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We investigate Hermitian forms on finitely generated torsion modules over a noncommu-
tative discrete valuation ring. We also give some results for lattices, which still are satisfied
even if the base ring is not commutative. Moreover, for a noncommutative discrete-valued
division algebra D with valuation ring R and residual division algebra D̄, we prove that
W(D̄) ∼=WT(R), where WT(R) denotes the Witt group of regular Hermitian forms on
finitely generated torsion R-modules.

1. Introduction

There has been considerable interest in Witt group of bilinear forms over commutative
rings. In particular, several authors are interested in commutative discrete valuation rings
and it was clear that a similar theory could be developed in noncommutative settings.
Therefore, most of the topics of this paper are generalizations of known results on Her-
mitian forms and Witt group over commutative discrete valuation rings. In Theorem 2.7,
we present useful results on lattices and Hermitian forms which are a straightforward
generalization of the commutative situation. For a commutative discrete valuation ring
R with residual field k, it is well known that W(k)∼=WT(R), where WT(R) denotes the
Witt group of symmetric regular bilinear forms on finitely generated torsion R-modules
(see, e.g., [4, Theorem 2.1, page 207]). In Theorem 3.3, we extend this result to non-
commutative case. More precisely, for a discrete-valued division algebra D with valuation
ring R and residual division algebra D̄, we prove that W(D̄)∼=WT(R). To conclude this
paper, Theorem 3.6 explores an exact sequence which is known only for Dedekind do-
main.

Let D be a noncommutative finite-dimensional central division algebra over a field F
and let� be an involution of the first kind on D, that is,� leaves F elementwise invariant.
For clarity, it is interesting to elucidate some of the terminology to be used. If v is a discrete
valuation on D with valuation ring R and if � denotes the maximal ideal of R, then
D̄ := R/� is called the residual division algebra. Since every element x ∈D satisfies x ∈ R
or x−1 ∈ R, then every ideal of R is a two-sided ideal. Indeed, if π is a prime element
of R, that is, a generator of �, and if I is a one-sided ideal of R, then I = πnR = Rπn,
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where n= inf{v(x)/x ∈ I}. In particular, R is then a principal ideal domain. As aR = Ra
for all a ∈ R, then elementary divisor theorem holds even if R is not commutative. In
all that follows, �(R) will stand for the set of all invertible elements of R. Recall that if
V is a D-vector space with dimension n, then a submodule L of V is called an R-lattice
(or simply lattice) on V if L=⊕n

i=1Rei for some basis (e1, . . . ,en) of V. Moreover, if h is a
Hermitian form on V , then the dual lattice of L is defined by L# := {x ∈ V/h(x,L)⊂ R}.
Finally, an R-module J ⊂ D is said to be a fractional ideal if there exists a ∈ R such that
aJ ⊂ R. Furthermore, if IJ = JI = R for some fractional ideal I , then J is invertible with
inverse I. In particular, for a∈ R, aR is an invertible fractional ideal with inverse a−1R=
Ra−1. Moreover, if we set [I : R] := {x ∈D/xI ⊂ R}, then I−1 = [I : R].

2. Hermitian forms and lattices

In this section, we continue with the same notations as in the preceding section. For a
finitely generated torsion left R-module M, its dual M∗ := HomR(M,T = D/R) is en-
dowed with a natural right R-module structure defined by f · r(m)= f (m)r for f ∈M∗,
r ∈ R, and m∈M.

Lemma 2.1. The restriction of� to R is an involution. Moreover,� induces an involution:
(1) �̄ on D̄ defined by x̄�̄ := x̄�;
(2)�· on D/R defined by (d+R)�

·
:= d� +R.

Proof. From theory of valued division algebras, it is well known that the restriction of v
to the field F extends in a unique way to D, moreover, this extension is v. To prove the
restriction of � to R is an involution, it suffices to show that v(x) = v(x�) for all x ∈ R.
For x ∈D, setting ω(x) := v(x�), then it is straightforward to check that ω is a valuation
on D. Since� is an involution of the first kind, we deduce that ω/F = v/F , hence ω = v so
that v(x)= v(x∗) for all x ∈ R. Consequently, (1) and (2) hold. �

Since � is an involution on R, then M∗ can again be regarded as a left module if one
defines r · f (m)= f (m)r∗.

Lemma 2.2. M ∼=M∗, and M is canonically isomorphic to M∗∗.

Proof. For the nontrivial part, as R is in particular a left principal ring satisfying aR= Ra
for all a ∈ R, there exists an ascending sequence (I1, . . . ,In) of ideals of R such that M ∼=
⊕n

i=1R/Ii. Since (M ⊕N)∗ =M∗ ⊕N∗, it then suffices to prove the lemma for M = R/I.
On the other hand, for each homomorphism f ∈M∗, we have f (r̄)= r f (1̄) for all r ∈ R.
Setting β̄ = f (1̄), we then get 0= f (x̄)= xβ+R for all x ∈ I , which yields xβ ∈ R so that
β ∈ {d ∈ D/Id ⊂ R} = {d ∈ D/dI ⊂ R} = I−1. Thus M∗ ∼= I−1/R. From R principal, we
deduce I = aR= Ra for some a∈ R, therefore M∗ ∼= I−1/R= a−1R/R∼= R/aR=M. �

A Hermitian form on M is a biadditive map h : M×M →D/R such that, for x, y ∈M
and r,β ∈ R : h(rx,βy)= rh(x, y)β∗, h(x, y)= h(y,x)∗. Furthermore, h is called regular if

ĥ : M→M∗ defined by ĥ(x)= h(x,·) is an isomorphism of R-modules. For a submodule
N of M, we define N⊥ = {x ∈M/h(x,n) = 0 ∀n ∈ N}. In view of regularity of h, we
obtain (N⊥)⊥ =N. Recall that (M,h) is called weakly metabolic if there exists a submodule
N of M such that N =N⊥.
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In the sequel, WT(R) denotes the Witt group of regular Hermitian forms on finitely
generated torsion R-modules, where weakly metabolic forms are identified with 0.

Proposition 2.3. Let N be a submodule of (M,h) with N ⊂N⊥. Then h induces a regular
Hermitian form h̄ on N⊥/N such that (M,h)⊕ (N⊥/N ,−h̄) is weakly metabolic.

Proof. Consider the map h̄ : N⊥/N ×N⊥/N → D/R defined by h̄(x̄, ȳ) = h(x, y). If x, x′,
y, y′ are elements in N⊥ such that (x̄, ȳ)= (x̄′, ȳ′), then x = x′ +n and y = y′ +n′, where
n,n′ ∈N. Using N ⊂N⊥, we then get h̄(x̄, ȳ)= h(x′ + n, y′ + n′)= h(x′, y′) so that h̄ is a
well-defined map. Moreover, for x, y ∈N⊥, we have h̄(αx̄,βȳ)= h̄(αx,βy)= αh(x, y)β∗ =
αh̄(x̄, ȳ)β∗ for all α,β ∈ R. For regularity of h̄, if x ∈ N⊥ is such that h̄(x̄, ȳ) = 0 for all
y ∈ N⊥, then h(x, y) = 0 for all y ∈ N⊥. Consequently, x ∈ (N⊥)⊥ = N and then x̄ = 0.
Let f ∈ (N⊥/N)∗, then f ◦π ∈ (N⊥)∗, where π : N⊥ →N⊥/N is the canonical projection.

The surjectivity of M
ĥ−→M∗ → (N⊥)∗ assures existence of x ∈M such that f ( ȳ)= f (y +

N)= h(x, y) for all y ∈N⊥. In particular, for y ∈N , f ( ȳ)= 0= h(x, y), thus x ∈N⊥ and

f = ̂̄h(x), which proves the regularity of h̄. Finally, the submodule ∆= {(x, x̄)/x ∈N⊥} of
M⊕N⊥/N satisfies ∆⊥ = ∆. Thus (M,h)⊕ (N⊥/N ,−h̄) is weakly metabolic. �

In the classical theory of regular symmetric bilinear forms over a commutative field
F, orthogonal basis plays a key role in studying the Witt group W(F). Furthermore, ex-
istence of orthogonal basis is proved in noncommutative case (see [1, Theorem 3, page
153]). In our situation, we can give a short proof for this result as follows.

Proposition 2.4. Every regular Hermitian space (V ,h) has an orthogonal basis.

Proof. Suppose h �= 0, otherwise each basis is clearly orthogonal. There exist x, y ∈V such
that h(x, y)= 1. If h satisfies h(z,z)= 0 for all z ∈ V , then h(x+αy,x+αy)= 0= α+α∗

so that α∗ = −α for all α ∈ D, contradicting 1∗ = 1. Thus there exists z ∈ V for which
h(z,z) �= 0 and h(z,z) is then invertible in D. The regularity of Dz yields V =Dz ⊥ (Dz)⊥.
Reasoning by induction, this completes the proof. �
Remark 2.5. As an application of the previous result, every regular Hermitian space con-
tains a lattice L such that L ⊂ L#. Indeed, let L = ⊕n

i=1Rei be a lattice on (V ,h) and let
(ei)1≤i≤n be an orthogonal basis of V. Hence, h(ei,ej) = 0 for i �= j and h(ei,ei) = λi ∈ D
and either λi ∈ R or λ−1

i ∈ R. Assume λ−1
i ∈ R for some 1≤ i≤ n, then (e1, . . . ,λ−1

i ei, . . . ,en)
is an orthogonal basis of V satisfying h(ej ,ej) = λj ∈ R for j �= i and h(λ−1

i ei,λ−1
i ei) =

(λ∗i )−1 ∈ R, accordingly, L⊂ L#. This remark will be used in the sequel.

The following lemma describes relationship between linearR-independence and linear
D-independence for elements in V.

Lemma 2.6. Let e1, . . . ,en be elements in V , then e1, . . . ,en are linearly R-independent if and
only if e1, . . . ,en are linearly D-independent.

Proof. For the nontrivial sense, suppose e1, . . . ,en are not linearly D-independent, then
there exist d1, . . . ,dm ∈D−{0} (m≤ n) such that

∑m
i=1diei = 0.

Let v(ds)= inf{v(di)/1≤ i≤ n}, then for all 1≤ i≤m, we have di = rids for some ri ∈
R−{0}. Accordingly,

∑m
i=1 ridsei = 0 so that

∑m
i=1d

−1
s ridsei = 0 proving our proposition,

since d−1
s rids ∈ R−{0}. �
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In the following theorem, we collect some useful results on lattices. Our approach is
based on commutative case with different proof due to the use of valuation.

Theorem 2.7. Let L1 and L2 be two lattices on V. Then
(1) there exist a,b ∈ R such that aL1 ⊂ L2 and bL2 ⊂ L1,
(2) there exist a basis (e1, . . . ,en) of V and fractional ideals I1, . . . ,In such that L1 =

⊕n
i=1Rei and L2 =⊕n

i=1Iiei,
(3) (L1∩L2)# = L#

1 +L#
2 and (L1 +L2)# = L#

1∩L#
2,

(4) if L1 ⊂ L2, then L#
2 ⊂ L#

1.

Proof. (1) Writing L1 = ⊕n
i=1Rei and L2 = ⊕n

i=1R fi where both (e1, . . . ,en) and ( f1, . . . , fn)
are D-bases of V. We fix 1 ≤ s ≤ n, there exist ds1 , . . . ,dsn ∈ D such that fs = ⊕n

j=1dsj e j .
Consider v(dst )= inf{v(dsj )/1≤ j ≤ n}, then for all 1≤ j ≤ n, we have dsj = r jdst , where
r j ∈ R. If dst ∈ R, then dsj ∈ R for all j, otherwise d−1

st ∈ R so that d−1
st dsj = d−1

st r jdst ∈ R
for all j �= t and d−1

st dst = 1∈ R which proves existence of rs ∈ R such that rsdsj ∈ R for all
1 ≤ j ≤ n. Hence, rs fs ∈ L1 for all 1 ≤ s ≤ n. Setting b =∏n

i=1 ri ∈ R, we then get bR fi =
r1 ···ri ···rnRri−1ri fi ⊂ Rri fi ⊂ L1 for all i, hence bL2 ⊂ L1. A similar reasoning yields
aL1 ⊂ L2 for some element a∈A.

(2) Let a be a nonzero element in R such that aL2 ⊂ L1. As aL2 is a lattice on V , then
aL2 is a finitely generated free R-module with rank n = [V : D]. Applying elementary
divisor theorem to the submodule aL2 of L1, there exist an R-basis (e1, . . . ,en) of L1 and
elements b1, . . . ,bn ∈ R−{0} such that (b1e1, . . . ,bnen) is anR-basis of aL2.Therefore, L1 =
⊕n

i=1Rei and aL2 = ⊕n
i=1Rbiei. Consequently, L2 = ⊕n

i=1Iiei, where Ii = a−1Rbi = Ra−1bi is
a fractional ideal. Finally, Lemma 2.6 implies that (e1, . . . ,en) is a D-basis of V.

(3) and (4) are clear. �

Remark 2.8. If L=⊕n
i=1Rei is a lattice on a regular Hermitian space, then (L#)# = L. Fur-

thermore, it is interesting to note that L# =⊕n
i=1Re

′
i , where (e′1, . . . ,e′n) is the dual basis of

(e1, . . . ,en).

3. Main results

From [3, Corollary 1.4.4, page 396], it follows that every finitely generated torsion-free
module over a principal ideal domain is a free module. The following proposition gives
another proof for this result due to the use of valuation’s arguments.

Proposition 3.1. Every finitely generated torsion-free module is a free module.

Proof. Let (m1, . . . ,mn) be a minimal set of generators of M with
∑n

i=1 aimi = 0 and let
v(ai)= inf{v(aj)/1≤ j ≤ n}. For all j, we have v(aj)= v(ai) + s j = v(aiπsj ), and thus aj =
aiπsj uj , where uj is an invertible element of R. If ai = 0, then aj = 0 for all j which implies
that (m1, . . . ,mn) is free. Assume ai �= 0, as M is torsion-free, the fact that ai(πs1u1m1 +
··· + mi + πsnunmn) = 0 implies πs1u1m1 + ··· + mi + πsnunmn = 0 so that (m1, . . . ,
mi−1,mi+1, . . . ,mn) generated M, contradicting minimality of (m1, . . . ,mn). Accordingly,
(m1, . . . ,mn) is free. �

Proposition 3.2. Assume 2∈�(R). Then every regular Hermitian module (M,h) has an
orthogonal basis.
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Proof. Suppose existence of an element x ∈M such that h(x,x) ∈�(R). It is easily seen
that Rx is a regular submodule of M, hence M =N ⊥N⊥. Reasoning by induction, (M,h)
admits an orthogonal basis (e1 = x,e2, . . . ,en).

Now to prove existence of x ∈M with h(x,x)∈�(R), let x, y ∈M such that h(x, y)=
r �= 0. If h(z,z)= 0 for all z ∈M, then h(x + uy,x + uy)= 0 so that ru∗ + ur∗ = 0 for all
u∈ R. In particular, for u= 1, we get ru∗ = ur for all u∈ R.Consequently, for u,v ∈ R, we
then have uvr = r(uv)∗ = rv∗u∗ = vru∗ = vur which yields uv = vu since R is a domain
and therefore contradicts the noncommutativity of R. Hence, M contains an element z
satisfying h(z,z) �= 0. Furthermore, we claim existence of x ∈M such that h(x,x)∈�(R).
Indeed, otherwise h(x,x) ∈� for all x ∈M. Let (e1, . . . ,en) denote a basis of M over R
and consider the map φ : M → R defined by φ(ei) = δi1. It is clear that φ ∈M∗ and the

regularity of h implies φ = ĥ(x) with x ∈M. From 1 = φ(e1) = h(x,e1), we deduce 2 =
h(x,e1) +h(e1,x)∈� which completes the proof. �
Theorem 3.3. WT(R)∼=W(D̄) is an isomorphism which depends on the choice of the prime
element π.

Proof. (1) Since the action r · (d +R) = rd +R endows D/R with a left R-module struc-
ture, the fact that (R,�) is a ring with involution implies that D/R can be transformed
into a right module via (d+R)r = r∗d+R.On the other hand, ifM is a finite-dimensional
D̄-vector space, then M is a finite generated torsion R-module (π ·m= 0 for all m∈M,
π the nonzero generator of �). Now, consider a regular Hermitian form h : M×M→ D̄.
For x, y ∈M, π−1h(x, y) ∈ D/R and π−1h(x, y) = π−1h(x, y)π∗(π∗)−1 = h(x, y)(π∗)−1.
From π−1h(αx,βy)=h(αx,βy)(π∗)−1=αh(x,βy)(π∗)−1=απ−1h(x,βy)=απ−1h(x, y)β∗

and π−1h(y,x)= π−1h(x, y)∗ = h(x, y)∗(π∗)−1 = (π−1h(x, y))∗ for all α,β ∈ R, it follows
that π−1h is a Hermitian form. To prove regularity of π−1h, suppose π−1h(x, y) = 0 for
all y ∈M, then h(x, y) ∈ πR in such a way that x = 0. Moreover, if f : M → D/R, then

f (πx)= π f (x)= 0 for all x ∈M, and thus π f (x)∈ R. From M
π f−−→ R

s−→ R/πR, the regu-

larity of h then assures existence of x ∈M such that s ◦π f = ĥ(x), that is, π f (y) +πR=
h(x, y) for all y ∈M. Therefore, f (y)= π−1h(x,·)(y) proving that

Ψ : W(D̄)−→WT(R), (V ,h) �−→ (V ,π−1h
)

(3.1)

is a well-defined map.
(2) Let M be a finitely generated torsion R-module and let h : M×M→D/R be a reg-

ular Hermitian form. Hence, for α,β ∈ R, h(αx,βy)= αh(x, y)β∗ = βαh(x, y)= h(αβx, y)
for all x, y ∈M. Then we have to distinguish two cases.

(i) πM = {0}. It is readily verified that M is a left D̄-vector space by the action
r̄ ·m= rm. In view of πh(αx,βy)= h(αx,βy)π∗ = αh(x,βy)π∗ = απh(x,βy)=
απh(x, y)β∗, we deduce that πh : M ×M → D̄ is a Hermitian form. To prove
regularity of πh, let x ∈M be such that πh(x, y)= 0 for all y ∈M, then h(x, y)∈
R and the regularity of h yields x = 0. Furthermore, if f : M→ R/πR, then from
π−1 f (αx) = π−1 f (αx)π∗(π∗)−1 = (π−1 f (αx)π∗)(π∗)−1 = f (αx)(π∗)−1 =
α f (x)(π∗)−1 = αππ−1 f (x)(π∗)−1 = απ(π−1 f (x)(π∗)−1) = απ(π2 f (x)) =
απ−1 f (x), we get π−1 f ∈HomR(M,D/R) so that π−1 f = ĥ(x) for some x ∈M.

Thus f = π̂h(x) proving regularity of πh in this case.
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(ii) πkM = {0} and πk−1M =M1 �= {0} for some k ≥ 2. The fact that h(αx,βy) =
h(βαx, y) then yields h(πk−1x,πk−1y)= h(π2(k−1)x, y)= 0, and therefore M1 ⊂
M⊥

1 . Setting M1 =M⊥
1 /M1 and applying Proposition 2.3, we get (M,h)=(M1, h̄)

in WT(R). Let h1 = πh and M2 = πk−1M1, then clearly M2 ⊂M⊥
2 . Furthermore,

πk−1M1 = {0} because πk−1M⊥
1 ⊂ πk−1M =M1. We then construct (Mr , h̄) such

that (M,h)= (Mr , h̄) in WT(R) and πMr = {0}. Therefore, (Mr ,πh̄)∈W(D̄).
Consequently,

Φ : WT(R)−→W(D̄),

(M,h) �−→ (Mr ,πh̄
) (3.2)

is a well-defined map. Moreover, Φ◦Ψ= IdW(D̄) and Ψ◦Φ= IdWT(R) . �

Let L be a finitely generated projective R-module with rank n. It is clear that L⊗R D is
a right D-vector space with dimension n. Moreover, every Hermitian form h : L×L→ R
induces a Hermitian form hL on L⊗R D defined by hL(x⊗d, y⊗d′)= d∗h(x, y)d′.

Lemma 3.4. With the notations above, if h is regular, then hL is regular too.

Proof. Let {ei}1≤i≤n be an R-basis of L and let {e′i}1≤i≤n denote its dual basis defined by
h(ei,e′i ) = δi j . It is easy to verify that {ei ⊗ 1}1≤i≤n is a D-basis of L⊗D with dual basis
{e′i ⊗ 1}1≤i≤n. Let x =∑n

i=1 ei⊗ di ∈ L⊗D such that hL(x, y)= 0 for all y ∈ L⊗D, hence
hL(x,e′j ⊗ 1)= 0=∑n

i=1d
∗
i δi j = d∗j for all j so that x = 0, thus hL is regular. �

Lemma 3.5. Let (V ,h) be a Hermitian form and let L be a lattice on V with L⊂ L#. Then
(L#/L, h̄)∈WT(R) does not depend on the choice of the lattice L.

Proof. Let L0 be a lattice on V such that L0 ⊂ L. Using Theorem 2.7, we obtain L0 ⊂
L ⊂ L# ⊂ L#

0. Moreover, it is clear that L/L0 is a torsion submodule of L#
0/L0 which sat-

isfies (L/L0)⊥ = {x + L0, x ∈ L#
0/h(x, y) ∈ R for all y ∈ L} = L#

0 ∩ L#/L0 = L#/L0 so that
L/L0 ⊂ (L/L0)⊥. From Proposition 2.3, we then get (L#

0/L,hL0 ) = ((L#/L0)/(L/L0), h̄L0 ) =
(L#/L,hL) in WT(R). Now, consider two lattices L1 and L2 on V and set L0 = L1∩L2, then
L0 ⊂ L1 and L0 ⊂ L2. Moreover, (L#

0/L0,hL0 )= (L#
1/L1,hL1 )= (L#

2/L2,hL2 ). �

A regular Hermitian R-module (M,h) is called metabolic if there exists a direct sum-
mand N of M satisfying N⊥ =N. However, it suffices that M admits a submodule N such
that N⊥ = N (see [2, Lemma 1.2, page 122]). In what follows, W(R) denotes the Witt
group of regular Hermitian forms on finitely generated projective R-modules, where meta-
bolic modules are identified with 0.

Recall that if R is a Dedekind domain with quotient field K , then the sequence

0−→W(R)
i−→W(D)

δ−→WT(R) (3.3)

defined by i(L,h)= (L⊗K ,hK ) and δ(V ,h)= (L#/L, h̄) is exact. The aim of the following
theorem is to extend this result to noncommutative discrete valuation ring.
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Theorem 3.6. With the hypothesis above, we have the following exact sequence:

0−→W(R)
i−→W(D)

δ−→WT(R),

(L,h) �−→ (L⊗D,hL
)
,

(V ,h) �−→
(
L#

L
, h̄
)
.

(3.4)

Proof. Concerning the injectivity of i, suppose (L⊗D,hL) is a hyperbolic space, then
there is a D-subspace W of V = L⊗D such that W =W⊥. If {e1, . . . ,e2n} denotes an
R-basis of L, then {ei ⊗ 1}i is a D-basis of V and we can assume (e1 ⊗ 1, . . . ,en ⊗ 1) is
a D-basis of W. Setting M = ⊕n

i=1Rei, from hL(ei ⊗ 1,ej ⊗ 1) = 0, we have h(ei,ej) = 0

for all i, j so that M ⊂M⊥. Reciprocally, let x = ∑2n
i=1 riei ∈M⊥, hence 0 = h(x,ej) =∑2n

i=1 rih(ei,ej) = hL(
∑2n

i=1 ei ⊗ ri,ej ⊗ 1) for all 1 ≤ j ≤ n. As
∑n

i=1hL(ei ⊗ ri,ej ⊗ 1) = 0,

then hL(
∑2n

i=n+1 ei⊗ ri,ej ⊗ 1)= 0 for all 1≤ j ≤ n in such a way that
∑2n

i=n+1 ei⊗ ri ∈W⊥ =
W = ⊕n

i=1(ei ⊗ 1)D, therefore
∑2n

i=n+1 ei ⊗ ri = 0 and thus ri = 0 for all n + 1 ≤ i ≤ 2n.
Hence, x =∑n

i=1 riei ∈M and M =M⊥. From [2, Lemma 1.2, page 122], it then follows
that (L,h) is metabolic.

To prove Im i ⊂ kerδ, observe that L is a lattice on V = L⊗D which satisfies L = L#.
Indeed, let (ei)1≤i≤n be an R-basis of L with dual basis (e′i )1≤i≤n. If x =∑i ei⊗di ∈ L#, then
h(x,e′j ⊗ 1) = dj ∈ R for all j. As L↩ L⊗D, then L = L#, and therefore δ ◦ i(L,h) = 0.

Conversely, if δ(V ,h)= 0, then there exists a lattice L on V such that (L#/L, h̄) is weakly
metabolic. Hence, there is an R-module N with L ⊂ N ⊂ L# and N/L = (N/L)⊥. Then
(N/L)⊥ = N# ∩ L#/L = N#/L so that N = N#. Thus V = N ⊗R D and (V ,h) = i(N ,h/N).

�
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