
APPLICATION OF AN INTEGRAL FORMULA TO
CR-SUBMANIFOLDS OF COMPLEX HYPERBOLIC SPACE

JIN SUK PAK AND HYANG SOOK KIM

Received 24 May 2004 and in revised form 2 March 2005

The purpose of this paper is to study n-dimensional compact CR-submanifolds of com-
plex hyperbolic space CH(n+p)/2, and especially to characterize geodesic hypersphere in
CH(n+1)/2 by an integral formula.

1. Introduction

Let M̄ be a complex space form of constant holomorphic sectional curvature c and let
M be an n-dimensional CR-submanifold of (n− 1) CR-dimension in M̄. Then M has an
almost contact metric structure (F,U ,u,g) (see Section 2) induced from the canonical
complex structure of M̄. Hence on an n-dimensional CR-submanifold of (n− 1) CR-
dimension, we can consider two structures, namely, almost contact structure F and a
submanifold structure represented by second fundamental form A. In this point of view,
many differential geometers have classified M under the conditions concerning those
structures (cf. [3, 5, 8, 9, 10, 11, 12, 14, 15, 16]). In particular, Montiel and Romero [12]
have classified real hypersurfaces M of complex hyperbolic space CH(n+1)/2 which satisfy
the commutativity condition

(C)

FA=AF (1.1)

by using the S1-fibration π : Hn+2
1 → CH(n+1)/2 of the anti-de Sitter space Hn+2

1 over
CH(n+1)/2, and obtained Theorem 4.1 stated in Section 2. We notice that among the model
spaces in Theorem 4.1, the geodesic hypersphere is only compact.

In this paper, we will investigate n-dimensional compact CR-submanifold of (n− 1)
CR-dimension in complex hyperbolic space and provide a characterization of the geo-
desic hypersphere, which is equivalent to condition (C), by using the following integral
formula established by Yano [17, 18]:

∫
M

div
{(∇XX

)−(divX)X
}∗ 1=

∫
M

{
Ric(X ,X)+

1
2

∥∥�Xg
∥∥2−‖∇X‖2−(divX)2

}
∗ 1=0,

(1.2)
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where X is an arbitrary vector field tangent to M. Our results of the paper are complex
hyperbolic versions of those in [6, 15].

2. Preliminaries

Let M be an n-dimensional CR-submanifold of (n− 1) CR-dimension isometrically im-
mersed in a complex space form M̄(n+p)/2(c). Denoting by (J , ḡ) the Kähler structure of
M̄(n+p)/2(c), it follows by definition (cf. [5, 6, 8, 9, 13, 16]) that the maximal J-invariant
subspace

�x := TxM∩ JTxM (2.1)

of the tangent space TxM of M at each point x in M has constant dimension (n− 1). So
there exists a unit vector field U1 tangent to M such that

�⊥
x = Span

{
U1
}

, ∀x ∈M, (2.2)

where �⊥
x denotes the subspace of TxM complementary orthogonal to �x. Moreover, the

vector field ξ1 defined by

ξ1 := JU1 (2.3)

is normal to M and satisfies

JTM ⊂ TM⊕ Span
{
ξ1
}
. (2.4)

Hence we have, for any tangent vector field X and for a local orthonormal basis {ξ1,
ξα}α=2,...,p of normal vectors to M, the following decomposition in tangential and normal
components:

JX = FX +u1(X)ξ1, (2.5)

Jξα =−Uα +Pξα, α= 1, . . . , p. (2.6)

Since the structure (J , ḡ) is Hermitian and J2 =−I , we can easily see from (2.5) and (2.6)
that F and P are skew-symmetric linear endomorphisms acting on TxM and TxM⊥, re-
spectively, and that

g
(
FUα,X

)=−u1(X)ḡ
(
ξ1,Pξα

)
, (2.7)

g
(
Uα,Uβ

)= δαβ− ḡ
(
Pξα,Pξβ

)
, (2.8)

where TxM⊥ denotes the normal space of M at x and g the metric on M induced from ḡ.
Furthermore, we also have

g
(
Uα,X

)= u1(X)δ1α, (2.9)

and consequently,

g
(
U1,X

)= u1(X), Uα = 0, α= 2, . . . , p. (2.10)
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Next, applying J to (2.5) and using (2.6) and (2.10), we have

F2X =−X +u1(X)U1, u1(X)Pξ1 =−u1(FX)ξ1, (2.11)

from which, taking account of the skew-symmetry of P and (2.7),

u1(FX)= 0, FU1 = 0, Pξ1 = 0. (2.12)

Thus (2.6) may be written in the form

Jξ1 =−U1, Jξα = Pξα, α= 2, . . . , p. (2.13)

These equations tell us that (F,g,U1,u1) defines an almost contact metric structure on
M (cf. [5, 6, 8, 9, 16]), and consequently, n= 2m+ 1 for some integer m.

We denote by ∇̄ and∇ the Levi-Civita connection on M̄(n+p)/2(c) and M, respectively.
Then the Gauss and Weingarten formulas are given by

∇̄XY =∇XY +h(X ,Y), (2.14)

∇̄Xξα =−AαX +∇⊥Xξα, α= 1, . . . , p, (2.15)

for any vector fields X , Y tangent to M. Here∇⊥ denotes the normal connection induced
from ∇̄ in the normal bundle TM⊥ of M, and h and Aα the second fundamental form and
the shape operator corresponding to ξα, respectively. It is clear that h and Aα are related
by

h(X ,Y)=
p∑

α=1

g
(
AαX ,Y

)
ξα. (2.16)

We put

∇⊥Xξα =
p∑

β=1

sαβ(X)ξβ. (2.17)

Then (sαβ) is the skew-symmetric matrix of connection forms of∇⊥.
Now, using (2.14), (2.15), and (2.17), and taking account of the Kähler condition ∇̄J =

0, we differentiate (2.5) and (2.6) covariantly and compare the tangential and normal
parts. Then we can easily find that

(∇XF
)
Y = u1(Y)A1X − g

(
A1Y ,X

)
U1, (2.18)(∇Xu

1)(Y)= g
(
FA1X ,Y

)
, (2.19)

∇XU1 = FA1X , (2.20)

g
(
AαU1,X

)=−
p∑

β=2

s1β(X)ḡ
(
Pξβ,ξα

)
, α= 2, . . . , p, (2.21)

for any X , Y tangent to M.
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In the rest of this paper, we suppose that the distinguished normal vector field ξ1 is parallel
with respect to the normal connection∇⊥. Hence (2.17) gives

s1α = 0, α= 2, . . . , p, (2.22)

which, together with (2.21), yields

AαU1 = 0, α= 2, . . . , p. (2.23)

On the other hand, the ambient manifold M̄(n+p)/2(c) is of constant holomorphic sec-
tional curvature c and consequently, its Riemannian curvature tensor R̄ satisfies

R̄X̄Ȳ Z̄ = c

4

{
ḡ(Ȳ , Z̄)X̄ − ḡ(X̄ , Z̄)Ȳ + ḡ(JȲ , Z̄)JX̄ − ḡ(JX̄ , Z̄)JȲ − 2ḡ(JX̄ , Ȳ)JZ̄

}
(2.24)

for any X̄ , Ȳ , Z̄ tangent to M̄(n+p)/2(c) (cf. [1, 2, 4, 19]). So, the equations of Gauss and
Codazzi imply that

RXYZ = c

4

{
g(Y ,Z)X − g(X ,Z)Y + g(FY ,Z)FX − g(FX ,Z)FY − 2g(FX ,Y)FZ

}
+
∑
α

{
g
(
AαY ,Z

)
AαX − g

(
AαX ,Z

)
AαY

}
,

(2.25)

(∇XA1
)
Y − (∇YA1

)
X = c

4

{
g
(
X ,U1

)
FY − g

(
Y ,U1

)
FX − 2g(FX ,Y)U1

}
, (2.26)

for any X , Y , Z tangent to M with the aid of (2.22), where R denotes the Riemannian
curvature tensor of M. Moreover, (2.11) and (2.25) yield

Ric(X ,Y)= c

4

{
(n+ 2)g(X ,Y)− 3u1(X)u1(Y)

}
+
∑
α

{(
trAα

)
g
(
AαX ,Y

)− g
(
A2
αX ,Y

)}
,

(2.27)

ρ= c

4
(n+ 3)(n− 1) +n2‖µ‖2−

∑
α

trAα
2, (2.28)

where Ric and ρ denote the Ricci tensor and the scalar curvature, respectively, and

µ= 1
n

∑
α

(
trAα

)
ξα (2.29)

is the mean curvature vector (cf. [1, 2, 4, 19]).

3. Codimension reduction of CR-submanifolds of CH(n+p)/2

Let M be an n-dimensional CR-submanifold of (n− 1) CR-dimension in a complex hy-
perbolic space CH(n+p)/2 with constant holomorphic sectional curvature c =−4.

Applying the integral formula (1.2) to the vector field U1, we have

∫
M

{
Ric

(
U1,U1

)
+

1
2

∥∥�U1g
∥∥2−∥∥∇U1

∥∥2− (divU1
)2
}
∗ 1= 0. (3.1)
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Now we take an orthonormal basis {U1,ea,ea∗}a=1,...,(n−1)/2 of tangent vectors to M such
that

ea∗ := Fea, a= 1, . . . ,
n− 1

2
. (3.2)

Then it follows from (2.11) and (2.20) that

divU1 = tr
(
FA1

)= (n−1)/2∑
a=1

{
g
(
FA1ea,ea

)
+ g
(
FA1ea∗ ,ea∗

)}= 0. (3.3)

Also, using (2.20), we have

∥∥∇U1
∥∥2 = g

(
FA1U1,FA1U1

)
+

(n−1)/2∑
a=1

{
g
(
FA1ea,FA1ea

)
+ g
(
FA1ea∗ ,FA1ea∗

)}
, (3.4)

from which, together with (2.11) and (2.12), we can easily obtain

∥∥∇U1
∥∥2 = trA2

1−
∥∥A1U1

∥∥2
. (3.5)

Furthermore, (2.20) yields

(
�U1g

)
(X ,Y)= g

(∇XU1,Y
)

+ g
(∇YU1,X

)= g
((
FA1−A1F

)
X ,Y

)
, (3.6)

and consequently,

∥∥�U1g
∥∥2 = ∥∥FA1−A1F

∥∥2
. (3.7)

On the other hand, (2.27) and (2.28) with c =−4 yield

Ric
(
U1,U1

)=−(n− 1) +u1(A1U1
)(

trA1
)−∥∥A1U1

∥∥2
, (3.8)

tr
(
A2

1

)=−ρ− (n+ 3)(n− 1) +n2‖µ‖2−
p∑

α=2

trAα
2. (3.9)

Substituting (3.3), (3.5), (3.7), (3.8), and (3.9) into (3.1), we have

∫
M

{
1
2

∥∥FA1−A1F
∥∥2

+ Ric
(
U1,U1

)
+ ρ−n2‖µ‖2

+
∥∥A1U1

∥∥2
+ (n+ 3)(n− 1) +

p∑
α=2

trAα
2

}
∗ 1= 0,

(3.10)

or equivalently,

∫
M

{
1
2

∥∥FA1−A1F
∥∥2

+u1(A1U1
)(

trA1
)− trA2

1− (n− 1)
}
∗ 1= 0. (3.11)

Thus we have the following lemma.
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Lemma 3.1. Let M be an n-dimensional compact orientable CR-submanifold of (n− 1) CR-
dimension in a complex hyperbolic space CH(n+p)/2. If the distinguished normal vector field
ξ1 is parallel with respect to the normal connection and if the inequality

Ric
(
U1,U1

)
+ ρ−n2‖µ‖2 +

∥∥A1U1
∥∥2

+ (n+ 3)(n− 1)≥ 0 (3.12)

holds on M, then

A1F = FA1 (3.13)

and Aα = 0 for α= 2, . . . , p.

Corollary 3.2. Let M be a compact orientable real hypersurface of CH(n+1)/2 over which
the inequality

Ric
(
U1,U1

)
+ ρ−n2‖µ‖2 +

∥∥A1U1
∥∥2

+ (n+ 3)(n− 1)≥ 0 (3.14)

holds. Then M satisfies the commutativity condition (C).

Combining Lemma 3.1 and the codimension reduction theorem proved in [7, Theo-
rem 3.2, page 126], we have the following theorem.

Theorem 3.3. Let M be an n-dimensional compact orientable CR-submanifold of (n− 1)
CR-dimension in a complex hyperbolic space CH(n+p)/2. If the distinguished normal vector
field ξ1 is parallel with respect to the normal connection and if the inequality

Ric
(
U1,U1

)
+ ρ−n2‖µ‖2 +

∥∥A1U1
∥∥2

+ (n+ 3)(n− 1)≥ 0 (3.15)

holds on M, then there exists a totally geodesic complex hyperbolic space CH(n+1)/2 immersed
in CH(n+p)/2 such that M ⊂ CH(n+1)/2. Moreover M satisfies the commutativity condition
(C) as a real hypersurface of CH(n+1)/2.

Proof. Let

N0(x) := {η ∈ TxM
⊥ | Aη = 0

}
(3.16)

and let H0(x) be the maximal holomorphic subspace of N0(x), that is,

H0(x)=N0(x)∩ JN0(x). (3.17)

Then, by means of Lemma 3.1,

H0(x)=N0(x)= Span
{
ξ2, . . . ,ξp

}
. (3.18)

Hence, the orthogonal complement H1(x) of H0(x) in TM⊥ is Span{ξ1} and so, H1(x)
is invariant under the parallel translation with respect to the normal connection and
dimH1(x) = 1 at any point x ∈M. Thus, applying the codimension reduction theorem
in [4] proved by Kawamoto, we verify that there exists a totally geodesic complex hyper-
bolic space CH(n+1)/2 immersed in CH(n+p)/2 such that M ⊂ CH(n+1)/2. Therefore, M can
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be regarded as a real hypersurface of CH(n+1)/2 which is totally geodesic in CH(n+p)/2. Ten-
tatively, we denote CH(n+1)/2 by M′, and by i1 we denote the immersion of M into M′,
and by i2 the totally geodesic immersion of M′ into CH(n+p)/2. Then it is clear from (2.14)
that

∇′i1Xi1Y = i1∇XY +h′(X ,Y)= i1∇XY + g(A′X ,Y)ξ′, (3.19)

where ∇′ is the induced connection on M′ from that of CH(n+p)/2, h′ the second fun-
damental form of M in M′, and A′ the corresponding shape operator to a unit normal
vector field ξ′ to M in M′. Since i= i2 ◦ i1 and M′ is totally geodesic in CH(n+p)/2, we can
easily see that (2.15) and (3.19) imply that

ξ1 = i2ξ
′, A1 = A′. (3.20)

Since M′ is a holomorphic submanifold of CH(n+p)/2, for any X in TM,

Ji2X = i2J
′X (3.21)

is valid, where J ′ is the induced Kähler structure on M′. Thus it follows from (2.5) that

JiX = Ji2 ◦ i1X = i2J
′i1X = i2

(
i1F

′X +u′(X)ξ′
)

= iF′X +u′(X)i2ξ′ = iF′X +u′(X)ξ1
(3.22)

for any vector field X tangent to M. Comparing this equation with (2.5), we have F = F′

and u1 = u′, which, together with Lemma 3.1, implies that

A′F′ = F′A′. (3.23)
�

4. An integral formula on the model space Mh
2p+1,2q+1(r)

We first explain the model hypersurfaces of complex hyperbolic space due to Montiel and
Romero for later use (for the details, see [12]).

Consider the complex (n + 3)/2-space C(n+3)/2
1 endowed with the pseudo-Euclidean

metric g0 given by

g0 =−dz0dz̄0 +
m∑
j=1

dzjdz̄ j ,
(
m+ 1 := n+ 3

2

)
, (4.1)

where z̄k denotes the complex conjugate of zk.

On C(n+3)/2
1 , we define

F(z,w)=−z0w̄0 +
m∑
k=1

zkw̄k. (4.2)

Put

Hn+2
1 =

{
z = (z0,z1, . . . ,zm

)∈ C(n+3)/2
1 : 〈z,z〉 = −1

}
, (4.3)
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where 〈·,·〉 denotes the inner product on C(n+3)/2
1 induced from g0. Then it is known

that Hn+2
1 , together with the induced metric, is a pseudo-Riemannian manifold of con-

stant sectional curvature −1, which is known as an anti-de Sitter space. Moreover, Hn+2
1

is a principal S1-bundle over CH(n+1)/2 with projection π : Hn+2
1 → CH(n+1)/2 which is a

Riemannian submersion with fundamental tensor J and time-like totally geodesic fibers.
Given p, q integers with 2p + 2q = n− 1 and r ∈ R with 0 < r < 1, we denote by

M2p+1,2q+1(r) the Lorentz hypersurface of Hn+2
1 defined by the equations

−∣∣z0
∣∣2

+
m∑
k=1

∣∣zk∣∣2 =−1, r

(
−∣∣z0

∣∣2
+

p∑
k=1

∣∣zk∣∣2
)
=−

m∑
k=p+1

∣∣zk∣∣2
, (4.4)

where z = (z0,z1, . . . ,zm)∈ C(n+3)/2
1 . In fact, M2p+1,2q+1(r) is isometric to the product

H
2p+1
1

(
1

r− 1

)
× S2q+1

(
r

1− r

)
, (4.5)

where 1/(r− 1) and r/(1− r) denote the squares of the radii and each factor is embedded
in Hn+2

1 in a totally umbilical way. Since M2p+1,2q+1(r) is S1-invariant, Mh
2p+1,2q+1(r) :=

π(M2p+1,2q+1(r)) is a real hypersurface of CH(n+1)/2 which is complete and satisfies the
condition (C).

As already mentioned in Section 1, Montiel and Romero [12] have classified real hy-
persurfaces M of CH(n+1)/2 which satisfy the condition (C) and obtained the following
classification theorem.

Theorem 4.1. Let M be a complete real hypersurface of CH(n+1)/2 which satisfies the condi-
tion (C). Then there exist the following possibilities.

(1) M has three constant principal curvatures tanhθ, cothθ, 2coth2θ with multiplici-
ties 2p, 2q, 1, respectively, 2p + 2q = n− 1. Moreover, M is congruent to Mh

2p+1,2q+1

(tanh2 θ).
(2) M has two constant principal curvatures λ1, λ2 with multiplicities n− 1 and 1, respec-

tively. (i) If λ1 > 1, then λ1 = cothθ, λ2 = 2coth2θ with θ > 0, and M is congruent to
a geodesic hypersphere Mh

1,n(tanh2 θ). (ii) If λ1 < 1, then λ1 = tanhθ, λ2 = 2coth2θ
with θ > 0, and M is congruent to Mh

n,1(tanh2 θ). (iii) If λ1 = 1, then λ2 = 2 and M is
congruent to a horosphere.

Combining Corollary 3.2 and Theorem 4.1, we have the following theorem.

Theorem 4.2. Let M be a compact orientable real hypersurface of CH(n+1)/2 over which the
inequality

Ric
(
U1,U1

)
+ ρ−n2‖µ‖2 +

∥∥A1U1
∥∥2

+ (n+ 3)(n− 1)≥ 0 (4.6)

holds. Then M is congruent to a geodesic hypersphere Mh
1,n(r) in CH(n+1)/2.

Combining Theorems 3.3 and 4.2, we have the following theorem.
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Theorem 4.3. Let M be an n-dimensional compact orientable CR-submanifold of (n− 1)
CR-dimension in a complex hyperbolic space CH(n+p)/2. If the distinguished normal vector
field ξ1 is parallel with respect to the normal connection and if the inequality

Ric
(
U1,U1

)
+ ρ−n2‖µ‖2 +

∥∥A1U1
∥∥2

+ (n+ 3)(n− 1)≥ 0 (4.7)

holds on M, then M is congruent to a geodesic hypersphere Mh
1,n(tanh2 θ) in CH(n+1)/2.

Remark 4.4. As already shown in (3.10) and (3.11), the equality

Ric
(
U1,U1

)
+ ρ−n2‖µ‖2 +

∥∥A1U1
∥∥2

+ (n+ 3)(n− 1)

= u1(A1U1
)(

trA1
)− trA2

1− (n− 1)
(4.8)

holds on M. On the other hand, the geodesic hypersphere Mh
1,n(tanh2 θ) in Theorem 4.1

has constant principal curvatures cothθ and 2coth2θ with multiplicities n− 1 and 1,
respectively. Hence we can easily verify the equality

u1(A1U1
)(

trA1
)− trA2

1− (n− 1)= 0, (4.9)

and consequently,

Ric
(
U1,U1

)
+ ρ−n2‖µ‖2 +

∥∥A1U1
∥∥2

+ (n+ 3)(n− 1)= 0 (4.10)

on Mh
1,n(tanh2 θ).

Remark 4.5. If we put V :=∇U1U1 − (divU1)U1, then it easily follows from (2.11) that
V = FA1U1. Taking account of (3.3), (3.5), (3.7), and (3.8), we obtain

divV = 1
2

∥∥FA1−A1F
∥∥2

+u1(A1U1
)(

trA1
)− trA2

1− (n− 1). (4.11)

Hence if the commutativity condition (C) holds on M, then the vector field V is zero
since U1 is a principal vector of A1, and consequently,

u1(A1U1
)(

trA1
)− trA2

1− (n− 1)= 0. (4.12)

Thus, on n-dimensional CR-submanifold M of (n− 1) CR-dimension in a complex hy-
perbolic space CH(n+p)/2 over which the commutativity condition C holds, the function
u1(A1U1) cannot be zero at any point of M. A real hypersurface of a complex hyperbolic
space CH(n+p)/2 satisfying the commutativity condition (C) cannot be minimal.
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