R, a function b : An ×An →
R with positive values, a function θ : An ×An → An ×An such that S 	= S∗ ⇒ θ(S,S∗) 	=
(0,0), a function φ :R→R, and a real number ρ such that for each S∈An,

φ
(
F(S)−F(S∗))(<) � 0=⇒�

(
S,S∗;b

(
S,S∗

)
DF

(
S∗
))

�−ρd2(θ(S,S∗
))
. (2.6)
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From the above definitions it is clear that if F is (�,b,φ,ρ,θ)-univex at S∗, then it is
both (�,b,φ,ρ,θ)-pseudounivex and (�,b,φ,ρ,θ)-quasiunivex at S∗, if F is (�,b,φ,ρ,θ)-
quasiunivex at S∗, then it is prestrictly (�,b,φ,ρ,θ)-quasiunivex at S∗, and if F is strictly
(�,b,φ,ρ,θ)-pseudounivex at S∗, then it is (�,b,φ,ρ,θ)-quasiunivex at S∗.

In the proofs of the duality theorems, sometimes it may be more convenient to use
certain alternative but equivalent forms of the above definitions. These are obtained by
considering the contrapositive statements. For example, (�,b,φ,ρ,θ)-quasiunivexity can
be defined in the following equivalent way: F is said to be (�,b,φ,ρ,θ)-quasiunivex at S∗

if for each S∈An,

�
(
S,S∗;b

(
S,S∗

)
DF

(
S∗
))
>−ρd2(θ(S,S∗

))=⇒ φ
(
F(S)−F(S∗)) > 0. (2.7)

Needless to say, the new classes of generalized convex n-set functions specified in Def-
initions 2.5, 2.6, and 2.7 contain a variety of special cases; in particular, they subsume
all the previously defined types of generalized n-set functions. This can easily be seen by
appropriate choices of �, b, φ, ρ, and θ.

In the sequel we will also need a consistent notation for vector inequalities. For all
a,b ∈ Rm, the following order notation will be used: a � b if and only if ai � bi for all
i∈m; a� b if and only if ai � bi for all i∈m, but a 	= b; a > b if and only if ai > bi for all
i∈m; a� b is the negation of a� b.

Throughout the sequel we will deal exclusively with the efficient solutions of (P). An
x∗ ∈� is said to be an efficient solution of (P) if there is no other x ∈� such that ϕ(x) �
ϕ(x∗), where ϕ is the objective function of (P).

Next, we recall a set of parametric necessary efficiency conditions for (P).

Theorem 2.8 [5]. Assume that Fi,Gi, i ∈ p, and Hj , j ∈ q, are differentiable at S∗ ∈ An,

and that for each i∈ p, there exist Ŝi ∈An such that

Hj
(
S∗
)

+
n∑
k=1

〈
DkHj

(
S∗
)
,χŜk − χS∗k

〉
< 0, j ∈ q, (2.8)

and for each � ∈ p \ {i},
n∑
k=1

〈
DkF�

(
S∗
)− λ∗� DkG�

(
S∗
)
,χŜk − χS∗k

〉
< 0. (2.9)

If S∗ is an efficient solution of (P) and λ∗i = ϕ(S∗), i ∈ p, then there exist u∗ ∈ U = {u ∈
Rp : u > 0,

∑p
i=1ui = 1} and v∗ ∈Rq

+ such that

n∑
k=1

〈 p∑
i=1

u∗i
[
DkFi

(
S∗
)− λ∗i DkGi

(
S∗
)]

+
q∑
j=1

v∗j DkHj
(
S∗
)
,χSk − χS∗k

〉
� 0, ∀S∈An,

(2.10)

v∗j Hj
(
S∗
)= 0, j ∈ q.
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The above theorem contains two sets of parameters u∗i and λ∗i , i ∈ p, which were in-
troduced as a consequence of our indirect approach in [5] requiring two intermediate
auxiliary problems. It is possible to eliminate one of these two sets of parameters and
thus obtain a semiparametric version of Theorem 2.8. Indeed, this can be accomplished
by simply replacing λ∗i by Fi(S∗)/Gi(S∗), i ∈ p, and redefining u∗ and v∗. For future
reference, we state this in the next theorem.

Theorem 2.9. Assume that Fi,Gi, i ∈ p, and Hj , j ∈ q, are differentiable at S∗ ∈ An, and

that for each i∈ p, there exist Ŝi ∈An such that

Hj
(
S∗
)

+
n∑
k=1

〈
DkHj

(
S∗
)
,χŜk − χS∗k

〉
< 0, j ∈ q, (2.11)

and for each � ∈ p \ {i},

n∑
k=1

〈
Gi
(
S∗
)
DkF�

(
S∗
)−Fi(S∗)DkG�

(
S∗
)
,χŜk − χS∗k

〉
< 0. (2.12)

If S∗ is an efficient solution of (P), then there exist u∗ ∈U and v∗ ∈Rq
+ such that

n∑
k=1

〈 p∑
i=1

u∗i
[
Gi
(
S∗
)
DkFi

(
S∗
)−Fi(S∗)DkGi

(
S∗
)]

+
q∑
j=1

v∗j DkHj
(
S∗
)
,χSk − χS∗k

〉
� 0, ∀S∈An,

(2.13)

v∗j Hj
(
S∗
)= 0, j ∈ q.

For simplicity, we will henceforth refer to an efficient solution S∗ of (P) satisfying
(2.11) and (2.12) for some Ŝi, i∈ p, as a normal efficient solution.

The form and contents of the necessary efficiency conditions given in Theorem 2.9 in
conjunction with the sufficient efficiency results established in [6] provide clear guide-
lines for constructing various types of semiparametric duality models for (P).

3. Duality model I

In this section, we discuss a duality model for (P) with a somewhat restricted constraint
structure that allows only certain types of generalized (�,b,φ,ρ,θ)-univexity conditions
for establishing duality. More general duality models will be presented in subsequent sec-
tions.

In the remainder of this paper, we assume that the functions Fi,Gi, i∈ p, andHj , j ∈ q,
are differentiable onAn and that Fi(T) � 0 andGi(T) > 0 for each i∈ p and for all T such
that (T ,u,v) is a feasible solution of the dual problem under consideration.
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Consider the following problem:
(DI)

Minimize
(
F1(T)
G1(T)

, . . . ,
Fp(T)

Gp(T)

)
(3.1)

subject to

�

(
S,T ;

p∑
i=1

ui
[
Gi(T)DFi(T)−Fi(T)DGi(T)

]
+

q∑
j=1

vjDHj(T)

)
� 0 ∀S∈An, (3.2)

q∑
j=1

vjHj(T) � 0, (3.3)

T ∈An, u∈U , v ∈Rq
+, (3.4)

where �(S,T ;·) : Ln1(X ,A,µ)→R is a sublinear function.
The following two theorems show that (DI) is a dual problem for (P).

Theorem 3.1 (weak duality). Let S and (T ,u,v) be arbitrary feasible solutions of (P) and
(DI), respectively, and assume that any one of the following three sets of hypotheses is satis-
fied:

(a) (i) for each i ∈ p, Fi is (�,b, φ̄, ρ̄i,θ)-univex at T , and −Gi is (�,b, φ̄, ρ̂i,θ)-univex

at T , φ̄ is superlinear, and φ̄(a) � 0⇒ a� 0;
(ii) for each j ∈ q, Hj is (�,b, φ̃, ρ̃,θ)-univex at T , φ̃ is increasing, and φ̃(0)= 0;

(iii) ρ∗ +
∑

j∈J+ vj ρ̃ j � 0, where ρ∗ =∑p
i=1ui[Gi(T)ρ̄i +Fi(T)ρ̂i];

(b) (i) for each i ∈ p, Fi is (�,b, φ̄, ρ̄i,θ)-univex at T , and −Gi is (�, b̄, φ̄, ρ̂i,θ)-univex

at T , φ̄ is superlinear, and φ̄(a) � 0⇒ a� 0;
(ii) the function T →∑q

j=1 vjHj(T) is (�,b, φ̃, ρ̃,θ)-quasiunivex at T , φ̃ is increasing,

and φ̃(0)= 0;
(iii) ρ∗ + ρ̃� 0;

(c) (i) the Lagrangian-type function

T −→
p∑
i=1

ui
[
Gi(S)Fi(T)−Fi(S)Gi(T)

]
+

q∑
j=1

vjHj(T), (3.5)

where S is fixed in An, is (�,b, φ̄,0,θ)-pseudounivex at T and φ̄(a) � 0⇒ a� 0.
Then ϕ(S) � ξ(T ,u,v), where ξ = (ξ1, . . . ,ξp) is the objective function of (DI).

Proof. (a) From (i) and (ii) it follows that

φ̄
(
Fi(S)−Fi(T)

)
� �

(
S,T ;b(S,T)DFi(T)

)
+ ρ̄id2(θ(S,T)

)
, i∈ p, (3.6)

φ̄
(−Gi(S) +Gi(T)

)
� �

(
S,T ;−b(S,T)DGi(T)

)
+ ρ̂id2(θ(S,T)

)
, i∈ p, (3.7)

φ̃
(
Hj(S)−Hj(T)

)
� �

(
S,T ;b(S,T)DHj(T)

)
+ ρ̃ jd2(θ(S,T)

)
, j ∈ q. (3.8)
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Multiplying (3.6) by uiGi(T) and (3.7) by uiFi(T), i∈ p, adding the resulting inequalities,

and then using the superlinearity of φ̄ and sublinearity of �(S,T ;·), we obtain

φ̄

( p∑
i=1

ui
[
Gi(T)Fi(S)−Fi(T)Gi(S)

]− p∑
i=1

ui
[
Gi(T)Fi(T)−Fi(T)Gi(T)

])

� �

(
S,T ;b(S,T)

p∑
i=1

ui
[
Gi(T)DFi(T)−Fi(T)DGi(T)

])

+
p∑
i=1

ui
[
Gi(T)ρ̄i +Fi(T)ρ̂i

]
d2(θ(S,T)

)
.

(3.9)

Likewise, from (3.8) we deduce that

φ̃

( q∑
j=1

vj
[
Hj(S)−Hj(T)

])
� �

(
S,T ;b(S,T)

q∑
j=1

vjDHj(T)

)
+

q∑
j=1

ρ̃ jd
2(θ(S,T)

)
.

(3.10)

Since v � 0, S∈ F, and (3.3) holds, it is clear that

q∑
j=1

vj
[
Hj(S)−Hj(T)

]
� 0, (3.11)

which implies, in view of the properties of φ̃, that the left-hand side of (3.10) is less than
or equal to zero, that is,

0 � �

(
S,T ;b(S,T)

q∑
j=1

vjDHj(T)

)
+

q∑
j=1

ρ̃ jd
2(θ(S,T)

)
. (3.12)

From the sublinearity of �(S,T ;·) and (3.2) it follows that

�

(
S,T ;b(S,T)

p∑
i=1

ui
[
Gi(T)DFi(T)−Fi(T)DGi(T)

])

+ �

(
S,T ;b(S,T)

q∑
j=1

vjDHj(T)

)
� 0.

(3.13)

Now adding (3.9) and (3.12), and then using (3.13) and (iii), we obtain

φ̄

( p∑
i=1

ui
[
Gi(T)Fi(S)−Fi(T)Gi(S)

]− p∑
i=1

ui
[
Gi(T)Fi(T)−Fi(T)Gi(T)

])
� 0. (3.14)

But φ̄(a) � 0⇒ a� 0, and so (3.14) yields

p∑
i=1

ui
[
Gi(T)Fi(S)−Fi(T)Gi(S)

]
� 0. (3.15)
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Since u > 0, (3.15) implies that(
G1(T)F1(S)−F1(T)G1(S), . . . ,Gp(T)Fp(S)−Fp(T)Gp(S)

)
� (0, . . . ,0), (3.16)

which in turn implies that

ϕ(S)=
(
F1(S)
G1(S)

, . . . ,
Fp(S)

Gp(S)

)
�

(
F1(T)
G1(T)

, . . . ,
Fp(T)

Gp(T)

)
= ξ(T ,u,v). (3.17)

(b) Since for each j ∈ q, vjHj(S) � 0, it follows from (3.3) that

q∑
j=1

vjHj(S) � 0 �
q∑
j=1

vjHj(T), (3.18)

and so using the properties of φ̃, we obtain

φ̃

( q∑
j=1

vjHj(S)−
q∑
j=1

vjHj(T)

)
� 0, (3.19)

which in view of (ii) implies that

�

(
S,T ;b(S,T)

q∑
j=1

vjDHj(T)

)
�−ρ̃d2(θ(S,T)

)
. (3.20)

Now combining (3.9), (3.13), and (3.20), and using (iii), we obtain (3.15). Therefore, the
rest of the proof is identical to that of part (a).

(c) From the (�,b, φ̄,0,θ)-pseudounivexity assumption and (3.2) it follows that

φ̄

( p∑
i=1

ui
[
Gi(T)Fi(S)−Fi(T)Gi(S)

]
+

q∑
j=1

vjHj(S)

−
{ p∑
i=1

ui
[
Gi(T)Fi(T)−Fi(T)Gi(T)

]
+

q∑
j=1

vjHj(T)

})
� 0.

(3.21)

In view of the properties of φ̄, this inequality becomes

p∑
i=1

ui
[
Gi(T)Fi(S)−Fi(T)Gi(S)

]
+

q∑
j=1

vjHj(S)−
q∑
j=1

vjHj(T) � 0, (3.22)

which because of (3.3), primal feasibility of S, and nonnegativity of v, reduces to (3.15),
and so the rest of the proof is identical to that of part (a). �

Theorem 3.2 (strong duality). Let S∗ be a regular efficient solution of (P), let �(S,S∗;
DF(S∗)) =∑n

k=1〈DkF(S∗),χSk − χS∗k 〉 for any differentiable function F : An → R and S ∈
An, and assume that any one of the three sets of hypotheses specified in Theorem 3.1 holds for
all feasible solutions of (DI). Then there exist u∗ ∈U and v∗ ∈Rq

+ such that (S∗,u∗,v∗) is
an efficient solution of (DI) and ϕ(S∗)= ξ(S∗,u∗,v∗).
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Proof. By Theorem 2.9, there exist u∗ ∈U and v∗ ∈Rq
+ such that (S∗,u∗,v∗) is a feasible

solution of (DI). If it were not an efficient solution, then there would exist a feasible
solution (T̂ , û, v̂) such that ξ(T̂ , û, v̂) � ξ(S∗,u∗,v∗)= ϕ(S∗), which contradicts the weak
duality relation established in Theorem 5.1. Therefore, (S∗,u∗,v∗) is an efficient solution
of (DI). �

We also have the following converse duality result for (P) and (DI).

Theorem 3.3 (strict converse duality). Let S∗ and �(S,S∗;·) be as in Theorem 3.2, let
(S̃, ũ, ṽ) be a feasible solution of (DI) such that

p∑
i=1

ũi
[
Gi(S̃)Fi(S∗)−Fi(S̃)Gi(S∗)

]
� 0. (3.23)

Furthermore, assume that any one of the following three sets of hypotheses is satisfied:
(a) the assumptions specified in part (a) of Theorem 3.1 are satisfied for the feasible so-

lution (S̃, ũ, ṽ) of (DI); Fi is strictly (�,b, φ̄, ρ̄i,θ)-univex at S̃ for at least one index
i ∈ p with the corresponding component ũi of ũ positive, and φ̄(a) > 0⇒ a > 0, or

−Gi is strictly (�,b, φ̄, ρ̂i,θ)-univex at S̃ for at least one index i ∈ p with ũi posi-

tive, and φ̄(a) > 0⇒ a > 0, or Hj is strictly (�,b, φ̃, ρ̃ j ,θ)-univex at S̃ for at least one

index j ∈ q with ṽ j positive, and φ̃(a) > 0⇒ a > 0, or
∑p

i=1 ũi[Gi(S̃)ρ̄i + Fi(S̃)ρ̂i] +∑q
j=1 ṽ j ρ̃ j > 0;

(b) the assumptions specified in part (b) of Theorem 3.1 are satisfied for the feasible solu-
tion (S̃, ũ, ṽ) of (DI), Fi and φ̄ or−Gi and φ̄ satisfy the requirements described in part
(a), or the function R→∑q

j=1 ṽ jHj(R) is strictly (�,b, φ̃, ρ̃,θ)-pseudounivex at S̃, or∑p
i=1 ũi[Gi(S̃)ρ̄i +Fi(S̃)ρ̂i] + ρ̃ > 0;

(c) the assumptions specified in part (c) of Theorem 3.1 are satisfied for the feasible solu-
tion (S̃, ũ, ṽ) of (DI), and the function

R−→
p∑
i=1

ũi
[
Gi(S̃)Fi(R)−Fi(S̃)Gi(R)

]
+

q∑
j=1

ṽ jHj(R) (3.24)

is strictly (�,b, φ̄,0,θ)-pseudounivex at S̃, and φ̄(a) > 0⇒ a > 0.
Then S̃= S∗, that is, S̃ is an efficient solution of (P).

Proof. (a) Suppose to the contrary that S̃ 	= S∗. Proceeding as in the proof of part (a) of
Theorem 5.1, we arrive at the strict inequality

p∑
i=1

ũi
[
Gi(S̃)Fi(S∗)−Fi(S̃)Gi

(
S∗
)]
>−

p∑
i=1

ũi
[
Gi(S̃)Fi(S̃)−Fi(S̃)Gi(S̃)

]= 0, (3.25)

in contradiction to (3.23). Hence we conclude that S̃= S∗.
(b) and (c) The proofs are similar to that of part (a). �



1118 Multiobjective fractional subset programming

4. Duality model II

In this section, we consider a slightly different version of (DI) that allows for a greater
variety of generalized (�,b,φ,ρ,θ)-univexity conditions under which duality can be es-
tablished. This duality model has the form

(DII)

Maximize
(
F1(T)
G1(T)

, . . . ,
Fp(T)

Gp(T)

)
(4.1)

subject to

�

(
S,T ;

p∑
i=1

ui
[
Gi(T)DFi(T)−Fi(T)DGi(T)

]
+

q∑
j=1

vjDHj(T)

)
� 0 ∀S∈An, (4.2)

vjHj(T)≥ 0, j ∈ q, (4.3)

T ∈An, u∈U0, v ∈Rq
+, (4.4)

where �(S,T ;·) : Ln1(X ,A,µ) → R is a sublinear function, and U0 = {u ∈ Rq : u � 0,∑p
i=1ui = 1}.
We next show that (DII) is a dual problem for (P) by establishing weak and strong

duality theorems. As demonstrated below, this can be accomplished under numerous
sets of generalized (�,b,φ,ρ,θ)-univexity conditions. Here we use the functions fi(·,S),
i∈ p, f (·,S,u), and h(·,v) :An→R, which are defined, for fixed S, u, and v, as follows:

fi(T ,S,u)=Gi(S)Fi(T)−Fi(S)Gi(T), i∈ p,

f (T ,S,u)=
p∑
i=1

ui
[
Gi(S)Fi(T)−Fi(S)Gi(T)

]
,

h(T ,v)=
q∑
j=1

vjHj(T).

(4.5)

For given u∗ ∈ U0 and v∗ ∈ Rq
+, let I+(u∗)= {i∈ p : u∗i > 0} and J+(v∗)= { j ∈ q : v∗j >

0}.
Theorem 4.1 (weak duality). Let S and (T ,u,v), with u > 0, be arbitrary feasible solutions
of (P) and (DII), respectively, and assume that any one of the following six sets of hypotheses
is satisfied:

(a) (i) f (·,T ,u) is (�,b, φ̄, ρ̄,θ)-pseudounivex at T , and φ̄(a) � 0⇒ a� 0;
(ii) for each j ∈ J+ ≡ J+(v), Hj is (�,b, φ̃ j , ρ̃ j ,θ)-quasiunivex at T , φ̃ j is increasing,

and φ̃ j(0)= 0;
(iii) ρ̄+

∑
j∈J+ vj ρ̃ j � 0;

(b) (i) f (·,T ,u) is (�,b, φ̄, ρ̄,θ)-pseudounivex at T , and φ̄(a) � 0⇒ a� 0;
(ii) h(·,v) is (�,b, φ̃, ρ̃,θ)-quasiunivex at T , φ̃ is increasing, and φ̃(0)= 0;

(iii) ρ̄+ ρ̃� 0;
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(c) (i) f (·,T ,u) is prestrictly (�,b, φ̄, ρ̄,θ)-quasiunivex at T , and φ̄(a) � 0⇒ a� 0;
(ii) for each j ∈ J+, Hj is (�,b, φ̃ j , ρ̃ j ,θ)-quasiunivex at T , φ̃ j is increasing, and

φ̃ j(0)= 0;
(iii) ρ̄+

∑
j∈J+ vj ρ̃ j > 0;

(d) (i) f (·,T ,u) is prestrictly (�,b, φ̄, ρ̄,θ)-quasiunivex at T , and φ̄(a) � 0⇒ a� 0;
(ii) h(·,v) is (�,b, φ̃, ρ̃,θ)-quasiunivex at T , φ̃ is increasing, and φ̃(0)= 0;

(iii) ρ̄+ ρ̃ > 0;

(e) (i) f (·,T ,u) is prestrictly (�,b, φ̄, ρ̄,θ)-quasiunivex at T , and φ̄(a) � 0⇒ a� 0;
(ii) for each j ∈ J+, Hj is strictly (�,b, φ̃ j , ρ̃ j ,θ)-pseudounivex at T , φ̃ j is increasing,

and φ̃ j(0)= 0;
(iii) ρ̄+

∑
j∈J+ vj ρ̃ j � 0;

(f) (i) f (·,T ,u) is prestrictly (�,b, φ̄, ρ̄,θ)-quasiunivex at T , and φ̄(a) � 0⇒ a� 0;

(ii) h(·,v) is strictly (�, b̃, φ̃, ρ̃,θ)-pseudounivex at T , φ̃ is increasing, and φ̃(0)= 0;
(iii) ρ̄+ ρ̃� 0.

Then ϕ(S) � ψ(T ,u,v), where ψ = (ψ1, . . . ,ψp) is the objective function of (DII).

Proof. (a) From the primal feasibility of S and (4.3) it is clear that for each j ∈ J+,Hj(S) �
Hj(T) and so using the properties of φ̃ j , we obtain φ̃ j(Hj(S)−Hj(T)) � 0, which by
virtue of (ii) implies that for each j ∈ J+,

�
(
S,T ;b(S,T)DHj(T)

)
�−ρ̃ jd2(θ(S,T)

)
. (4.6)

Since v � 0, vj = 0 for each j ∈ q \ J+, and �(S,T ;·) is sublinear, these inequalities can be
combined as follows:

�

(
S,T ;b(S,T)

q∑
j=1

vjDHj(T)

)
�−

∑
j∈J+

vj ρ̃ jd
2(θ(S,T)

)
. (4.7)

From (3.13) and (4.7) we see that

�

(
S,T ;b(S,T)

p∑
i=1

ui
[
Gi(T)DFi(T)−Fi(T)DGi(T)

])
�
∑
j∈J+

vj ρ̃ jd
2(θ(S,T)

)
�−ρ̄d2(θ(S,T)

)
,

(4.8)

where the second inequality follows from (iii). In view of (i), (4.8) implies that φ̄( f (S,T ,
u)− f (T ,T ,u)) � 0, which because of the properties of φ̄, reduces to f (S,T ,u)− f (T ,T ,
u) � 0. But f (T ,T ,u) = 0 and hence f (S,T ,u) � 0, which is precisely (3.15). Therefore,
the rest of the proof is identical to that of part (a) of Theorem 3.1.

(b)–(f) The proofs are similar to that of part (a). �

Theorem 4.2 (weak duality). Let S and (T ,u,v) be arbitrary feasible solutions of (P) and
(DII), respectively, and assume that any one of the following six sets of hypotheses is satisfied:

(a) (i) for each i∈ I+ ≡ I+(u), fi(·,T) is strictly (�,b, φ̄i, ρ̄i,θ)-pseudounivex at T , φ̄i is
increasing, and φ̄i(0)= 0;
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(ii) for each j ∈ J+ ≡ J+(v), Hj is (�,b, φ̃ j , ρ̃ j ,θ)-quasiunivex at T , φ̃ j is increasing,

and φ̃ j(0)= 0;
(iii) ρ◦ +

∑
j∈J+ vj ρ̃ j � 0, where ρ◦ =∑i∈I+ uiρ̄i;

(b) (i) for each i∈ I+, fi(·,T) is strictly (�,b, φ̄i, ρ̄i,θ)-pseudounivex at T , φ̄i is increas-
ing, and φ̄i(0)= 0;

(ii) h(·,v) is (�,b, φ̃, ρ̃,θ)-quasiunivex at T , φ̃ is increasing, and φ̃(0)= 0;
(iii) ρ◦ + ρ̃� 0;

(c) (i) for each i ∈ I+, fi(·,T) is (�,b, φ̄i, ρ̄i,θ)-quasiunivex at T , φ̄i is increasing, and
φ̄i(0)= 0;

(ii) for each j ∈ J+, Hj is strictly (�,b, φ̃ j , ρ̃ j ,θ)-pseudounivex at T , φ̃ j is increasing,

and φ̃ j(0)= 0;
(iii) ρ◦ +

∑
j∈J+ vj ρ̃ j � 0;

(d) (i) for each i ∈ I+, fi(·,T) is (�,b, φ̄i, ρ̄i,θ)-quasiunivex at T , φ̄i is increasing, and
φ̄i(0)= 0;

(ii) h(·,v) is strictly (�,b, φ̃, ρ̃,θ)-pseudounivex at T , φ̃ is increasing, and φ̃(0)= 0;
(iii) ρ◦ + ρ̃� 0;

(e) (i) for each i ∈ I+, fi(·,T) is (�,b, φ̄i, ρ̄i,θ)-quasiunivex at T , φ̄i is increasing, and
φ̄i(0)= 0;

(ii) for each j ∈ J+, Hj is (�,b, φ̃ j , ρ̃ j ,θ)-quasiunivex at T , φ̃ j is increasing, and

φ̃ j(0)= 0;
(iii) ρ◦ +

∑
j∈J+ vj ρ̃ j > 0;

(f) (i) for each i ∈ I+, fi(·,T) is (�,b, φ̄i, ρ̄i,θ)-quasiunivex at T , φ̄i is increasing, and
φ̄i(0)= 0;

(ii) h(·,v) is (�,b, φ̃, ρ̃,θ)-quasiunivex at T , φ̃ is increasing, and φ̃(0)= 0;
(iii) ρ◦ + ρ̃ > 0;

Then ϕ(S) � ψ(T ,u,v).

Proof. (a) Suppose to the contrary that ϕ(S) � ψ(T ,u,v). This implies that for each i ∈
p, Fi(S)/Gi(S) � Fi(T)/Gi(T), and so Gi(T)Fi(S)− Fi(T)Gi(S) � 0, with strict inequality
holding for at least one index � ∈ p. Hence for each i∈ p,

Gi(T)Fi(S)−Fi(T)Gi(S) � 0=Gi(T)Fi(T)−Fi(T)Gi(T), (4.9)

which in view of the properties of φ̄i can be expressed as φ̄i( fi(S,T)− fi(T ,T)) � 0. By
virtue of (i), these inequalities imply that for each i∈ I+,

�
(
S,T ;b

(
S,T

)[
Gi(T)DFi(T)−Fi(T)DGi(T)

])
<−ρ̄id2(θ(S,T)

)
. (4.10)

Inasmuch as u� 0, ui = 0 for each i∈ p \ I+,
∑

i∈I+ ui = 1, and �(S,T ;·) is sublinear, these
inequalities yield

�

(
S,T ;b(S,T)

p∑
i=1

ui
[
Gi(T)DFi(T)−Fi(T)DGi(T)

])
<−

∑
i∈I+

uiρ̄id
2(θ(S,T)

)
. (4.11)



G. J. Zalmai 1121

From (3.13), (4.11), and (iii) we deduce that

�

(
S,T ;b(S,T)

q∑
j=1

vjDHj(T)

)
> ρ◦d2(θ(S,T)

)
�−

∑
j∈J+

vj ρ̃ jd
2(θ(S,T)

)
. (4.12)

But this contradicts (4.7), which is valid for the present case because of our hypotheses
set forth in (ii). Hence ϕ(S) � ψ(T ,u,v).

(b)–(f) The proofs are similar to that of part (a). �

The next theorem may be viewed as a variant of Theorem 4.2; its proof is similar to
that of Theorem 4.2 and hence omitted.

Theorem 4.3 (weak duality). Let S and (T ,u,v) be arbitrary feasible solutions of (P) and
(DII), respectively, and assume that any one of the following four sets of hypotheses is satis-
fied:

(a) (i) for each i∈ I1+ 	= ∅, fi(·,T) is strictly (�,b, φ̄i, ρ̄i,θ)-pseudounivex at T , for each
i∈ I2+, fi(·,T) is (�,b, φ̄i, ρ̄i,θ)-quasiunivex at T , and for each i∈ I+ ≡ I+(u), φ̄i
is increasing and φ̄i(0)= 0, where {I1+,I2+} is a partition of I+;

(ii) for each j ∈ J+ ≡ J+(v), Hj is (�,b, φ̃ j , ρ̃ j ,θ)-quasiunivex at T , φ̃ j is increasing

and φ̃ j(0)= 0;
(iii) ρ◦ +

∑
j∈J+ vj ρ̃ j � 0, where ρ◦ =∑i∈I+ uiρ̄i;

(b) (i) for each i∈ I1+ 	= ∅, fi(·,T) is strictly (�,b, φ̄i, ρ̄i,θ)-pseudounivex at T , for each
i ∈ I2+, fi(·,T) is (�,b, φ̄i, ρ̄i,θ)-quasiunivex at T , and for each i ∈ I+, φ̄i is in-
creasing and φ̄i(0)= 0, where {I1+,I2+} is a partition of I+;

(ii) h(·,v) is (�,b, φ̃, ρ̃,θ)-quasiunivex at T , φ̃ is increasing, and φ̃(0)= 0;
(iii) ρ◦ + ρ̃� 0;

(c) (i) for each i ∈ I+, fi(·,T) is (�,b, φ̄i, ρ̄i,θ)-quasiunivex at T , φ̄i is increasing, and
φ̄i(0)= 0;

(ii) for each j ∈ J1+ 	= ∅,Hj is strictly (�,b, φ̃ j , ρ̃ j ,θ)-pseudounivex at T , for each j ∈
J2+, Hj is (�,b, φ̃ j , ρ̃ j ,θ)-quasiunivex at T , and for each j ∈ J+, φ̃ j is increasing

and φ̃ j(0)= 0, where {J1+, J2+} is a partition of J+;
(iii) ρ◦ +

∑
j∈J+ vj ρ̃ j � 0;

(d) (i) for each i∈ I1+, fi(·,T) is strictly (�,b, φ̄i, ρ̄i,θ)-pseudounivex at T , for each i∈
I2+, fi(·,T) is (�,b, φ̄i, ρ̄i,θ)-quasiunivex at T , and for each i∈ I+, φ̄i is increasing
and φ̄i(0)= 0, where {I1+,I2+} is a partition of I+;

(ii) for each j ∈ J1+, Hj is strictly (�,b, φ̃ j , ρ̃ j ,θ)-pseudounivex at T , for each j ∈ J2+,

Hj is (�,b, φ̃ j , ρ̃ j ,θ)-quasiunivex at T , and for each j ∈ J+, φ̃ j is increasing and

φ̃ j(0)= 0, where {J1+, J2+} is a partition of J+;
(iii) ρ◦ +

∑
j∈J+ vj ρ̃ j � 0;

(iv) I1+ 	= ∅, J1+ 	= ∅, or ρ◦ +
∑

j∈J+ vj ρ̃ j > 0.
Then ϕ(x) � ψ(T ,u,v).

Theorem 4.4 (strong duality). Let S∗ be a regular efficient solution of (P), let �(S,S∗;
DF(S∗))=∑n

k=1〈DkF(S∗),χSk − χS∗k 〉 for any differentiable function F :An→R and S∈An,
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and assume that any one of the sixteen sets of hypotheses specified in Theorems 4.1, 4.2, and
4.3 holds for all feasible solutions of (DII). Then there exist u∗ ∈U and v∗ ∈Rq

+ such that
(S∗,u∗,v∗) is an efficient solution of (DII) and φ(S∗)= ψ(S∗,u∗,v∗).

Proof. By Theorem 2.9, there exist u∗ ∈ U and v∗ ∈ Rq
+ such that (S∗,u∗,v∗) is a fea-

sible solution of (DII) and ϕ(S∗)= ψ(S∗,u∗,v∗). That (S∗,u∗,v∗) is efficient for (DII)
follows from (the corresponding part of) Theorems 4.1, 4.2, and 4.3. �

The proofs of the next two theorems are similar to that of Theorem 3.3.

Theorem 4.5 (strict converse duality). Let S∗ and �(S,S∗;·) be as in Theorem 4.4, let
(S̃, ũ, ṽ) be a feasible solution of (DII) such that f (S∗, S̃, ũ) � 0, and assume that either one of
the two sets of hypotheses specified in parts (a) and (b) of Theorem 4.1 is satisfied for the fea-
sible solution (S̃, ũ, ṽ) of (DII). Assume, furthermore, that f (·, S̃, ũ) is strictly (�,b, φ̄, ρ̄,θ)-
pseudounivex at S̃ and that φ̄(a) > 0⇒ a > 0. Then S̃= S∗, that is, S̃ is an efficient solution
of (P).

Theorem 4.6 (strict converse duality). Let S∗ and �(S,S∗;·) be as in Theorem 4.4, let
(S̃, ũ, ṽ) be a feasible solution of (DII) such that f (S∗, S̃, ũ) � 0, and assume that any one of
the four sets of hypotheses specified in parts (c)–(f) of Theorem 4.1 is satisfied for the feasible
solution (S̃, ũ, ṽ) of (DII). Assume, furthermore, that f (·, S̃, ũ) is (�,b, φ̄, ρ̄,θ)-quasiunivex
at S̃ and that φ̄(a) > 0⇒ a > 0. Then S̃= S∗, that is, S̃ is an efficient solution of (P).

5. Duality model III

In this section, we formulate a more general duality model for (P) with a more flexible
structure which will allow us to establish duality under various generalized (�,b,φ,ρ,θ)-
univexity hypotheses that can be imposed on certain combinations of the problem func-
tions. This will be accomplished by utilizing a partitioning scheme which was originally
proposed in [2] for the purpose of constructing generalized dual problems for nonlin-
ear programs with point-functions. Prior to formulating this duality model, we need to
introduce some additional notation.

Let {J0, J1, . . . , Jm} be a partition of the index set q; thus Jr ⊂ q for each r ∈ {0,1, . . . ,m},
Jr ∩ Js = ∅ for each r,s ∈ {0,1, . . . ,m} with r 	= s, and ∪m

r=0Jr = q. In addition, we will
make use of the real-valued functions Πi(·,T ,v), Π(·,T ,u,v), and Λt(·,v) defined, for
fixed T , u, and v, on An by

Πi(R,T ,v)=Gi(T)

[
Fi(R) +

∑
j∈J0

vjHj(R)

]
− [Fi(T) +Λ0(T ,v)

]
Gi(R), i∈ p,

Π(R,T ,u,v)=
p∑
i=1

ui

{
Gi(T)

[
Fi(R) +

∑
j∈J0

vjHj(R)

]
− [Fi(T) +Λ0(T ,v)

]
Gi(R)

}
,

Λt(R,v)=
∑
j∈Jt

v jHj(R), t ∈m∪{0}.

(5.1)
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Consider the following problem:
(DIII)

Maximize
(F1(T) +

∑
j∈J0 vjHj(T)

G1(T)
, . . . ,

Fp(T) +
∑

j∈J0 vjHj(T)

Gp(T)

)
(5.2)

subject to

�

(
S,T ;

p∑
i=1

ui

{
Gi(T)

[
DFi(T) +

∑
j∈J0

vjDHj(T)

]
− [Fi(T) +Λ0(T ,v)

]
DGi(T)

}

+
∑
j∈q\J0

vjDHj(T)

)
� 0 ∀S∈An,

(5.3)

∑
j∈Jt

v jHj(T) � 0, t ∈m, (5.4)

T ∈An, u∈U0, v ∈Rq
+, (5.5)

where �(S,T ;·) : Ln1(X ,A,µ)→R is a sublinear function.
We next show that (DIII) is a dual problem for (P) by proving weak and strong duality

theorems.

Theorem 5.1 (weak duality). Let S and (T ,u,v), with u > 0, be arbitrary feasible solu-
tions of (P) and (DIII), respectively, and assume that any one of the following four sets of
hypotheses is satisfied:

(a) (i) Π(·,T ,u,v) is (�,b, φ̄, ρ̄,θ) -pseudounivex at T , and φ̄(a) � 0⇒ a� 0;
(ii) for each t ∈m, Λt(·,v) is (�,b, φ̃t, ρ̃t,θ)-quasiunivex at T , φ̃t is increasing, and

φ̃t(0)= 0;
(iii) ρ̄+

∑m
t=1 ρ̃t � 0;

(b) (i) Π(·,T ,u,v) is prestrictly (�,b, φ̄, ρ̄,θ)-quasiunivex at T , and φ̄(a) � 0⇒ a� 0;
(ii) for each t ∈m, Λt(·,v) is strictly (�,b, φ̃t, ρ̃t,θ)-pseudounivex at T , φ̃t is increas-

ing, and φ̃t(0)= 0;
(iii) ρ̄+

∑m
t=1 ρ̃t � 0;

(c) (i) Π(·,T ,u,v) is prestrictly (�,b, φ̄, ρ̄,θ)-quasiunivex at T , and φ̄(a) � 0⇒ a� 0;
(ii) for each t ∈m, Λt(·,v) is (�,b, φ̃t, ρ̃t,θ)-quasiunivex at T , φ̃t is increasing, and

φ̃t(0)= 0;
(iii) ρ̄+

∑m
t=1 ρ̃t > 0;

(d) (i) Π(·,T ,u,v) is prestrictly (�,b, φ̄, ρ̄,θ)-quasiunivex at T , and φ̄(a) � 0⇒ a� 0;
(ii) for each t ∈m1, Λt(·,v) is (�,b, φ̃t, ρ̃t,θ)-quasiunivex at T , φ̃t is increasing, and

φ̃t(0)= 0, for each t ∈m2 	= ∅, Λt(·,v) is strictly (�,b, φ̃t, ρ̃t,θ)-pseudounivex at

T , φ̃t is increasing, and φ̃t(0)= 0, where {m1, m2} is a partition of m;
(iii) ρ̄+

∑m
t=1 ρ̃t � 0.

Then ϕ(S) � ω(T ,u,v), where ω = (ω1, . . . ,ωp) is the objective function of (DIII).
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Proof. (a) From the sublinearity of �(S,T ;·) and (5.3) it follows that

�

(
S,T ;b(S,T)

p∑
i=1

ui

{
Gi(T)

[
DFi(T) +

∑
j∈J0

vjHj(T)

]
− [Fi(T) +Λ0(T ,v)

]
DGi(T)

})

+ �

(
S,T ;b(S,T)

m∑
t=1

∑
j∈Jt

v jDHj(T)

)
� 0.

(5.6)

Since S∈ F and v � 0, it is clear from (5.4) that for each t ∈m,

Λt(S,v)=
∑
j∈Jt

v jHj(S) �
∑
j∈Jt

v jHj(T)=Λt(T ,v), (5.7)

and so using the properties of φ̃t, we get φt
(
Λt(S,v)−Λt(T ,v)

)
� 0, which in view of (ii)

implies that for each t ∈m,

�

(
S,T ;b(S,T)

∑
j∈Jt

v jDHj(T)

)
�−ρ̃td2(θ(S,T)

)
. (5.8)

Adding these inequalities and using the sublinearity of �(S,T ;·), we obtain

�

(
S,T ;b(S,T)

m∑
t=1

∑
j∈Jt

v jDHj(T)

)
�−

m∑
t=1

ρ̃td
2(θ(S,T)

)
. (5.9)

From (5.6) and (5.9) we deduce that

�

(
S,T ;b(S,T)

p∑
i=1

ui

{
Gi(T)

[
DFi(T) +

∑
j∈J0

vjHj(T)

]
− [Fi(T) +Λ0(T ,v)

]
DGi(T)

})

�
m∑
t=1

ρ̃td
2(θ(S,T)

)
�−ρ̄d2(θ(S,T)

)
,

(5.10)

where the second inequality follows from (iii). Because of (i), this inequality implies that
φ̄(Π(S,T ,u,v)−Π(T ,T ,u,v)) � 0. But φ̄(a) ≥ 0 ⇒ a ≥ 0, and so we get Π(S,T ,u,v) �
Π(T ,T ,u,v) = 0. Inasmuch as S ∈ F, u > 0, v � 0, and Gi(T) > 0, i ∈ p, this inequality
yields

p∑
i=1

ui
{
Gi(T)Fi(S)− [Fi(T) +Λ0(T ,v)

]
Gi(S)

}
� 0. (5.11)

Since u > 0, this inequality implies that(
G1(T)F1(S)− [F1(T) +Λ0(T ,v)

]
G1(S), . . . ,Gp(T)Fp(S)

− [Fp(T) +Λ0(T ,v)
]
Gp(S)

)
� (0, . . . ,0),

(5.12)
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which in turn implies that

ϕ(S)=
(
F1(S)
G1(S)

, . . . ,
Fp(S)

Gp(S)

)
�

(
F1(T) +Λ0(T ,v)

G1(T)
, . . . ,

Fp(T) +Λ0(T ,v)

Gp(T)

)
= ω(T ,u,v).

(5.13)

(b)–(d) The proofs are similar to that of part (a). �

Theorem 5.2 (weak duality). Let S and (T ,u,v) be arbitrary feasible solutions of (P) and
(DIII), respectively, and assume that any one of the following six sets of hypotheses is satis-
fied:

(a) (i) for each i∈ I+ ≡ I+(u), Πi(·,T ,v, ) is strictly (�,b, φ̄i, ρ̄i,θ)-pseudounivex at T , φ̄i
is increasing, and φ̄i(0)= 0;

(ii) for each t ∈m, Λt(·,v) is (�,b, φ̃t, ρ̃t,θ)-quasiunivex at T , φ̃t is increasing, and
φ̃t(0)= 0;

(iii)
∑

i∈I+ uiρ̄i +
∑m

t=1 ρ̃t � 0;

(b) (i) for each i ∈ I+, Πi(·,T ,v) is prestrictly (�,b, φ̄i, ρ̄i,θ)-quasiunivex at T , φ̄i is in-
creasing, and φ̄i(0)= 0;

(ii) for each t ∈m, Λt(·,v) is strictly (�,b, φ̃t, ρ̃t,θ)-pseudounivex at T , φ̃t is increas-
ing, and φ̃t(0)= 0;

(iii)
∑

i∈I+ uiρ̄i +
∑m

t=1 ρ̃t � 0;

(c) (i) for each i ∈ I+, Πi(·,T ,v) is prestrictly (�,b, φ̄i, ρ̄i,θ)-quasiunivex at T , φ̄i is in-
creasing, and φ̄i(0)= 0;

(ii) for each t ∈m, Λt(·,v) is (�,b, φ̃t, ρ̃t,θ)-quasiunivex at T , φ̃t is increasing, and
φ̃t(0)= 0;

(iii)
∑

i∈I+ uiρ̄i +
∑m

t=1 ρ̃t > 0;

(d) (i) for each i ∈ I1+ 	= ∅, Πi(·,T ,v) is strictly (�,b, φ̄i, ρ̄i,θ)-pseudounivex at T , for
each i∈ I2+, Πi(·,T ,v) is prestrictly (�,b, φ̄i, ρ̄i,θ)-quasiunivex at T , and for each
i∈ I+, φ̄i is increasing and φ̄i(0)= 0, where {I1+,I2+} is a partition of I+;

(ii) for each t ∈m, Λt(·,v) is (�,b, φ̃t, ρ̃t,θ)-quasiunivex at T , φ̃t is increasing, and
φ̃t(0)= 0;

(iii)
∑

i∈I+ uiρ̄i +
∑m

t=1 ρ̃t � 0;

(e) (i) for each i ∈ I+, Πi(·,T ,v) is prestrictly (�,b, φ̄i, ρ̄i,θ)-quasiunivex at T , φ̄i is in-
creasing, and φ̄i(0)= 0;

(ii) for each t ∈m1 	= ∅, Λt(·,v) is strictly (�,b, φ̃t , ρ̃t,θ)-pseudounivex at T , φ̃t is

increasing, and φ̃t(0) = 0, and for each t ∈m2, Λt(·,v) is (�,b, φ̃t, ρ̃t,θ)-quasi-

univex at T , and for each t ∈m, φ̃t is increasing and φ̃t(0)= 0, where {m1, m2}
is a partition of m;

(iii)
∑

i∈I+ uiρ̄i +
∑m

t=1 ρ̃t � 0;

(f) (i) for each i ∈ I1+, Πi(·,T ,v) is strictly (�,b, φ̄i, ρ̄i,θ)-pseudounivex at T , for each
i∈ I2+, Πi(·,T ,v) is prestrictly (�,b, φ̄i, ρ̄i,θ)-quasiunivex at T , and for each i∈
I+, φ̄i is increasing and φ̄i(0)= 0, where {I1+,I2+} is a partition of I+;
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(ii) for each t ∈ m1, Λt(·,v) is strictly (�,b, φ̃t , ρ̃t,θ)-pseudounivex at T , for each

t ∈m2, Λt(·,v) is (�,b, φ̃t, ρ̃t,θ)-quasiunivex at T , and for each t ∈m, φ̃t is in-

creasing and φ̃t(0)= 0, where {m1,m2} is a partition of m;
(iii)

∑
i∈I+ uiρ̄i +

∑m
t=1 ρ̃t � 0;

(iv) I1+ 	= ∅, m1 	= ∅,
∑

i∈I+ uiρ̄i +
∑m

t=1 ρ̃t > 0.
Then ϕ(S) � ω(T ,u,v).

Proof. (a) Suppose to the contrary that ϕ(S) � ω(T ,u,v). This implies that for each i∈ p,
Gi(T)Fi(S)− [Fi(T) +Λ0(T ,v)]Gi(S) � 0, with strict inequality holding for at least one
index � ∈ p. Using these inequalities along with the primal feasibility of S and nonnega-
tivity of v, we see that

Πi(S,T ,v)=Gi(T)

[
Fi(S) +

∑
j∈J0

vjHj(S)

]
− [Fi(T) +Λ0(T ,v)

]
Gi(S)

�Gi(T)Fi(S)− [Fi(T) +Λ0(T ,v)
]
Gi(S) � 0

=Πi(T ,T ,v).

(5.14)

It follows from the properties of φ̄i that for each i∈ p, φ̄i(Πi(S,T ,u,v)−Πi(T ,T ,u,v)) �
0, which by (i) implies that for each i∈ p,

�

(
S,T ;b(S,T)

{
Gi(T)

[
DFi(T) +

∑
j∈J0

vjDHj(T)

]

− [Fi(T) +Λ0(T ,v)
]
DGi(T)

})
<−ρ̄id2(θ(S,T)

)
.

(5.15)

Because u� 0, u 	= 0, and �(S,T ;·) is sublinear, these inequalities yield

�

(
S,T ;b(S,T)

p∑
i=1

ui

{
Gi(T)

[
DFi(T) +

∑
j∈J0

vjDHj(T)

]

− [Fi(T) +Λ0(T ,v)
]
DGi(T)

})
<−

p∑
i=1

uiρ̄id
2(θ(S,T)

)
.

(5.16)

Comparing this inequality with (5.6), we observe that

�

(
S,T ;

m∑
t=1

∑
j∈Jt

v jDHj(T)

)
>

p∑
i=1

uiρ̄id
2(θ(S,T)) �−

m∑
t=1

ρ̃td
2(θ(S,T)

)
, (5.17)

where the second inequality follows from (iii). Obviously, this inequality contradicts
(5.9), which is valid for the present case because of (ii). Hence we must have ϕ(S) �
ω(T ,u,v).

(b)–(f) The proofs are similar to that of part (a). �
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Theorem 5.3 (strong duality). Let S∗ be a regular efficient solution of (P), let �(S,S∗;
DF(S∗))=∑n

k=1〈DkF(S∗),χSk − χS∗k 〉 for any differentiable function F :An→R and S∈An,
and assume that any one of the ten sets of hypotheses specified in Theorems 5.1 and 5.2
holds for all feasible solutions of (DIII). Then there exist u∗ ∈ U and v∗ ∈ Rq

+ such that
(S∗,u∗,v∗) is an efficient solution of (DIII) and ϕ(S∗)= ω(S∗,u∗,v∗).

Proof. By Theorem 2.9, there exist u∗ ∈U and v̄ ∈Rq
+ such that

〈 p∑
i=1

u∗i
[
Gi(S∗)DkFi(S∗)−Fi(S∗)DkGi(S∗)

]
+

q∑
j=1

v̄ jDkHj(S∗),χSk − χS∗k
〉

� 0 ∀Sk ∈A, k ∈ n,

(5.18)

v̄ jHj(S∗)= 0, j ∈ q. (5.19)

Now if we let v∗j = v̄ j /Gi(S∗) for each j ∈ J0, v∗j = v̄ j for each j ∈ q \ J0, and observe that
Λ0(S∗,v∗)= 0, then (5.18) and (5.19) can be rewritten as follows:

〈 p∑
i=1

u∗i

{
Gi(S∗)

[
DkFi(S∗) +

∑
j∈J0

v∗j DkHj(S∗)

]
− [Fi(S∗) +Λ0(S∗,v∗)

]
DkGi(S∗)

}

+
∑
j∈q\J0

v∗j DkHj(S∗),χSk − χS∗k
〉

� 0 ∀Sk ∈A, k ∈ n,

(5.20)∑
j∈Jt

v∗j Hj(S∗)= 0, t ∈m. (5.21)

From (5.20) and (5.21) it is clear that (S∗,u∗,v∗) is a feasible solution of (DIII). Proceed-
ing as in the proof of Theorem 3.3, it can easily be verified that it is an efficient solution
of (DIII). �

We next show that certain modifications in Theorem 5.1 lead to a number of strict
converse duality results for (P) and (DIII).

Theorem 5.4 (strict converse duality). Let S∗ and � be as in Theorem 5.3, let (S̃, ũ, ṽ) be
a feasible solution of (DIII) such that

p∑
i=1

ũi
{
Gi(S̃)Fi(S∗)− [Fi(S̃) +Λ0(S̃, ṽ)

]
Gi(S∗)

}
� 0, (5.22)

and assume that any one of the four sets of hypotheses specified in Theorem 5.1 is satisfied
for the feasible solution (S̃, ũ, ṽ) of (DIII). Assume furthermore that any one of the following
corresponding conditions holds:

(a) Π(·, S̃, ũ, ṽ) is strictly (�,b, φ̄, ρ̄,θ)-pseudounivex at S̃, and φ̄(a) > 0⇒ a > 0;
(b) Π(·, S̃, ũ, ṽ) is (�,b, φ̄, ρ̄,θ)-quasiunivex at S̃, and φ̄(a) > 0⇒ a > 0;
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(c) Π(·, S̃, ũ, ṽ) is (�,b, φ̄, ρ̄,θ)-quasiunivex at S̃, and φ̄(a) > 0⇒ a > 0;
(d) Π(·, S̃, ũ, ṽ) is (�,b, φ̄, ρ̄,θ)-quasiunivex at S̃, and φ̄(a) > 0⇒ a > 0.

Then S̃= S∗.

Proof. The proof is similar to that of Theorem 3.3. �

Evidently, (DIII) contains a number of important special cases which can easily be
identified by appropriate choices of the partitioning sets J0, J1, . . . , Jm, and the sublinear
function �(S,T ;·). We conclude this section by briefly looking at a few of these special
cases. In each case, we specify the required conditions for duality by specializing part (a)
of Theorem 5.2.

If we let J0 = q, then (DIII) takes the following form:
(DIIIa)

Maximize
(F1(T) +

∑q
j=1 vjHj(T)

G1(T)
, . . . ,

Fp(T) +
∑q

j=1 vjHj(T)

Gp(T)

)
(5.23)

subject to (5.5) and

�

(
S,T ;

p∑
i=1

ui

{
Gi(T)

[
DFi(T) +

q∑
j=1

vjDHj(T)

]

−
[
Fi(T) +

q∑
j=1

vjHj(T)

]
DGi(T)

})
� 0 ∀S∈An.

(5.24)

(DIIIa) is dual to (P) if for each i∈ I+, the function

R−→Gi(T)

[
Fi(R) +

q∑
j=1

vjHj(R)

]
−
[
Fi(T) +

q∑
j=1

vjHj(T)

]
Gi(R) (5.25)

is strictly (�,b, φ̄i, ρ̄i,θ)-pseudounivex at T , φ̄i is increasing, φ̄i(0)= 0, and
∑

i∈I+ uiρ̄i � 0.
If we let J1 = q, then (DIII) becomes

(DIIIb)

Maximize
(
F1(T)
G1(T)

, . . . ,
Fp(T)

Gp(T)

)
(5.26)

subject to (5.5) and

�

(
S,T ;

p∑
i=1

ui
[
Gi(T)DFi(T)−Fi(T)DGi(T)

]
+

q∑
j=1

vjDHj(T)

)
� 0 ∀S∈An,

q∑
j=1

vjHj(T) � 0.

(5.27)
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(DIIIb) is dual to (P) if for each i ∈ I+, the function R→ Gi(T)Fi(R)− Fi(T)Gi(R) is
strictly (�,b, φ̄i, ρ̄i,θ)-pseudounivex at T , φ̄i is increasing, φ̄i(0) = 0, the function R→∑q

j=1 vjHj(R) is (�,b, φ̃, ρ̃,θ)-quasiunivex at T , φ̃ is increasing, φ̃(0)= 0, and
∑

i∈I+ uiρ̄i +
ρ̃� 0.

If we choose J0 =∅, then we obtain the following special case of (DIII):
(DIIIc)

Maximize
(
F1(T)
G1(T)

, . . . ,
Fp(T)

Gp(T)

)
(5.28)

subject to (5.5) and

�

(
S,T ;

p∑
i=1

ui
[
Gi(T)DFi(T)−Fi(T)DGi(T)

]
+

q∑
j=1

vjDHj(T)

)
� 0 ∀S∈An,

∑
j∈Jt

v jHj(T) � 0, t ∈m.
(5.29)

(DIIIc) is dual to (P) if for each i ∈ I+, the function R→ Gi(T)Fi(R)− Fi(T)Gi(R)
is strictly (�,b, φ̄i, ρ̄i,θ)-pseudounivex at T , φ̄i is increasing, φ̄i(0) = 0, for each t ∈ m,
Λt(·,v) is (�,b, φ̃t, ρ̃t,θ)-quasiunivex at T , φ̃t is increasing, φ̃t(0) = 0, and

∑
i∈I+ uiρ̄i +∑m

t=1 ρ̃t � 0.
If we set m= q, Jt = {t}, t ∈ q, then (DIII) reduces to the following problem:

(DIIId)

Maximize
(
F1(T)
G1(T)

, . . . ,
Fp(T)

Gp(T)

)
(5.30)

subject to (5.5) and

�

(
S,T ;

p∑
i=1

ui
[
Gi(T)DFi(T)−Fi(T)DGi(T)

]
+

q∑
j=1

vjDHj(T)

)
� 0 ∀S∈An,

vjHj(T) � 0, j ∈ q.
(5.31)

(DIIId) is dual to (P) if for each i∈ I+, the function R→ Gi(T)Fi(R)− Fi(T)Gi(R) is
strictly (�,b, φ̄i, ρ̄i,θ)-pseudounivex at T , φ̄i is increasing, φ̄i(0)= 0, for each j ∈ q, R→
vjHj(R) is (�,b, φ̃ j , ρ̃ j ,θ)-quasiunivex at T , φ̃ j is increasing, φ̃ j(0) = 0, and

∑
i∈I+ uiρ̄i +∑q

j=1 ρ̃ j � 0.
If we let Jt =∅, t = 2,3, . . . ,m, then we get the following special case of (DIII):

(DIIIe)

Maximize
(F1(T) +

∑
j∈J0 vjHj(T)

G1(T)
, . . . ,

Fp(T) +
∑

j∈J0 vjHj(T)

Gp(T)

)
(5.32)
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subject to (5.5) and

�

(
S,T ;

p∑
i=1

ui

{
Gi(T)

[
DFi(T) +

∑
j∈J0

vjDHj(T)

]

− [Fi(T) +Λ0(T ,v)
]
DGi(T)

}
+
∑
j∈J1

vjDHj(T)

)
� 0 ∀S∈An,

(5.33)

∑
j∈J1

vjHj(T) � 0. (5.34)

(DIIIe) is dual to (P) if for each i∈ I+, the function

R−→Gi(T)

[
Fi(R) +

∑
j∈J0

vjHj(R)

]
−
[
Fi(T) +

∑
j∈J0

vjHj(T)

]
Gi(R) (5.35)

is strictly (�,b, φ̄i, ρ̄i,θ)-pseudounivex at T , φ̄i is increasing, φ̄i(0)= 0, the function R→∑
j∈J1 vjHj(R) is (�,b, φ̃, ρ̃,θ)-quasiunivex at T , φ̃ is increasing, φ̃(0)= 0, and

∑
i∈I+ uiρ̄i +

ρ̃� 0.
In a similar manner, one can obtain a vast number of duality theorems for (P) by

specializing the other nine sets of conditions for (DIIIa)–(DIIIe) and other special cases
of (DIII).

6. Duality model IV

In this section, we present another general duality model for (P) that is different from
(DIII) in that here in constructing the constraints we not only use a partition of the
index set q, but also a partition of the set p. A parametric point-function version of this
dual problem was considered earlier in [4].

Let {I0,I1, . . . ,Ik} be a partition of p such that K ≡ {0,1, . . . ,k} ⊂M ≡ {0,1, . . . ,m}, and
let the function Ωt(·,S,u,v) :An→R be defined, for fixed S, u, and v, by

Ωt(T ,S,u,v)=
∑
i∈It

ui
[
Gi(S)Fi(T)−Fi(S)Gi(T)

]
+
∑
j∈Jt

v jHj(T), t ∈ K. (6.1)

Consider the following problem:
(DIV)

Maximize
(
F1(T)
G1(T)

, . . . ,
Fp(T)

Gp(T)

)
(6.2)
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subject to

�

(
S,T ;

p∑
i=1

ui
[
Gi(T)DFi(T)−Fi(T)DGi(T)

]
+

q∑
j=1

vjDHj(T)

)
� 0 ∀S∈An, (6.3)

∑
j∈Jt

v jHj(T) � 0, t ∈M, (6.4)

T ∈An, u∈U , v ∈Rq
+, (6.5)

where �(S,T ;·) : Ln1(X ,A,µ)→R is a sublinear function.
The next two theorems show that (DIV) is a dual problem for (P).

Theorem 6.1 (weak duality). Let S and (T ,u,v) be arbitrary feasible solutions of (P) and
(DIV), respectively, and assume that any one of the following six sets of hypotheses is satis-
fied:

(a) (i) for each t ∈ K , Ωt(·,T ,u,v) is strictly (�,b,φt,ρt,θ)-pseudounivex at T , φt is
increasing, and φt(0)= 0;

(ii) for each t ∈M \K , Λt(·,v) is (�,b,φt,ρt,θ)-quasiunivex at T , φt is increasing,
and φt(0)= 0;

(iii)
∑

t∈M ρt � 0;

(b) (i) for each t ∈ K , Ωt(·,T ,u,v) is prestrictly (�,b,φt ,ρt,θ)-quasiunivex at T , φt is
increasing, and φt(0)= 0;

(ii) for each t ∈M \K , Λt(·,v) is strictly (�,b,φt,ρt,θ)-pseudounivex at T , φt is in-
creasing, and φt(0)= 0;

(iii)
∑

t∈M ρt � 0;

(c) (i) for each t ∈ K , Ωt(·,T ,u,v) is prestrictly (�,b,φt ,ρt,θ)-quasiunivex at T , φt is
increasing, and φt(0)= 0;

(ii) for each t ∈M \K , Λt(·,v) is (�,b,φt,ρt,θ)-quasiunivex at T , φt is increasing,
and φt(0)= 0;

(iii)
∑

t∈M ρt > 0;

(d) (i) for each t ∈ K1 	= ∅, Ωt(·,T ,u,v) is strictly (�,b, φ̄t, ρ̄t,θ)-pseudounivex at T ,
for each t ∈ K2, Ωt(·,T ,u,v) is prestrictly (�,b, φ̄t , ρ̄t,θ)-quasiunivex at T , and
for each t ∈ K , φ̄t is increasing and φ̄t(0)= 0, where {K1,K2} is a partition of K ;

(ii) for each t ∈M \K , Λt(·,v) is (�,b,φt,ρt,θ)-quasiunivex at T , φt is increasing,
and φt(0)= 0;

(iii)
∑

t∈M ρt � 0;

(e) (i) for each t ∈ K , Ωt(·,T ,u,v) is prestrictly (�,b,φt ,ρt,θ)-quasiunivex at T , φt is
increasing, and φt(0)= 0;

(ii) for each t ∈ (M \K)1 	= ∅, Λt(·,v) is strictly (�,b, φ̃t, ρ̃t,θ)-pseudounivex at T ,
for each t ∈ (M \K)2,Λt(·,v) is (�,b, φ̃t, ρ̃t,θ)-quasiunivex atT , and for each t ∈
M \K , φ̃t is increasing and φ̃t(0)= 0, where {(M \K)1, (M \K)2} is a partition
of M \K ;

(iii)
∑

t∈M ρt � 0;
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(f) (i) for each t ∈ K1, Ωt(·,T ,u,v) is strictly (�,b, φ̄t, ρ̄t,θ)-pseudounivex at T , for each
t ∈ K2, Ωt(·,T ,u,v) is prestrictly (�,b, φ̄t, ρ̄t,θ)-quasiunivex at T , and for each
t ∈ K , φ̄t is increasing and φ̄t(0)= 0, where {K1,K2} is a partition of K ;

(ii) for each t ∈ (M \K)1, Λt(·,v) is strictly (�,b, φ̃t, ρ̃t,θ)-pseudounivex at T , φ̃t is
increasing, and φ̃t(0) = 0, and for each t ∈ (M \K)2, Λt(·,v) is (�,b, φ̃t, ρ̃t,θ)-
quasiunivex at T , and for each t ∈M \K , φ̃t is increasing and φ̃t(0) = 0, where
{(M \K)1,(M \K)2} is a partition of M \K ;

(iii)
∑

t∈M ρt � 0;
(iv) K1 	= ∅, (M \K)1 	= ∅, or

∑
t∈M ρt > 0.

Then ϕ(S) � δ(T ,u,v), where δ = (δ1, . . . ,δp) is the objective function of (DIV).

Proof. (a) Suppose to the contrary that ϕ(S) � δ(T ,u,v). This implies that Gi(T)Fi(S)−
Fi(T)Gi(S) � 0 for each i ∈ p, and G�(T)F�(S)− F�(T)G�(S) < 0 for some � ∈ p. From
these inequalities, nonnegativity of v, primal feasibility of S, and (6.4) we deduce that
Ωt(S,T ,u,v) �Ωt(T ,T ,u,v) for each t ∈ K , with strict inequality holding for at least one
t ∈ K since u > 0. It follows from the properties of φ̄t that for each t ∈ K ,φt(Ωt(S,T ,u,v)−
Ωt(T ,T ,u,v)) � 0, which in view of (i) implies that

�

(
S,T ;b(S,T)

{∑
i∈It

ui
[
Gi(T)DFi(T)−Fi(T)DGi(T)

]
+
∑
j∈Jt

v jDHj(T)

})
<−ρtd2(θ(S,T)

)
.

(6.6)

Adding these inequalities and using the sublinearity of �(S,T ;·), we obtain

�

(
S,T ;b(S,T)

{ p∑
i=1

ui
[
Gi(T)DFi(T)−Fi(T)DGi(T)

]
+
∑
t∈K

∑
j∈Jt

v jDHj(T)

})
<−

∑
t∈K

ρtd
2(θ(S,T)

)
.

(6.7)

Since for each t ∈M \K , Λt(S,v) � 0 �Λt(T ,v), it follows from the properties of φt that
φt(Λt(S,v)−Λt(T ,v)) � 0, which by (ii) implies that

�

(
S,T ;b(S,T)

∑
j∈Jt

v jDHj(T)

)
�−ρtd2(θ(S,T)

)
. (6.8)

Adding these inequalities and using the sublinearity of �(S,T ;·), we obtain

�

(
S,T ;b(S,T)

∑
t∈M\K

∑
j∈Jt

v jDHj(T)

)
�−

∑
t∈M\K

ρtd
2(θ(S,T)

)
. (6.9)
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Now combining (6.7) and (6.9), and using the sublinearity of �(S,T ;·) and (iii), we get

�

(
S,T ;b(S,T)

p∑
i=1

ui
[
Gi(T)DFi(T)−Fi(T)DGi(T)

]
+

q∑
j=1

vjDHj(T)

)
<−

∑
t∈M

ρtd
2(θ(S,T)

)
� 0,

(6.10)

which contradicts (6.3). Therefore, ϕ(S) � δ(T ,u,v).
(b)–(f) The proofs are similar to that of part (a). �

Theorem 6.2 (strong duality). Let S∗ be a regular efficient solution of (P), let �(S,S∗;
DF(S∗)) =∑n

k=1〈DkF(S∗),χSk − χS∗k 〉 for any differentiable function F : An → R and S ∈
An, and assume that any one of the six sets of hypotheses specified in Theorem 6.1 holds for
all feasible solutions of (DIV). Then there exist u∗ ∈U and v∗ ∈Rq

+ such that (S∗,u∗,v∗)
is an efficient solution of (DIV) and ϕ(S∗)= δ(S∗,u∗,v∗).

Proof. The proof is similar to that of Theorem 4.4. �

Various special cases of (DIV) can easily be generated by appropriate choices of the
partitioning sets I0,I1, . . . ,Ik, J0, and �(S,T ;·).

References

[1] H. W. Corley, Optimization theory for n-set functions, J. Math. Anal. Appl. 127 (1987), no. 1,
193–205.

[2] B. Mond and T. Weir, Generalized concavity and duality, Generalized Concavity in Optimization
and Economics (S. Schaible and W. T. Ziemba, eds.), Academic Press, New York, 1981, pp.
263–279.

[3] R. J. T. Morris, Optimal constrained selection of a measurable subset, J. Math. Anal. Appl. 70
(1979), no. 2, 546–562.

[4] X. M. Yang, Generalized convex duality for multiobjective fractional programs, Opsearch 31
(1994), no. 2, 155–163.

[5] G. J. Zalmai, Efficiency conditions and duality models for multiobjective fractional subset pro-
gramming problems with generalized (�,α,ρ,θ)-V-convex functions, Comput. Math. Appl.
43 (2002), no. 12, 1489–1520.

[6] , Generalized (�,b,φ,ρ,θ)-univex n-set functions and global semiparametric sufficient
efficiency conditions in multiobjective fractional subset programming, to appear in Int. J. Math.
Math. Sci.

G. J. Zalmai: Department of Mathematics and Computer Science, Northern Michigan University,
Marquette, MI 49855, USA

E-mail address: gzalmai@nmu.edu

mailto:gzalmai@nmu.edu

