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This paper deals with discontinuities analysis in the temperature, displacement, and stress
fields of a thick plate whose lower and upper surfaces are traction-free and subjected to
a given axisymmetric temperature distribution. The analysis is carried out under three
thermoelastic theories. Potential functions together with Laplace and Hankel transform
techniques are used to derive the solution in the transformed domain. Exact expressions
for the magnitude of discontinuities are computed by using an exact method developed
by Boley (1962). It is found that there exist two coupled waves, one of which is elastic and
the other is thermal, both propagating with finite speeds with exponential attenuation,
and a third which is called shear wave, propagating with constant speed but with no
exponential attenuation. The Hankel transforms are inverted analytically. The inversion
of the Laplace transforms is carried out using the inversion formula of the transform
together with Fourier expansion techniques. Numerical results are presented graphically
along with a comparison of the three theories of thermoelasticity.

1. Introduction

Much attention has been devoted to the generalization of the equations of coupled ther-
moelasticity due to Biot [1]. This is mainly due to the fact that the heat equation of this
theory is parabolic, and hence automatically predicts infinite speed of propagation for
heat waves. Clearly, this contradicts physical observations that the maximum wave speed
cannot exceed that of light in vacuum. During the last three decades, nonclassical theo-
ries have been developed to remove this paradox. Lord and Shulman [13] introduced the
theory of generalized thermoelasticity with one relaxation time. This theory is based on
a new law of heat conduction to replace Fourier’s law. The heat equation is replaced by
a hyperbolic one which ensures finite speeds of propagation for heat and elastic waves.
Green and Lindsay [8] have developed a temperature-rate-dependent thermoelasticity by
including temperature rate among the constitutive variables, which does not violate the
classical Fourier laws of heat conduction when the body under consideration has a center
of symmetry. This theory also predicts a finite speed of heat propagation. Both general-
ized theories consider heat propagation as a wave phenomenon rather than a diffusion
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phenomenon. In view of the exponential evidence available in favor of finiteness of heat
propagation speed, generalized thermoelasticity theories are supposed to be more realis-
tic than the conventional theory in dealing with practical problems involving very large
heat fluxes and/or short time intervals, like those occurring in laser units and energy
channels.

Furukawa et al. [6, 7] applied the theory of thermoelasticity to an infinite cylindrical
body. Jordan and Puri in [12] used Boley’s method [2] to find the magnitude of discon-
tinuities. Ignaczak in [10, 11] studied a strong discontinuity wave and obtained a de-
composition theorem. Chandrasekharaiah and Srinath in [4] studied the propagation of
discontinuities within the context of thermoelasticity without energy dissipation. These
authors employed the Laplace transform to obtain small-time approximations for the
field functions. For earlier related research on axisymmetric thermoelastic problems us-
ing the Lord-Shulman model, see the papers of Rossikhin et al. [18] and Orisamolu et al.
[16].

The aim of this paper is to investigate the propagation of discontinuities not only in
the stress but also in the temperature and displacement fields. Exact expressions for the
magnitude in these quantities are also given. In addition, numerical methods are used to
invert the integral transforms and to evaluate the improper integrals involved to obtain
the solution in the physical domain. Based on the analysis of discontinuities and numer-
ical results, a comparison of the three theories of thermoelasticity is given. The results
given here are also compared with those of other investigators.

2. Formulation of the problem

We consider a homogeneous isotropic thermoelastic thick plate of height 2h and of infi-
nite extent. The conditions of the problem are assumed to be axisymmetric. We will take
the axis of symmetry to be the z-axis and the origin of the system of coordinates at the
midpoint between the lower and upper surfaces of the plate. By denoting the cylindrical
polar coordinates as (r,φ,z), we study the problem in the region Ω defined by

Ω= {(r,ϕ,z) : 0≤ r ≤∞, 0≤ φ≤ 2π,−h < z < h}. (2.1)

The stress-strain relations have the form

σrr = 2µ
∂u

∂r
+ λe− γ

(
T −T0 + ν

∂T

∂t

)
,

σφφ = 2µ
u

r
+ λe− γ

(
T −T0 + ν

∂T

∂t

)
,

σzz = 2µ
∂w

∂z
+ λe− γ

(
T −T0 + ν

∂T

∂t

)
,

σrz = µ
(
∂u

∂z
+
∂w

∂r

)
, σrφ = σzφ = 0,

(2.2)

where λ, µ are Lamé’s constants, ν is a relaxation time, γ is a material constant given
by γ = (3λ + 2µ)αt, αt is the coefficient of linear thermal expansion, T0 is a reference
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temperature chosen such that |(T −T0)/T0|� 1, and e is the dilatation given by

e = ∂u

∂r
+
u

r
+
∂w

∂z
. (2.3)

The equations of motion can be written as

ρ
∂2u

∂t2
= µ∇2u− µ

r2
u+ (λ+µ)

∂e

∂r
− γ

(
1 + ν

∂

∂t

)
∂T

∂r
,

ρ
∂2w

∂t2
= µ∇2w+ (λ+µ)

∂e

∂z
− γ

(
1 + ν

∂

∂t

)
∂T

∂z
,

(2.4)

where ρ is the density, and the Laplacian operator∇2 is given by

∇2 = ∂2

∂r2
+

1
r

∂

∂r
+
∂2

∂z2
. (2.5)

The generalized equation of heat conduction has the form

k∇2T = ρCE
(
∂

∂t
+ τ0

∂2

∂t2

)
T +T0γ

(
∂

∂t
+n0τ0

∂2

∂t2

)
e, (2.6)

where k is the coefficient of thermal conductivity, CE is the specific heat at constant
strain, and τ0 is another relaxation time. The use of the symbol n0 in (2.6) makes these
fundamental equations possible for three different theories of thermoelasticity. For the
Lord-Shulman (LS) theory, τ0 > 0, ν = 0, n0 = 1; for the Green-Lindsay (GL) theory,
ν ≥ τ0 > 0, n0 = 0; and for the classical (CT) theory, n0τ0 = τ0 = ν = 0. There exist the
following differences between the two generalized theories.

(i) The LS theory involves one relaxation time of thermoelastic process (τ0), and that
of GL theory involves two relaxation times (τ0, ν).

(ii) The LS energy equation involves first and second time derivatives of strain, whereas
the corresponding equation in GL theory needs only the first time derivative of strain.

(iii) In the linearized case, according to the approach of Green and Lindsay, heat
cannot propagate with finite speed unless the stresses depend on the temperature rate,
whereas according to Lord and Shulman, the heat can propagate with finite speed even
though the stresses there are independent of the temperature velocity.

Now we introduce the nondimensional variables

r∗ = η0r, z∗ = η0z, u∗ = η0u, w∗ = η0w,

θ = γ
(
T −T0

)
λ+ 2µ

, σ∗i j =
σi j
µ

, t∗ = c0η0t, τ∗0 = c0η0τ0, ν∗ = c0η0ν,

(2.7)

where η0 = ρc0CE/k is the dimensionless characteristic length and c0 =
√

(λ+ 2µ)/ρ is the
velocity of longitudinal wave. In terms of these nondimensional variables, (2.2), (2.3),
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and (2.6) take the form (dropping the asterisks for convenience)

σrr = 2
∂u

∂r
+
(
β2− 2

)
e−β2

(
1 + ν

∂

∂t

)
θ, (2.8)

σφφ = 2
u

r
+
(
β2− 2

)
e−β2

(
1 + ν

∂

∂t

)
θ, (2.9)

σzz = 2
∂w

∂z
+
(
β2− 2

)
e−β2

(
1 + ν

∂

∂t

)
θ, (2.10)

σrz = ∂u

∂z
+
∂w

∂r
, (2.11)

β2 ∂
2u

∂t2
=∇2u− 1

r2
u+

(
β2− 1

)∂e
∂r
−β2

(
1 + ν

∂

∂t

)
∂θ

∂r
, (2.12)

β2 ∂
2w

∂t2
=∇2w+

(
β2− 1

)∂e
∂z
−β2

(
1 + ν

∂

∂t

)
∂θ

∂z
, (2.13)

∇2θ =
(
∂

∂t
+ τ0

∂2

∂t2

)
θ + ε

(
∂

∂t
+n0τ0

∂2

∂t2

)
e, (2.14)

where

β2 = λ+ 2µ
µ

, ε= T0γ2

ρCE(λ+ 2µ)
. (2.15)

In axisymmetric problems, we use the Helmholtz decomposition as [15]

u= gradϕ+ curl
(

0,−∂ψ
∂r

,0
)
. (2.16)

The functions ϕ and ψ, respectively, represent the dilatational and rotational parts of u.
From (2.16), it follows that (2.12)–(2.14) are identically satisfied if ϕ and ψ satisfy

(
∇2− ∂2

∂t2

)
ϕ−

(
1 + ν

∂

∂t

)
θ = 0, (2.17)

(
∇2−β2 ∂

2

∂t2

)
ψ = 0, (2.18)

(
∇2− ∂

∂t
− τ0

∂2

∂t2

)
θ− ε

(
∂

∂t
+n0τ0

∂2

∂t2

)
∇2ϕ= 0. (2.19)

Equation (2.18) for the function ψ is the wave equation with wave velocity vs = 1/β. This
is clearly a shear (transverse) wave and has no effect on the temperature. Roughly speak-
ing, if θ is considered to be a known function, then (2.17) is the equation of an elastic
dilatational compressional wave moving with the velocity ve = 1. Also, considering ϕ to
be a known function, (2.19) is the wave of the temperature θ. This signifies a longitudi-
nal thermal wave moving with the velocity vt = 1/

√
τ0. The actual situation is, of course,

more complicated due to the coupling between the temperature and the dilatation.
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We will assume that the initial state is quiescent, that is, that all the initial conditions
of the problem are homogeneous. The boundary conditions of the problem are taken as

θ(r,±h, t)= θ0(r)H(t), σzz(r,±h, t)= σrz(r,±h, t)= 0, (2.20)

where H(t) is the Heaviside unit step function.

3. Solution in the transform domain

We introduce the Laplace transform defined by the relation

f̄ (s)= £
[
f (t)

]=
∫∞

0
e−st f (t)dt, (3.1)

and the Hankel transform defined by the relation

f ∗(α)= �
[
f (r)

]=
∫∞

0
f (r)rJ0(αr)dr, (3.2)

where J0 is the Bessel function of the first kind of order zero. Using the relation [5]

�

[
∂2 f

∂r2
+

1
r

∂ f

∂r

]
=−α2 f ∗(α), (3.3)

and taking the Laplace and Hankel transforms of both sides of (2.17)–(2.19), we obtain

(
D2−α2− s2)ϕ̄∗ − (1 + νs)θ̄∗ = 0, (3.4)(

D2−α2−β2s2
)
ψ̄∗ = 0, (3.5)(

D2−α2− s− τ0s
2)θ̄∗ − εs(1 +n0τ0s

)(
D2−α2)ϕ̄∗ = 0, (3.6)

where the operator D denotes partial differentiation with respect to z. Eliminating θ̄∗

between (3.4) and (3.6), we obtain the following fourth-order equation satisfied by ϕ̄∗:

(
D2− k2

1

)(
D2− k2

2

)
ϕ̄∗ = 0, (3.7)

where ±k1 and ±k2 are the roots of the characteristic equation

k4− [p(s) + 2α2]k2 +α2(p(s) +α2)+ s3
(
1 + τ0s

)= 0, (3.8)

where

p(s)= s2 + s
(
1 + τ0s

)
+ εs

(
1 +n0τ0s

)
(1 + νs). (3.9)
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It follows from the symmetry of the problem that the solutions of (3.5)–(3.7) with respect
to z have the form

ϕ̄∗ =
2∑

n=1

An coshknz, (3.10a)

ψ̄∗ = C sinhqz, (3.10b)

θ̄∗ =
2∑

n=1

k2
n−α2− s2

1 + νs
An coshknz, (3.10c)

where q2 = α2 + β2s2. The parameters A1, A2, and C depend on s and α. Using (2.10),
(2.11), (2.14), and (3.3), the stress components σ̄∗zz and σ̄∗rz take the form

σ̄∗zz =
(
β2s2 + 2α2)ϕ̄∗ + 2α2 ∂ψ̄

∗

∂z
,

σ̄∗rz = �

[
∂

∂r

[
2Dϕ̄+

(
2D2−β2s2

)
ψ̄
]]
.

(3.11)

The boundary conditions (2.20), together with (3.10c) and (3.11), yield

2∑
n=1

(
k2
n−α2− s2)An coshknh= 1

s
(1 + νs)θ∗0 (α),

(
β2s2 + 2α2) 2∑

n=1

An coshknh+ 2α2qC coshqh= 0,

2
2∑

n=1

knAn sinhknh+
(
2q2−β2s2

)
C sinhqh= 0.

(3.12)

Equations (3.12) constitute a system of linear algebraic equations in the unknown pa-
rameters A1, A2, and C. The solution of this system is given by

An = (−1)n
(1 + νs)

(
4α2qk3−n tanh

(
k3−nh

)− (2α2 +β2s2
)2

tanhqh
)

sΛ
(
2α2 +β2s2

)2
tanhqhcoshknh

θ∗0 (α),

C = 2
(1 + νs)

(
k2 tanhk2h− k1 tanhk1h

)
sΛ
(
2α2 +β2s2

)
sinhqh

θ∗0 (α),

Λ= k2
1 − k2

2 +
4α2q(

2α2 +β2s2
)2

tanhqh

2∑
n=1

(−1)n−1kn
(
k2

3−n−α2− s2) tanhknh.

(3.13)

4. Analysis of discontinuities

In this section, we use an exact method developed by Boley [2] to determine the magni-
tude of the propagating jump discontinuities in functions fields, wavefronts, and speeds.
The advantage of Boley’s method is that it extracts time-domain information directly
from Laplace transform expressions without actually inverting these expressions. The fol-
lowing theorem [2] is especially useful when the Laplace transform includes exponential
functions.
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Theorem 4.1. Let f (t) be the inverse Laplace transform of a function f̄ (s):

f (t)= £−1[ f̄ (s)
]= 1

2πi

∫ d+i∞

d−i∞
f̄ (s)eg(s,t)ds. (4.1)

If for large s there exists

f̄ (s)= K

sm

[
1−O

(
1
s

)]
, m> 0, (4.2)

and if there exists a function ζ(t) such that for large s,

g(s, t)− sζ(t)=O
(

1
s

)
, (4.3)

then the discontinuity of f (t) is given by

[
f (t)

]= f (t+ 0)− f (t− 0)=




0 for ζ �= 0,

0 if m> 1 and for ζ = 0,

K if m= 1 and for ζ = 0,

∞ if m< 1 and for ζ = 0.

(4.4)

To use this theorem, we will expand all the relevant quantities in powers of 1/s. From
(3.8), k1 and k2 are given by

k2
n = α2 +

1
2

(
p(s) + (−1)n−1

√
p(s)2− 4s3

(
1 + τ0s

))
. (4.5)

Expanding kn in a Maclaurin series and retaining only the first three terms, we obtain

k2
n = s2

(
an0 +

an1

s
+
an2

s2
+ ···

)
, n= 1,2, (4.6)

where

a10 = 1
2

[
1 + τ0

(
1 +n0ε

)
+ νε+ a

]
,

a11 = 1 + ε
2a

[
a+ 1 + τ0

(
1 +n0ε

)
+ νε

]− 1
a

,

a12 = α2 +
ε

a3

[
1 +

(
1−n0

)
(1 + ε)(ν− τ)

]
,

a20 = a10− a,

a21 = 1 + ε− a11,

a22 = α2− ε

a3

[
1 +

(
1−n0

)
(1 + ε)(ν− τ)

]
,

a= [(1 +
(
1 +n0ε

)
τ0 + εν

)2− 4τ0
]1/2

.

(4.7)
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Using the Maclaurin expansion a second time, we obtain

kn = s
(
bn0 +

bn1

s
+
bn2

s2
+ ···

)
, n= 1,2, (4.8)

where

bn0 = a1/2
n0 , bn1 = 1

2
an1

a1/2
n0

, bn2 = 4an2an0− a2
n1

8a3/2
n0

. (4.9)

Using similar expansion techniques, we note that for large s, we have

tanhkn = tanhqh= 1 + O
(

1
s

)
,

coshknh= 1
2
eknh + O

(
1
s

)
, sinhqh= 1

2
eqh + O

(
1
s

)
,

k2
1 − k2

2 = as2 + O(s), q = βs+ O
(

1
s

)
,

An = 2(−1)n+1 (1 + νs)θ∗0 (α)
as3

e−knh + O
(

1
s4

)
,

C = 4
(1 + νs)

(
b20− b10

)
θ∗0 (α)

aβ2s4
e−βsh + O

(
1
s5

)
.

(4.10)

Collecting the previous results, (3.10c) for large s takes the form (for the three theories)

θ̄(r,z,s)= 1
s

a10− 1
a

∫∞
0
αJ0(αr)θ∗0 (α)ek1(z−h)dα

+
1
s

a10− 1
a

∫∞
0
αJ0(αr)θ∗0 (α)e−k1(z+h)dα

− 1
s

a20− 1
a

∫∞
0
αJ0(αr)θ∗0 (α)ek2(z−h)dα

− 1
s

a20− 1
a

∫∞
0
αJ0(αr)θ∗0 (α)e−k2(z+h)dα+ O

(
1
s2

)
.

(4.11)

The inverse Laplace of the first term of the last equation is given by

I1 = 1
2πi

∫ d+i∞

d−i∞
1
s

a10− 1
a

∫∞
0
αJ0(αr)θ∗0 (α)ek1(z−h)+st dαds. (4.12)

Choosing g(s, t)= k1(z−h) + st and ζ(t)= b10(z−h) + t, and using (4.8) for k1, we finally
obtain

I1 = 1
2πi

∫ d+i∞

d−i∞
K

s

[
1 + O

(
1
s

)]
eg(s,t)ds (4.13)
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Table 4.1. Propagating discontinuities in θ, where I0 = (1/a)
∫∞

0 αJ0(αr)θ∗0 (α)dα.

Theories LS and GL CT

Wavefronts Elastic Thermal Elastic

[θ] (a10− 1)I0e−tb11/b10 (1− a20)I0e−tb21/b20 0

with g(s, t)− sζ(t)=O(1/s) and

[θ]= K = a10− 1
a

eb11(z−h)
∫∞

0
αJ0(αr)θ∗0 (α)dα. (4.14)

This is in the form of (4.4) with m = 1. This means that the function has a finite
discontinuity of size K when ζ(t)= 0, that is, when t+ b10(z−h)= 0. This is the equation
of a wave moving from the upper surface (z = h) with a velocity equal to 1/b10. This wave
is mainly elastic in nature, and its velocity is obtained from (4.6),

ve =
√

2
1 + τ0

(
1 +n0ε

)
+ νε+ a

, (4.15)

and arrives at the middle plane in time equal to

h

√[
1 + τ0

(
1 +n0ε

)
+ νε+ a

]
2

. (4.16)

Similarly, the second term in the right-hand side of the last expression of θ̄ represents a
wave moving from the lower surface of the plate (z =−h) with the same speed. The third
term represents a wave moving with a velocity equal to 1/b20. This velocity approaches
1/
√
τ0 as ε→ 0. It is clear that under the classical theory (τ0 = ν= 0), this wave propagates

with infinite velocity. Thus, this wave is mainly the thermal wave mentioned above. The
exact value of the velocity is

vt =
√

2
1 + τ0

(
1 +n0ε

)
+ νε− a . (4.17)

This wave arrives at the middle plane in time equal to

h

√
[1 + τ0(1 +n0ε) + νε− a]

2
. (4.18)

Under LS/GL theories, it is clear that θ experiences finite jump across both elastic and
thermal wavefronts, which decays exponentially over time (see Table 4.1).

Furthermore, by applying the same procedure to the first displacement component u
for LS/CT theories, it is found that u being O(1/s3) (m > 1) is a continuous function to-
gether with its first derivatives (see Table 4.2). The jump in the value of ∂u/∂t is found
by applying Boley’s method and using the well-known relation £[∂u/∂t]= s£[u]. For GL
theory, it is found that ∂u/∂t has a finite discontinuity of size K when ζ(t) = 0, that is,
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Table 4.2. Propagating discontinuities in u and its first derivatives, where Γ=−2(b20− b10)/β, I1 = 1/
a
∫∞

0 α2J1(αr)θ∗0 (α)dα.

Theories LS GL CT

Wavefronts Elastic Thermal Shear Elastic Thermal Shear Elastic

[u] 0 0 0 0 0 0 0

[∂u/∂t] 0 0 0 −νI1e−tb11/b10 νI1e−tb21/b20 νI1Γ 0

[∂u/∂z] 0 0 0 −νb10I1e−tb11/b10 νb20I1e−tb21/b20 νI1βΓ 0

[∂u/∂r] 0 0 0 0 0 0 0

Table 4.3. Propagating discontinuities in w and its first derivatives.

Theories LS GL CT

Wavefronts Elastic Thermal Elastic Thermal Elastic

[w] 0 0 νb10I0e−tb11/b10 −νb20I0e−tb21/b20 0

[∂w/∂t] b10I0e−tb11/b10 −b20I0e−tb21/b20 ∞ ∞ I0e−εt

[∂w/∂z] a10I0e−tb11/b10 −a20I0e−tb21/b20 ∞ ∞ I0e−εt

[∂w/∂r] 0 0 −νb10I1e−tb11/b10 νb20I1e−tb21/b20 0

when β(z − h) + t = 0. This is the equation of a wave moving from the upper surface
(z = h) with a velocity equal to vs = 1/β. This is clearly a shear (transverse) wave men-
tioned above. We note that the magnitude of the jump across this wavefront does not
decay exponentially over time. Finally, under GL theory, u and ∂u/∂r being O(1/s2) are
continuous functions, but ∂u/∂t and ∂u/∂z experience finite discontinuities at the three
wavefronts.

For LS/CT theories, the second displacement component w and ∂w/∂r being O(1/s2)
is a continuous function, while ∂w/∂t and ∂w/∂z are discontinuous at the elastic and
thermal wavefronts (see Table 4.3). Under GL theory, w and its first derivatives are dis-
continuous across both elastic and thermal wavefronts. All the considered functions in
Table 4.3 are continuous at the shear wavefront.

Applying the same procedure to the stress components σrr , σφφ, and σzz, it is found
that these functions suffer a finite discontinuity under LS/CT theories and an infinite
discontinuity under GL theory across both elastic and thermal wavefronts. For the gen-
eralized theories, σrr and σφφ are continuous, while σzz is discontinuous across the shear
wavefront.

5. Inversion of the double transforms

We will now outline the numerical method used to find the solution in the physical do-
main. We make use first of the inversion formula of the Hankel transform [5], namely,

f (r)= �
−1[ f ∗(α)

]=
∫∞

0
f ∗(α)αJ0(αr)dα. (5.1)
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Applying this formula to (3.10)-(3.11), we obtain the Laplace transforms

θ̄(r,z,s)= 1
1 + νs

∫∞
0
αJ0(αr)

2∑
n=1

(
k2
n−α2− s2)An coshknzdα, (5.2)

ū(r,z,s)=−
∫∞

0
α2J1(αr)

2∑
n=1

[
An coshknz+Cqcoshqz

]
dα, (5.3)

w̄(r,z,s)=
∫∞

0
αJ0(αr)

2∑
n=1

[
knAn sinhknz+Cα2 sinhqz

]
dα, (5.4)

F̄ =
∫∞

0
αJ0(αr)

2∑
n=1

(
β2s2 + 2α2− 2k2

n

)
An coshknzdα, (5.5)

σ̄rr(r,z,s)= F̄ + 2
∫∞

0
α3
(

1
αr
J1(αr)− J0(αr)

) 2∑
n=1

[
An coshkn +Cqcoshqz

]
dα, (5.6)

σ̄φφ(r,z,s)= F̄ − 2
r

∫∞
0
α2J1(αr)

2∑
n=1

[
An coshkn +Cqcoshqz

]
dα, (5.7)

σ̄zz(r,z,s)=
∫∞

0
αJ0(αr)

(
β2s2 + 2α2) 2∑

n=1

[
An coshkn + 2α2C coshqz

]
dα. (5.8)

In order to invert the Laplace transforms in (5.2)–(5.8), we adopt a numerical inversion
method based on a Fourier series expansion [9]. In this method, inversion f (t) of Laplace
transform f̄ (s) is approximately by the relation

f (t)= eξt

4Tm

[
1
2
f̄ (ξ) +
e

( N∑
k=1

eikπt/4Tm f̄
(
ξ + i

kπ

4Tm

))]
, (5.9)

where N is a sufficiently large integer representing the number of terms in the truncated
infinite Fourier series, and must be chosen such that

eξt
e
(
eiNπt/4Tm f̄

(
ξ + i

Nπ

4Tm

))
≤ ε0, (5.10)

where ε0 is a preselected small positive number that corresponds to the degree of accuracy
required. The parameter ξ is a positive free parameter that must be greater than the real
parts of all singularities of f̄ (s). The optimal choice of ξ was obtained according to the
criteria described in [9]. Tm is the maximum time simulated.

The numerical technique outlined above was used to invert the Laplace transforms in
(5.2)–(5.8). The Romberg numerical integration technique [17] with variable step size
was used to evaluate the integrals involved.

In order to find temperature distribution θ, we use an expression similar to (5.9) with
θ and θ̄ replacing f and f̄ , respectively. To illustrate the above results graphically, the
axisymmetric function θ0(r) that is the value of the temperature on the upper and lower
surfaces of the plate was chosen to be zero except for the inside of the circular region r ≤ a
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where it has a fixed constant value of c0, that is,

θ0(r)= c0H(a− r). (5.11)

Taking the Hankel transform, we obtain

θ∗0 (α)= c0

∫∞
0
H(a− r)rJ0(αr)dr = c0

∫ a
0
rJ0(αr)dr = ac0

α
J1(αa). (5.12)

The copper material was chosen for purposes of numerical evaluations. The constants of
the problem were taken as

β2 = 3.5, ε = 0.0168, τ0 = 0.02, ν= 0.03, a= 1, h= 1, c0 = 1.
(5.13)

Thus, the velocities vt, ve, and vs discussed above have the values vt = 7.072, ve = 0.999,
and vs = 0.286. The first is faster than the second and corresponds to the second sound
and results from the temperature forcing term in the displacement equations. The ther-
mal wave arrives first in the middle plane after a 0.141 unit of time. This wave is reflected
three times with attenuation before the arrival of the elastic wave in 1 unit of time. The
computations were carried out for three values of time, namely, t = 0.1,0.2, and 1.1, re-
spectively. These values correspond to the middle plane before and after the arrival of the
first wave and after the arrival of the second wave, respectively. The temperature θ, the
radial displacement component u, and the axial stress component σzz are shown in Fig-
ures 5.1, 5.2, and 5.3, respectively, and evaluated at the middle of the plane (z = 0). Since
the displacement component w is an odd function of z, its value on the middle plane is
always zero (see (5.4)), and it is not represented graphically here. The graphs of the stress
components σrr and σφφ are found to be very similar to that of σzz and are omitted here.

We note that the graphs for radial displacement and axial stress distributions do not
demonstrate the theoretical predictions of discontinuities. In fact, from Boley’s theorem,
the function experiences a discontinuity when ζ(t)= t+ bn0(z−h)= 0. However, because
ζ(t) �= 0 at z = 0 for the three considered values of time, discontinuities do not occur. For
example, at t = 0.1, the wavefront (moving at a finite speed) has not reached the middle
plane yet under both generalized theories. The solution was found to be identically zero
for this value of time at the middle plane for all functions considered. Moreover, due to
the dissipative nature of the temperature equation, the magnitude of discontinuity decays
exponentially over time (see the tables).

6. Concluding remarks

Based on the analysis of discontinuities presented here and numerical results, we state the
following conclusions.

(i) It was found from Figures 5.1, 5.2, and 5.3, that for large values of time, the results
obtained by using either the classical or the generalized theories are quite similar. The case
is quite different when we consider small values of time. Since the classical theory predicts
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Figure 5.1. Temperature distribution in the middle plane.
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Figure 5.2. Radial displacement distribution in the middle plane.

infinite speeds of wave propagation, the effect of heating at the boundary is transmitted
instantaneously to all parts of the medium, so the solution is not identically zero for any
value of time (though it may be very small). For the generalized theory, however, the
waves take a finite time to be transmitted. This is quite clear in the curve drawn at t = 0.1
on the radial axis of each figure.
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Figure 5.3. Axial stress distribution in the middle plane.

Table 6.1. Propagating discontinuities in stress fields, where δ1 = β2 − 2a10,δ2 = −(β2 − 2a20), I2 =
1/a

∫∞
0 α3J0(αr)θ∗0 (α)dα.

Theories LS GL CT

Wavefronts Elastic Thermal Shear Elastic Thermal Shear Elastic

[σrr] δ1I0e−tb11/b10 δ2I0e−tb21/b20 0 ∞ ∞ 0 λ/µI0e−εt

[σφφ] δ1I0e−tb11/b10 δ2I0e−tb21/b20 0 ∞ ∞ 0 λ/µI0e−εt

[σzz] β2I0e−tb11/b10 −β2I0e−tb21/b20 −2I2β2Γ ∞ ∞ ∞ β2I0e−εt

(ii) From Tables 4.2 and 4.3, the displacement component u is continuous under the
three theories of thermoelasticity [14], while w is continuous under LS/CT theories and
discontinuous under GL theory [19]. The discontinuity of w under GL theory violates
the requirement of continuity of displacements, and implies that one portion of matter
penetrates into another [3]. This prediction of GL theory is physically absurd.

(iii) Table 6.1 shows that the magnitudes of discontinuities of the stresses functions
are finite under LS theory and infinite under GL theory across both elastic and thermal
wavefronts. The same situation arises in the context of LS theory in [12, 14] and in the
context of GL theory in [12]. This prediction of GL theory is also not physically realistic
and supports the a priori Furukawa et al.’s assertion [6, 7].
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