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This paper presents a global L1-estimate for the convergence of mesh-based interpolants
on 2-manifolds defined over multiple coordinate systems and analyzes the convergence of
an integral on a triangulated approximate manifold to the desired integral on the man-
ifold being approximated. To place this estimate in context, previous convergence esti-
mates for interpolation techniques on manifolds are presented. Finally, numerical results
demonstrating the value of the L1-estimate are presented.

1. Introduction

Mesh-based interpolation (e.g., finite-element interpolation) of functions defined on sur-
faces and manifolds has received attention in a diverse range of applications including
computer graphics [3], structural engineering [5], and astrophysics [11]. In many of these
applications, the domain in question possesses substantial curvature or discontinuities in
its tangent plane and can only be described nonsingularly with multiple coordinate sys-
tems. In these scenarios, subtle details of approximation, unseen in the traditional frame-
work, arise which may prevent convergence [2, 14].

To elucidate these details, this paper presents a global L1-convergence estimate for
mesh-based element interpolants on 2-surfaces (and 2-manifolds). To place this estimate
in context, we offer a brief survey of efforts to construct interpolants on manifolds for
Petrov-Galerkin methods. (A more thorough survey appears in [18].)

This survey will examine Nedelec’s approach as described in [17] which has served
as a standard for finite-element approximation across multiple coordinate systems. This
survey will also discuss techniques not requiring a traditional mesh. These “meshless”
methods provide context in two ways. First, they illustrate the use of global Lp-estimates,
1 ≤ p <∞, on manifolds. We will place mesh-based methods into a comparable frame-
work, in contrast to the L∞- and local Lp-estimates traditionally used. Second, meshless
methods which decompose a subset of Rn into a covering of open sets parallel the use of
open coverings in a manifold representation.

Before reading the survey, note the following technical point. The majority of the
methods on manifolds surveyed have been developed for 2-surfaces lying in R3, which
up to equivalence, do not encompass all 2-manifolds. For example, Nedelec, Sheng, and
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Hirsch specifically exploit the structure of a 2-surface in R3 to build their framework. The
central result of this paper, by contrast, is built only from the manifold structure of the
2-manifold and applies more generally. However, to address the motivating examples for
this result, this paper focuses mainly on 2-surfaces lying in R3.

1.1. Mesh-based approaches. The challenge in developing mesh-based approaches to
approximation on manifolds lies in relating the viewpoints of classical differential ge-
ometry and numerical approximation. In classical differential geometry, the different
coordinate systems (also called “patches” or “charts”) are blended together via smooth
“partition-of-unity” functions, which then permit the definition of globally defined quan-
tities (e.g., integrals) via the patches. The smoothness of the partition functions require
substantial overlap among their supports and these support sets will frequently not be
polygonal. Mesh-based interpolation, by definition, however, requires a polygonal de-
composition of the underlying set. Also, in practice, numerical methods on manifolds
favor disjoint partitions of manifolds [1, 14] which correspond to piecewise constant,
discontinuous partition-of-unity functions, and thus, lie outside the framework of clas-
sical, differential geometry.

One sees these assumptions of no overlap among the charts and polygonal chart sets in
the work of Nedelec. Further, we see the use of global L∞-estimates, in Nedelec’s work and
the work of Sheng and Hirsch, thereby circumventing the difficulties in defining global
integration when the classical differential geometric framework does not apply.

1.1.1. Nedelec’s work. Nedelec [17] delivered some of the first surface approximation er-
ror estimates. He begins with p patches, polygonal sets {Si} which, together with maps
Φi, form the surface. The sets {Si} partition the manifold disjointly, that is, they intersect
only at their boundaries. He triangulates each Si and constructs on each triangle T of Si
an interpolant FT from a space containing all polynomials up to degree k of the chart
function Φi. He then stitches each FT together to form a C0-function Φih on Si which is
locally differentiable on each T . For the greatest diameter h across each triangulation of
each Si, the following estimates hold:

max
i=1···p

sup
x∈Si

∣∣Φi(x)−Φih(x)
∣∣≤ Chk+1 max

i=1···p
sup
x∈Si

∣∣Dk+1Φi(x)
∣∣,

max
i=1···p

sup
x∈Si

∣∣DlΦi(x)−DlΦih(x)
∣∣≤ Chk+1−l max

i=1···p
sup
x∈Si

∣∣Dk+1Φi(x)
∣∣1≤ l ≤ k+ 1,

(1.1)

where | · | refers to the standard vector or matrix norm. Nedelec then asserts, for suffi-
ciently small h, the existence of a homeomorphism ψ between this approximate surface
and the original surface whose inverse associates to each point p on the original surface
the point on the approximate surface intersecting the surface normal at p. Via ψ, the tri-
angulation of the approximate surface becomes a triangulation of the original surface. He
then proves that, for FT and the function ψ ·FT from Si to the original surface,

sup
x∈T

∣∣ψ ·FT(x)−FT(x)
∣∣≤ Chk+1 sup

x∈T

∣∣Dk+1Φi(x)
∣∣

sup
x∈T

∣∣D(ψ ·FT(x)
)−D(FT(x)

)∣∣≤ Chk sup
x∈T

∣∣Dk+1Φi(x)
∣∣. (1.2)
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He then gives estimates for the determinants J(·) of the metrics formed by these chart
functions:

sup
x∈T

∣∣J(Φi(x)
)− J(FT(x)

)∣∣≤ Chk sup
x∈T

∣∣Dk+1Φi(x)
∣∣, (1.3)

sup
x∈T

∣∣J(ψ ·FT(x)
)− J(FT(x)

)∣∣≤ Chk+1 sup
x∈T

∣∣Dk+1Φi(x)
∣∣. (1.4)

Note that the existence of ψ increases the expected order of convergence from the
standard interpolation framework. In the forthcoming [19], we will demonstrate that this
faster estimate holds when ‖D2Φi‖∞ is finite and the surface is tangent plane continuous.

1.1.2. Sheng and Hirsch. The engineering-inspired field of “parametric surface meshing”
is devoted to mesh-based interpolation of functions on surfaces. The following theorem
of Sheng and Hirsch (see [20]) represents one of the most often cited convergence theo-
rems in this field and again, employs an L∞-estimate.

Theorem 1.1. Let S(u,v) be a C2-smooth parametric patch defined on [a,b]× [c,d]. Let
T ∈ [a,b]× [c,d] be an arbitrary triangle with vertices (A1,A2,A3) in the parametric space,
and let h be the maximal edge length of the triangle. Then, linear interpolant ST of S such
that ST(Ai)= S(Ai) satisfies

sup
(u,v)∈T

∥∥S(u,v)− ST(u,v)
∥∥≤ 2

9
h2(M1 + 2M2 +M3

)
, (1.5)

where ‖ · ‖ is the Euclidean R3-norm and M1 = sup(u,v)∈T ‖∂2S(u,v)/∂u2‖, M2 =
sup(u,v)∈T ‖∂2S(u,v)/∂u∂v‖ and M3 = sup(u,v)∈T ‖∂2S(u,v)/∂v2‖.

1.2. Non-mesh-based approaches. The preceding mesh-based approaches use L∞-
estimates and rest on classical Ck-differentiability. We will see that the chart functions
and the related transition functions are better described by weak differentiability and
Sobolev spaces, that is, Wk,p, the space of functions with weak derivatives up to order k
lying in Lp. The following non-mesh-based estimates provide a framework more natural
for weak differentiability and on a related note, global Lp-estimates, 1≤ p <∞. The first
set of estimates use an alternative formulation of weak differentiability via Fourier series.

1.2.1. Interpolation on manifolds via Fourier series. The interpolation of an L2(=W0,2)-
or Hk(=Wk,2)-function on a manifold, given a sampling of its values (either measured
under an integral sign or measured pointwise after making assumptions to clarify the
almost everywhere ambiguity of L2-functions), via the construction of interpolants based
on Fourier series has been studied in the papers [8, 9, 16]. Often the interpolants are built
from “radial basis functions” which vary only according to the radial distance from a
fixed point [16]. With these Fourier series representations, the original functions and
their interpolants are analyzed in terms of Sobolev spaces built from examining the decay
of coefficients in the functions’ Fourier series. Many approximation results on spheres
and tori have been developed in this framework.

Narcowich et al. [16] present error estimates for these Fourier-based interpolants.
First, they truncate the Fourier series of the original function f to obtain a series fL with
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a finite number of terms. Then, they approximate the truncated series with an interpolant
IΦ,X( fL) built from a kernel Φ and a discrete subset X of the original domain Ω. From this
set X , we may derive a “mesh norm” h :=maxy∈Ω minx∈X d(x, y). This norm measures,
through the metric d(x, y) of Ω, the furthest distance a point in Ω may lie from a point
in X . Under the assumption that card(X)= O(h−n), where n is the dimension of Ω and
card(X) refers to the number of elements in X , they prove an estimate of the form

∥∥ f − IΦ,X
(
fL
)∥∥∞,Ω =O

(
hσ−n/2

)‖ f ‖w, (1.6)

where σ measures the rate of decay of the coefficients of f and the w-norm measures
these coefficients relative to certain “weights.”

1.2.2. Meshless methods. Non-mesh-based interpolation techniques, such as those de-
scribed above, have given rise to “meshless methods.” These Petrov-Galerkin methods
for discretizing systems of partial differential equations without a mesh seek to elim-
inate the burdensome storage and time requirements of managing a mesh. The chal-
lenge these methods face lies mainly in numerical integration. The bottleneck in using
Petrov-Galerkin methods to solve PDEs lies in solving the large matrices produced by
discretizations of the integrated “weak form” equations. To make computations feasible,
these matrices must be sparse. To create sparse matrices, the functions used must have
local support and the construction of local support requires a decomposition of the do-
main into smaller pieces. Thus, while many of these meshless methods do not use meshes
for interpolation, they use meshes for integration. Other methods do not use polygonal
meshes, but use structures comparable to meshes, such as a spherical decomposition of
the domain to define integration. In general, meshless methods have been found to be less
efficient than mesh-based methods [4]. In fact, the architects of one such method later
incorporated the polygonal meshes into their previous framework to avoid the difficulties
caused by the lack of such a mesh [6, 7].

Among the meshless methods, two methods, in particular, lay theoretical groundwork
for finite-element (and more generally, mesh-based) methods on manifolds. Both the
partition-of-unity method [15] and the hp-cloud method [6] construct interpolants from
partitions of unity built from an open cover of the domain. The parallels between open
covers of sets in Rn and open covers of manifolds make these two methods relevant to
this discussion. In each method, a function is approximated locally and from these lo-
cal approximations, a global approximation is produced via the partition of unity. The
key difference between these methods lies in the number of open sets in the covering.
The partition-of-unity method more closely relates to our work, but the similarity and
simultaneous arrival of the hp-cloud method make this method worthy of our attention.

In the partition-of-unity method, there is not necessarily an a priori relationship be-
tween the number of “patches” (open sets) and the rate of the convergence or between
the size of the patches and the rate of convergence. While such relationships may exist
in implementations of this method, the underlying theory only assumes the existence of
ε1(i) and ε2(i) which bound the approximations on each patch. These ε’s alone control
the rate of convergence in the first global estimate below. In the second estimate, ε1(i)
must converge to zero faster than the inverse of the diameter of the patch goes to infinity.
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This requirement, however, does not impose a functional relationship between the two.
Thus, the number of patches may be of O(1) if the convergence of these ε(i)’s to zero
does not depend on the number of patches or the area of these patches. Here, we offer the
central results underlying this method.

Theorem 1.2 (Melenk and Babuska). Let Ω⊂ Rn. Let {Ωi} be an open cover of Ω such that
each point in Ω lies in only at most M of the Ωi. Let {φi} be a partition-of-unity subordinate
to this cover such that there exist constants C∞ and CG such that

∥∥φi∥∥L∞(Rn) ≤ C∞,
∥∥∇φi∥∥L∞(Rn) ≤

CG
diam

(
Ωi
) . (1.7)

Let Vi ⊂H1(Ωi∩Ω) and V =∑i φiVi. Let u∈H1(Ω). Suppose that for each i, there exists
vi ∈Vi, ε1(i) and ε2(i) such that

∥∥u− vi∥∥L2(Ωi∩Ω) ≤ ε1(i),
∥∥∇(u− vi)∥∥L2(Ωi∩Ω) ≤ ε2(i). (1.8)

Then, the function uap =
∑

i φivi ∈V ⊂H1(Ω) satisfies

∥∥u−uap
∥∥
L2(Ω) ≤

√
MC∞

(∑
i

ε2
1(i)

)1/2

∥∥∇(u−uap
)∥∥

L2(Ω) ≤
√

2M

(∑
i

(
CG

diam
(
Ωi
))2

ε2
1(i) +C2

∞ε2
2(i)

)1/2

.

(1.9)

Thus, we expect the order of the global approximation to be that of the local approxi-
mation.

In contrast to the partition-of-unity method, the hp-cloud method explicitly creates
the local approximation space and bounds the error in this local approximation space
as a function of the size of the open sets. The hp-cloud method decomposes the do-
main into O(h−n) open balls ωhα, with each set occupying an area of O(hn), where h is
the maximum of the dilation parameters hα of the affine maps which send the open
balls to the unit ball. The local approximation spaces are constructed from the parti-
tion functions whose supports intersect the given patch and from the product of these
partition functions with polynomials. An estimate measuring the difference between a
function u ∈Wp+1(Ω∩ωhα) and its local interpolant Π2

αu is proven under comparable
assumptions to those of the partition-of-unity method: each partition function satisfies
‖φhα‖L∞(Ω) ≤ C∞ and ‖∇φhα‖L∞(Ω) ≤ CG/hα and each point of Ω is contained in at most M
charts. A simplified version of this estimate follows:

∣∣u−Π2
αu
∣∣
m,2,Ω∩ωhα ≤ Cαh

p+1−m
α |u|p+1,2,Ω∩ωhα , (1.10)

where m = 0,1. These local interpolants are then stitched together over the N(h) charts
via the partition of unity functions. This approach produces comparable estimates to
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those of the partition-of-unity method:

∥∥u−uhp
∥∥
L2(Ω) ≤MC∞max

α
Cαh

p+1‖u‖Hp+1(Ω),∣∣u−uhp∣∣H1(Ω) ≤
√

2Mmax
α

(
CGCα +C∞Cα

)
hp‖u‖Hp+1(Ω).

(1.11)

Both these methods invoke a partition of unity to combine local approximations into
a global approximation and their approaches provide insight into mesh-based approxi-
mations on manifolds. Recall, however, that classical partitions of unity often do not give
rise to polygonal decompositions of the manifold. In such a case, an approximate parti-
tion of unity and an approximate polygonal decomposition of the manifold will be used.
The question then arises of how well the triangulation approximates the manifold.

2. Comparing functions on different manifolds

2.1. Defining a metric. To measure the error in a mesh-based approximation of a func-
tion on a manifold, we must somehow evaluate the difference between the triangulated
manifold and the manifold it approximates. We will call two manifolds M and N equal
if there exist a cover of M, {Ci}, Ci ⊂ Rn, and a cover of N , {Di}, Di ⊂ Rn, and maps
γM,i : Ci 	→M and γN ,i :Di 	→N such that for all i, Ci =Di a.e. and ‖γM,i− γN ,i‖Wk,p(Ci) = 0.
(The choice of p = 2 seems the most natural for a framework for solving PDEs, but p = 1
appears to be the most theoretical satisfying choice, per our discussion below.)

This notion of equivalence of manifolds suggests a way of judging when two manifolds
are “close.”M andN are approximately equal if they have comparable charts structures Ci
andDi, respectively, whose symmetric difference Ci∆Di is small, and associated maps γM,i

and γN ,i which are both well-defined and nonsingular on Ci ∪Di, and whose difference
is small in a Wk,p-norm. With this viewpoint for evaluating the difference between two
manifolds, we may define a “metric” (topologically speaking, a pseudometric) for eval-
uating the difference between two functions on M and N . The crucial idea is that while
γM,i needs only to be defined on Ci for purposes of constructing M, its definition may be
extended to areas of Di not in Ci without difficulty. We propose to measure the difference
between a function f on M and a function q on N via the following function:

dM,N ( f ,q)=
∑
i

∥∥φM,i f
√
gM −φN ,iq

√
gN
∥∥
L1(Ci∪Di)

. (2.1)

(By an abuse of notation, we refer to f both as a function from M 	→ R and via a chart
map as a function from Ci 	→ R.) Here, φM,i and φN ,i refer to partitions of unity on their
respective manifolds and gM and gN are the determinants of the metrics of their respective
manifolds. Observe that dM,M( f ,q)= ‖ f − q‖L1(M). (We assume that the same charts and
partition of unity are used in both treatments of M.) Further,

∣∣∣∣
∫
M
f −

∫
Mh

f
∣∣∣∣≤ dM,Mh

(
f , fh

)
. (2.2)
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We now have a means for measuring our approximation of a function f on a manifold.
We will demonstrate that this approximation depends upon our ability to approximate
the function f on each chart, our ability to approximate the partition of unity functions,
and our ability to approximate the determinant of the metric which derives from our abil-
ity to approximate the manifold. This observation is the essence of Lemma 2.1 to follow.

The L1-norm, as opposed to another Lp-norm, appears in the definition for several
reasons. First, because transition functions and chart maps will not take infinite values,
the derivatives of transition functions and chart maps should have finite L1-norm. This
claim will not necessarily hold true for the Lp-norm, p > 1. Also, dM,N reduces to the
L1-norm on M when M =N and the use of the L1-norm appears to offer better conver-
gence compared to alternatives we have considered. If we replace L1 with L2, dM,N will not
reproduce the L2-norm when M = N . Additionally, with this definition, using the tech-
niques of the proof of Lemma 2.1 below, the L1-norm appears to give a better convergence
estimate (although this difference may just be a product of number manipulation in our
efforts to find the most appropriate measurement). We could also replace the L1-norm
with L2-norm and take the square roots of the partition functions and the fourth roots
of the metric determinants. While this choice reproduces the L2(M)-norm when M =N ,
it appears to give a lower order estimate in the approximation of the partition functions.
Finally, note that since the sets in question are of finite measure, we may bound the L1-
norms by multiples of the L2-norms:

‖ f ‖L1 ≤ ‖ f ‖L2

√
mA. (2.3)

2.2. Local (one-chart) error estimates. In the following lemma, we will take a chart C
of a 2-manifold M and approximate it with a triangulation D, one part of a global trian-
gulated approximation Mh. We will then bound the individual terms in the sum in dM,Mh

in terms of the approximations of its component parts: the function f , the partition of
unity function, and the square root of the metric determinant. These errors are taken over
D, assuming that these functions are defined on areas of D outside of C. Extending these
errors over all of D, instead of over all triangles in D completely contained in C, appears
to give rise to better higher-order approximation.

In the following lemma, we place no explicit restrictions on the differentiability of M.
We place implicit restrictions on M by assuming the metric determinant is in L∞. Fur-
ther, we implicitly restrict the differentiability of M by assuming that the chart sets have
piecewiseWr,1 boundaries since these boundaries are defined by transition functions. We
may assume that the chart maps of M lie in Wk1,p, k1 > 1, and the transition functions lie
in Wk2,p, k2 ≥ 1. We will see that the differentiability of these functions will influence the
rates of convergence of the different terms in the following estimate.

Lemma 2.1. Let C ⊂ R2 be a single chart set, a bounded, connected set with a piecewise Wr,1

boundary, r = 1 or 2, of a 2-manifold M. Let C be approximated by a triangulated polygon
D such that each boundary edge of D is the linear interpolant of a Wr,1-segment of the
boundary curve of C. Thus, there exists a set of intervals [aj ,bj] partitioning the boundary
of C into curve segments such that on each segment, the boundary of C is given by w = zj(u),
z ∈Wr,1([aj ,bj]), where w is either the x- or y-coordinate and u∈ [aj ,bi]. We assume that
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C and D are contained in larger charts so that areas of D not in C are defined and that
the Lebesque measure m(C∪D) is finite. Let h be the maximum of the edge lengths of the
triangles inD. Let f be a function defined onM, φ a partition of unity function for a covering
of M containing C, and g the determinant of the metric components. Let fh, φh, and gh be
the respective approximations of f , φ, and g defined on D and 0 outside D. Assume that all
functions and their respective approximations are bounded above, both in L1 and L∞-norms
on C∪D. Suppose there exists ε > 0 which bounds |g| and |gh| from below, that is, that both
metrics are nonsingular. Assume that the number of boundary triangles is at most O(1/h).
Then, there exists a constant K such that the following estimates hold:

∥∥∥φ f √|g|−φh fh√|gh|∥∥∥
L1(C∪D)

≤ K(∥∥φ−φh∥∥L1(D) +
∥∥ f − fh

∥∥
L1(D) +

∥∥|g|−∣∣gh∣∣∥∥L1(D) +hr
)
.

(2.4)

Proof.

∥∥∥φ f √|g|−φh fh√|gh|∥∥∥
L1(C∪D)

=
∥∥∥(φ−φh) f √|g|+

(
f − fh

)
φh
√
|g|+

(√
|g|−

√∣∣gh∣∣)φh fh∥∥∥
L1(C∪D)

≤
∥∥∥(φ−φh) f √|g|∥∥∥

L1(C∪D)
+
∥∥∥( f − fh

)
φh
√
|g|
∥∥∥
L1(C∪D)

+
∥∥∥(√|g|−√∣∣gh∣∣)φh fh∥∥∥

L1(C∪D)

≤ ∥∥φ−φh∥∥L1(C∪D)‖ f ‖L∞(C∪D)

∥∥∥√|g|∥∥∥
L∞(C∪D)

+
∥∥ f − fh

∥∥
L1(C∪D)

∥∥φh∥∥L∞(C∪D)

∥∥∥√∣∣gh∣∣∥∥∥
L∞(C∪D)

+
∥∥∥√|g|−√∣∣gh∣∣∥∥∥

L1(C∪D)

∥∥φh∥∥L∞(C∪D)

∥∥ fh∥∥L∞(C∪D).

(2.5)

Now, for the sake of simplicity, we will replace these L∞-norms with a constant K :

∥∥∥φ f √|g|−φh fh√|gh|∥∥∥
L1(C∪D)

≤ K
(∥∥φ−φh∥∥L1(C∪D) +

∥∥ f − fh
∥∥
L1(C∪D) +

∥∥∥√|g|−√∣∣gh∣∣∥∥∥
L1(C∪D)

)

≤ K
(∥∥φ−φh∥∥L1(C−D) +

∥∥ f − fh
∥∥
L1(C−D) +

∥∥∥√|g|−√∣∣gh∣∣∥∥∥
L1(C−D)

+
∥∥φ−φh∥∥L1(D) +

∥∥ f − fh
∥∥
L1(D) +

∥∥∥√|g|−√∣∣gh∣∣∥∥∥
L1(D)

)
.

(2.6)
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And since all of the functions in question are bounded from above in L∞(C ∪D), the
preceding quantity is

∥∥∥φ f √|g|−φh fh√|gh|∥∥∥
L1(C∪D)

≤ K
(
‖1‖L1(C−D) +

∥∥φ−φh∥∥L1(D) +
∥∥ f − fh

∥∥
L1(D) +

∥∥∥√|g|−√∣∣gh∣∣∥∥∥
L1(D)

) (2.7)

(1 is the unit constant function)

K
(
‖1‖L1(C−D) +

∥∥φ−φh∥∥L1(D) +
∥∥ f − fh

∥∥
L1(D) +

∥∥∥√|g|−√∣∣gh∣∣∥∥∥
L1(D)

)

= K
(
m(C−D) +

∥∥φ−φh∥∥L1(D) +
∥∥ f − fh

∥∥
L1(D) +

∥∥∥√|g|−√∣∣gh∣∣∥∥∥
L1(D)

)
.

(2.8)

C−D consists of regions formed where the boundary curves of C wander outside the
triangles. Since we have assumed each edge of D is the piecewise linear interpolant of a
boundary curve, we have

m(C−D)≤
∑
j

∫
[aj ,bj ]

∣∣dj(v)−πh
(
dj
)
(v)
∣∣dv. (2.9)

Here πh(dj) is the linear interpolant of dj , that is, dj(aj) = πhdj(aj) and dj(bj) =
πhdj(bj). (Note that the above sum also includes D−C.) Also, (v,u) = (x, y) or (y,x)
where (x, y) is the coordinate system of Ci, that is, u and v vary from triangle to triangle
depending on whether it makes more sense to describe y as function of x or vice versa.
From interpolation theory, we have

∫
[aj ,bj ]

∣∣dj(v)−πh
(
dj
)
(v)
∣∣dv ≤ Khr

∫
[aj ,bj ]

∣∣∣d(r)
j

∣∣∣dv, (2.10)

and since |d(r)
j | is bounded in integral,

m(C−D)≤
∑
j

Khr
(
bj − aj

)≤∑
j

Khr+1, (2.11)

and since the number of j is O(1/h),

m(C−D)≤ Khr. (2.12)

We now turn to the approximation of the square roots of the metric determinants.
Observe

∣∣∣√|g|−√∣∣gh∣∣∣∣∣=
∥∥|g|−∣∣gh∣∣∥∥∣∣∣√|g|+

√∣∣gh∣∣∣∣∣ ≤
1

2
√
ε
(|g|−∣∣gh∣∣). (2.13)

Incorporating the above inequality and (2.12) into (2.8) completes the proof. �
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Corollary 2.2. Suppose thatC is polygonal, that is, thatC may be triangulated exactly and
D = C. Then C∪D =D = C and the hr term may be removed from the preceding estimate.
(In this case, we will most likely use the same partition function and the term involving
partition functions may also be removed.)

2.3. Global estimates. By summing the local estimates, chart by chart, into a global re-
sult, we obtain the following theorem.

Theorem 2.3. Let M be a 2 manifold covered by charts {Ci}, with piecewise Wr,1, r = 1 or
2, boundary curves, with associated partition of unity functions {φi}. (This may be an almost
everywhere partition; that is, the partition of unity equations may fail on a set of measure
0.) For each i, let Di be a triangulation of Ci such that each boundary edge of Di is the linear
interpolant of a Wr,1 boundary curve of Ci. Assume that the chart maps to M from Ci have a
well-defined, one-to-one extension to Ci∪Di. Let Mh refer to the manifold defined by {Di}
and the approximate chart maps. Let f be a function onM and g the metric. Let φh,i, fh, and
gh be local approximations to φi, f , and g, respectively. Assume that the metric determinants
are bounded away from zero. (We will also use fh to refer to the function on Mh which locally
equals fh.) Let h be a parameter which bounds from above, within a constant, the lengths of
the sides of the triangles in each Di. Let J refer to the number of Ci for which m(Ci−Di) > 0.
Then, the following estimate holds:

dM,Mh

(
f , fh

)≤ K
((∑

i

(∥∥φi−φh,i
∥∥
L1(Di)

+
∥∥ f − fh

∥∥
L1(Di)

+
∥∥|g|−∣∣gh∣∣∥∥L1(Di)

))
+ Jhr

)
.

(2.14)

Thus, to understand the rate of convergence of an approximate integral, we must ana-
lyze the rate of convergence of each term in the estimate. For each respective term, we ask
ourselves the following questions.

(1) What is the partition of unity? In the absence of an exact partition of the chart
into triangles, the convergence of the partition of unity term is generally given by
the smoothness of the transition functions.

(2) What interpolation scheme approximates f ?
(3) Does the faster convergence of the inequality (1.4) apply? More specifically, does

the surface have L∞-bounded second derivatives of the chart to surface maps and
a continuous tangent plane? If not, what is the differentiability of the chart maps?
(A generalization of (1.4) to weakly differentiable chart maps appears in [19].)

(4) What is the differentiability of the boundary of each chart, that is, what is r?
Like the convergence of the partition of unity term, this question depends on the
smoothness of transition functions.

This estimate provides a framework by which we may evaluate approaches for approx-
imating functions on manifolds. The work [18] examines several of these approaches in
light of this framework, clarifying the limitations and underlying assumptions of such
techniques. These approaches include the expression of a 2-dimensional, polygonal mesh
in R3 as a manifold by constructing charts out of all polygons containing a given vertex
[10, 13] and manifold triangulation algorithms proposed by Kalik et al. [12] and Nedelec
[17].
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Figure 3.1. Two cylindrical patches.

Most approaches for triangulating a covering of a manifold will ignore the issue of
overlap and gaps formed when triangulating each chart and treat the boundaries of each
chart triangulation as if they align exactly. The partition of unity functions is gener-
ally ignored in such implementations, and by default, are taken to be the characteris-
tic functions of their corresponding charts (i.e., a disjoint partition is used). The term
‖φi − φi,h‖ is then bounded by the measure of the symmetric difference of Ci and Di.
Thus the accuracy of the triangulation in approximating the boundary curves, which
come from the transition functions, bound this term. The partitions of unity term then
depends on the smoothness of the transition functions and becomes equivalent to the Jhr

term.

3. Numerical examples

We examine some test cases in which we approximate an integral on a manifold by an in-
tegral on a triangulated approximation. In these examples, we do not explicitly construct
a partition of unity and implicitly use characteristic functions as the partition of unity.
When we do not have an exact partition, the differentiability of the boundary (via the Jhr

term) will dominate the convergence of the integral. When we have an exact partition,
the differentiability of the chart to surface maps will govern convergence.

3.1. Two cylindrical patches. We consider the example (Figure 3.1) by Borouchaki and
George [1]. The chart sets are “polygons” with straight edge boundaries except on their
curve of intersection. The first surface patch is given by σ1(u,v) = (v, cosu, sinu) on the
polygon given by (π/2,2), (0,2), (0,1.1), and (π/2,

√
.21). The second surface patch is de-

fined by σ2(u,v)= (1.1cosu,v,1.1sinu) on the polygon given by (π/2,0), (π/2,2), (0,2),
(0,1), and (arcsin(1/1.1),0). These patches intersect on the curve given by

(
t,1.1

√√√
1−

(
1

1.1
sin(t)

)2
)

, t ∈
[

0,
π

2

]
, (3.1)
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Table 3.1.
∫

1 on Borouchaki and George’s example.

h Estimate Error Ratio

0.250000 4.840890 0.480487 —

0.125000 4.520969 0.160566 2.992459

0.062500 4.428000 0.067597 2.375348

0.031250 4.392062 0.031659 2.135134

0.015625 4.375801 0.015398 2.056101

0.007812 4.367988 0.007585 2.030061

0.003906 4.364149 0.003746 2.025010

in the first chart and

(
t,
√

1− (1.1sin(t)
)2
)

, t ∈
[

0,arcsin
(

1
1.1

)]
, (3.2)

in the second chart. Because this boundary curve between the charts is not piecewise
linear, triangulations will only approximate the true chart sets.

Consider an approximation of the constant function f = 1 on this manifold. Because
of the simplicity of this function and the fact that the metric is constant in each chart,
the only obstacle to convergence to f in our metric is the convergence of the triangulated
sets to the manifold. More specifically,

∫
1 over the triangulated manifold will converge to∫

1 over the approximate manifold at the rate at which the piecewise, linear triangulated
boundary converges to the curved boundary. Note that the boundary curve lies in W1,1,
that is, its first derivative is unbounded but bounded in integral. We, thus, expect the
convergence of the integrals to be of O(h), regardless of the degree of polynomial used.
Our results in Table 3.1 confirm this prediction. Despite the fact that we use a quadrature
scheme, precise on polynomials of degree three (called “precision 4 quadrature”), which
ordinarily would produce O(h4) convergence, we still observe O(h) convergence to the
value of 4.360403.

3.2. The unit sphere. We extend the preceding example to the unit sphere. In the case
f = 1, we know the integral to be 4π, the surface area of the unit sphere. Chart 1 is given
by σ1(u,v)= (cos(u)cos(v), sin(u)cos(v), sin(v)), where 0≤ u≤ π/2 and−π/3≤ v ≤ π/3.
The parametrization of chart 2 is given by σ2(α,β)= (sin(α), sin(β)cos(α),cos(β)cos(α)).
Chart 3 is the same as chart 2, save that the third component is the opposite of the
third component in chart 2. The boundary of chart 2 (likewise, chart 3) consists of
the boundary curves v = π/3 (resp., v = −π/3) of chart 1, transformed into chart 2 co-
ordinates, connecting the points (0,π/6), (π/6,0), (0,−π/6), and (−π/6,0). The curves
|β| = arccos(

√
3/2cos(α)) parametrize the boundary in both charts 2 and 3. Observe that

these curves have an unbounded derivative which is bounded under the integral sign.
Thus, this example resembles the first example in that the bounding curve isW1,1-smooth
and limits the convergence of any finite-element approximation to O(h), as the results in
Table 3.2 indicate. As before, because these boundary curves are W1,1-smooth, we expect
the convergence to be of O(h).



Kevin Scully 1079

Table 3.2.
∫

1 on the unit sphere.

h Chart 1 Chart 2 Chart 3 Total Error Ratio

0.250000 10.633021 0.718077 0.718077 12.069175 0.497140 —

0.125000 10.820567 0.769403 0.769403 12.359373 0.206942 2.402315

0.062500 10.867252 0.801894 0.801894 12.471040 0.095276 2.172040

0.031250 10.878911 0.820703 0.820703 12.520317 0.045999 2.071258

0.015625 10.881825 0.830922 0.830922 12.543670 0.022646 2.031241

2
1.5

1
0.5

0
−0.5
−1

−1.5
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2

Figure 3.2. Fresnel’s elasticity surface.

3.3. Fresnel’s elasticity surface. This surface (Figure 3.2) appears in the study of op-
tics and has the very complicated form x = λcos(u)cos(v), y = λsin(u)cos(v), and z =
λsin(v), where

λ= 1/

(
− 2

√
0.965/3− 0.935/3

((
cos(u)4 + sin(u)4

)
cos(v)4 + sin(v)4

)

···cos

((
arccos

(
−
(
− 0.941/6 + 0.374

((
cos(u)4 + sin(u)4)cos(v)4 + sin(v)4)

−···1.309/6
((

cos(u)6 + sin(u)6)cos(v)6 + sin(v)6)
− 1.221cos(u)2 cos(v)4 sin(u)2 sin(v)2

)

/ ···
(√

0.965/3− 0.935/3
((

cos(u)4 + sin(u)4
)

cos(v)4 + sin(v)4
))3

)

+π

)
/3

)
+ 0.8

)
.

(3.3)
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Table 3.3. Approximation of
∫

1 on Fresnel’s elasticity surface.

h Error ratio

0.250000 11.972913

0.125000 4.652328

0.062500 2.822307

0.031250 2.111158

Because this surface is built from spherical coordinates, we expect and see similar con-
vergence results to that of the sphere. Because of the difficulty in working with the com-
plicated coordinate maps, direct analysis of these maps has been minimized. The discov-
ery of singularities at v =±π/2 resulted from a numerical sampling script. The alternate
parametrizations were constructed indirectly via the application of the above chart map
to spherical transition functions. The metric components in different charts were con-
structed via finite-difference methods, avoiding differentiation of the above expression.
Because we use the same spherical coordinates we used in the sphere example, the charts
sets are exactly the same as for the sphere. Finally, the “correct integral,” used to measure
the error, results from a fine numerical approximation, given the difficulty of calculat-
ing the integral analytically. The results in Table 3.3 were obtained using “precision 3”
quadrature.

3.4. Boundary convergence when r = 2. For the sake of completeness, we include two
toy examples where, like the previous examples, the convergence of the trianglulated
boundaries to the boundary curves of the charts dominates the convergence of the in-
tegral. In these two examples, however, the boundary curves lie in W2,1 and thus the
convergence progresses at O(h2) (corresponding to r = 2 in the Jhr term).

In the first example, we consider a single chart set, given by the area bounded by the
curves yb =±(x− x1.5). This boundary consists of an upper half and a lower half, both of
which lie in W2,1, but not in C2. The chart map is just the function Φ(x, y)= (x, y,0) and
f = 1. Thus, the only obstacle to convergence is the boundary. Looping over j = 1, . . . ,N −
1 where N ≈ 1/h, we form the rectangle from xj = j/(N + 1) to xj+1 = j/(N + 1) and
−(yb(xj) + yb(xj+1))/2 to (yb(xj) + yb(xj+1))/2, divide this rectangle into approximately
N triangles (giving a total of O(N2) = O(1/h2) triangles), and integrate. Note that this
triangulation method violates the framework of our result in that each vertex of a triangle
edge on the boundary does not interpolate aWr,1-segment of yb. However, the area of the
difference between this crude triangulation and the one conforming to our framework is
of O(h2) and thus, the convergence rates remain unchanged.

The second example closely resembles the first except that yb =±(x− x4). This bound-
ary curves consists of an upper half and a lower half, both of which lie in C∞. However,
as predicted by the theorem, we only witness O(h2) convergence. The results for this ex-
ample and the previous example appear in Table 3.4.

3.5. Wk,1-surfaces. We examine a case where the smoothness of parametrization map,
rather than the behavior of the transition functions or the approximated function, causes
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Table 3.4. Boundary approximation when r = 2.

Boundary curves: y =±(x− x1.5)

h Estimate Error Ratio

0.125000 0.183244 0.016756 —

0.062500 0.194904 0.005096 3.287840

0.031250 0.198572 0.001428 3.567594

0.015625 0.199618 0.000382 3.739720

0.007813 0.199901 0.000099 3.841818

0.003906 0.199975 0.000025 3.902015

Boundary curves: y =±(x− x4)

h Estimate Error Ratio

0.125000 0.550052 0.049948 —

0.062500 0.585028 0.014972 3.336101

0.031250 0.595878 0.004122 3.632601

0.015625 0.598917 0.001083 3.806036

0.007813 0.599722 0.000278 3.900246

0.003906 0.599930 0.000070 3.949402

the metric determinant approximation to slow the convergence. The following two-patch
example uses a surface where the map from the chart to R3 lies in Wk,1, but not in Ck.
In the following example, the function being approximated is constant and the manifold
is partitioned exactly, so that only the metric approximation term appears in the global
convergence estimate.

Each chart set is the square [0,1]× [0,1]. The first chart map is σ1(x, y) = (xp + x, y,
xp + x). The second chart map is σ2(x, y) = ((xp + x)(y2 − 2y + 2), y − 1,(xp + x)(y2 −
2y + 2)). This surface has continuous first derivatives across the mutual edge y = 0 in
chart 1 and y = 1 in chart 2. For a positive integer p, the chart maps have bounded second
derivatives. For 1 < p < 2, the chart maps lie in W2,1, as the chart map have unbounded
second derivatives. Likewise, for 2 < p < 3, the chart maps lie in W3,1, as the chart map
have unbounded third derivatives. The singularities of these derivatives behave like xp−2

for 1 < p < 2 and xp−3, for 2 < p < 3 and occur on the line x = 0 in each chart.
We set f = 1. When the chart maps have bounded second derivatives, the inequal-

ity (1.4) governs convergence. When the second derivatives are unbounded, a modified
version of (1.4) from [19] applies. For p ≥ 3, we expect O(hk+1) convergence where poly-
nomials of degree k approximate the chart maps. For 1 < p < 2, we expect O(hk−1+p) con-
vergence where k ≤ 1. For 2 < p < 3, we expect O(hp) convergence for k ≥ 2 and O(h2)
convergence if k = 1. Thus, we expectO(hp) convergence when we use a precision 2 quad-
rature rule on the metric determinant with 1 < p < 2. We further expect that using quad-
rature rules of greater precision will not improve upon this convergence. The sampling
of numerical experiments in Tables 3.5 and 3.6 confirms these hypotheses. We list the
error ratios for different values of p, obtained on uniform triangulations of [0,1]× [0,1],
along with the relevant prediction of the error ratio, for the given value of p. The ratios
compare the error at h= 0.031250 to the error at h= 0.015625.
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Table 3.5. Approximation of
∫

1 on Wk,1-surfaces, precision 2 quadrature.

p Error ratio Predicted error ratio

1.1 2.1252 2.1435

1.2 2.2672 2.2974

1.3 2.4123 2.4623

1.5 2.6929 2.8284

2.2 3.9199 4

2.6 3.9860 4

3.0 4.0001 4

Table 3.6. Approximation of
∫

1 on Wk,1-surfaces, precision 4 quadrature.

p Error ratio Predicted error ratio

1.1 2.1421 2.1435

1.2 2.2957 2.2974

1.3 2.4603 2.4623

1.5 2.8255 2.8284

2.2 4.5857 4.5948

2.6 6.0541 6.0629

3.0 16.0008 16

4. Conclusion

This paper has presented a new framework for measuring the convergence of mesh-based
approximation of functions on 2-manifolds. This framework elucidates many of the sub-
tle issues of approximation that present obstacles to existing mesh-based approaches. We
hope this framework will bring a formalism which unifies our understanding of the many
existing, ad hoc approaches to mesh-based approximation on manifolds and surfaces.
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