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It is well known that mixed quasivariational inequalities are equivalent to the implicit
fixed-point problems. We use this alternative equivalent formulation to suggest and con-
sider some merit functions for general mixed quasivariational inequalities. We use these
merit functions to obtain error bounds for the solution under some mild conditions.
Some special cases are also discussed.

1. Introduction

Variational inequalities introduced by Stampacchia [25] in the early sixties have been
generalized and extended in various directions using innovative techniques. A useful and
significant generalization of variational inequalities is called the mixed quasivariational
inequality involving the nonlinear bifunction which enables us to study the free, mov-
ing, unilateral, and equilibrium problems arising in elasticity, fluid flow through porous
media, finance, economics, transportation, circuit, and structural analysis in a unified
framework; see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26]. As a result of interaction between different branches of mathematical
and engineering sciences, we now have a variety of techniques including the projection
methods and their variant forms, auxiliary principle, resolvent equations to suggest and
analyze various iterative algorithms for solving variational inequalities, and related op-
timization problems. It is well known that the projection method and its variant forms
cannot be extended for mixed quasivariational inequalities due to the presence of the bi-
function. However, if the bifunction is a proper, convex, and lower semicontinuous func-
tion with respect to the first argument, then it has been shown (see [13]) that the mixed
quasivariational inequalities are equivalent to the fixed-point problem. This alternative
equivalent formulation has been used to suggest and analyze some iterative methods for
solving mixed quasivariational inequalities. Using this alternative equivalence, we define
the natural residue vector, which is also known as the merit function. In recent years,
much attention has been given to construct and investigate some regularized and D-merit
functions associated with classical variational inequalities. These merit functions play an
important part in developing several iterative methods for solving variational inequalities
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and related optimization problems; see [4, 19, 20, 21, 22, 23, 24, 26]. On the other hand,
there are no such merit functions for mixed quasivariational inequalities. In this paper,
we consider and investigate some merit functions for mixed quasivariational inequalities
and use these merit functions to obtain error bounds for the solution of mixed quasivari-
ational inequalities. As special cases, we obtain some new and previously known results
for variational inequalities and related problems. Thus the results obtained in this paper
can be viewed as an extension and refinement of previously known results.

2. Formulations and basic facts

Let H be a real Hilbert space whose inner product and norm are denoted by 〈·,·〉 and
‖ · ‖, respectively. Let K be a closed convex set in H and T ,g : H → H nonlinear oper-
ators. Let ϕ(·,·) : H ×H → R∪ {+∞} be a continuous bifunction with respect to both
arguments . We consider the problem of finding u∈H : g(u)∈H such that

〈
Tu,g(v)− g(u)

〉
+ϕ
(
g(v),g(u)

)−ϕ
(
g(u),g(u)

)≥ 0, ∀v ∈H : g(v)∈H , (2.1)

which is called the general mixed quasivariational inequality and has been studied exten-
sively in recent years; see [14, 17].

If the bifunction ϕ(·,·) is proper, convex, and lower semicontinuous with respect to
the first argument, then problem (2.1) is equivalent to finding u∈H : g(u)∈H such that

0∈ Tu+ ∂ϕ
(
g(u),g(u)

)
, (2.2)

which is known as finding a zero-sum of two (more) maximal monotone operators and
has been studied extensively in recent years.

For g ≡ I , the identity operator, problem (2.1) reduces to the following problem. Find
u∈H such that

〈Tu,v−u〉+ϕ(v,u)−ϕ(u,u)≥ 0, ∀v ∈H. (2.3)

Problem (2.3) is called the mixed quasivariational inequality; see [1, 2, 3, 8, 11, 13, 14, 15,
17].

If ϕ(u,v) = ϕ(v), for all v ∈ H , then problem (2.1) is equivalent to finding u ∈ H :
g(u)∈H such that

〈
Tu,g(v)− g(u)

〉
+ϕ
(
g(v)

)−ϕ
(
g(u)

)≥ 0, ∀v ∈H : g(v)∈H , (2.4)

which is called the general mixed variational inequality.
If the bifunction ϕ(·) is the indicator function of a closed and convex set K in H , that

is,

ϕ(u)=



0 if u∈ K ,

+∞ otherwise,
(2.5)

then problem (2.4) is equivalent to finding u∈H , g(u)∈ K such that
〈
Tu,g(v)− g(u)

〉≥ 0, ∀g(v)∈ K , (2.6)
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which is known as the general variational inequality introduced and studied by Noor [10]
in 1988. It turned out that a wide class of nonsymmetric and odd-order free, moving and
equilibrium problems arising in finance, economics, transportation, elasticity, telecom-
munication network, optimization, and operations research can be studied in the unified
and general framework of problems (2.1)–(2.6). For g ≡ I , the identity operator, we ob-
tained the corresponding classical variational inequality problems; see [1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26].

We also need the following well-known results and concepts.

Definition 2.1. The operator T : H →H is said to be
(a) strongly g-monotone if and only if there exists a constant α > 0 such that

〈
Tu−Tv,g(u)− g(v)

〉≥ α
∥∥g(u)− g(v)

∥∥2
, ∀u,v ∈H ; (2.7)

(b) g-monotone if and only if

〈
Tu−Tv,g(u)− g(v)

〉≥ 0, ∀u,v ∈H ; (2.8)

(c) g-Lipschitz continuous if there exists a constant β > 0 such that

‖Tu−Tv‖ ≤ β
∥∥g(u)− g(v)

∥∥, ∀u,v ∈H ; (2.9)

(d) hemicontinuous if for all u,v ∈H , the mapping t ∈ [0, t] implies that

〈
T
(
u+ t(v−u)

)
,v
〉

(2.10)

is continuous.

From (a) and (c), we have α ≤ β. For g = I , the identity operator, Definition 2.1 re-
duces to the well-known definition of strongly monotone and Lipschitz continuity of T .

Remark 2.2. We would like to point out that if the operator T is strongly monotone with
a constant α > 0, then

α‖u− v‖2 ≤ 〈Tu−Tv,u− v〉 ≤ ‖Tu−Tv‖‖u− v‖ (2.11)

implies that

‖Tu−Tv‖ ≥ α‖u− v‖, ∀u,v ∈H. (2.12)

In this case, we say that the operator T is strong nonexpansion with a constant α > 0.
Note that the strong monotonicity implies expansioncivity, but not conversely. It is clear
that if the operator T is strongly g-monotone and g is strongly nonexpansion, then

〈
Tu−Tv,g(u)− g(v)

〉≥ α
∥∥g(u)− g(v)

∥∥2 ≥ α‖u− v‖2, ∀u,v ∈H. (2.13)

Definition 2.3. The bifunction ϕ(·,·) is said to be skew-symmetric if and only if

ϕ(u,u)−ϕ(u,v)−ϕ(v,u) +ϕ(v,v)≥ 0, ∀u,v ∈H. (2.14)
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Clearly, if the skew-symmetric bifunction ϕ(·,·) is linear in both arguments, then ϕ(u,
u)≥ 0, for all u∈H . In fact,

ϕ(u,u)−ϕ(u,v)−ϕ(v,u) +ϕ(v,v)= ϕ(u− v,u− v)≥ 0, ∀u,v ∈H. (2.15)

Definition 2.4 (see [1]). Let A be a maximal monotone operator, then the resolvent oper-
ator associated with A is defined as

JA(u)= (I + ρA)−1(u), ∀u∈H , (2.16)

where ρ > 0 is a constant and I is the identity operator.

Remark 2.5. It is well known that the subdifferential ∂ϕ(·,·) of a convex, proper, and
lower semicontinuous function ϕ(·,·) : H ×H → R∪{+∞} is a maximal monotone with
respect to the first argument, its resolvent is defined by

Jϕ(u) =
(
I + ρ∂ϕ(·,u)

)−1 ≡ (I + ρ∂ϕ(u)
)−1

, (2.17)

where ∂ϕ(u)≡ ∂ϕ(·,u), unless otherwise specified.

The resolvent operator Jϕ(g(u)) has the following characterization.

Lemma 2.6. For a given u∈H : g(u)∈H , z ∈H : g(z)∈H satisfies the inequality

〈
g(u)− g(z),g(v)− g(u)

〉
+ ρϕ

(
g(v),g(u)

)− ρϕ
(
g(u),g(u)

)≥ 0, ∀v ∈H : g(v)∈H ,
(2.18)

if and only if

g(u)= Jϕ(g(u))g(z), (2.19)

where Jϕ(g(u)) = (I + ρ∂ϕ(·,g(u)))−1 is the resolvent operator and ρ > 0 is a constant.

Proof. Clearly,

(2.18)⇐⇒ g(z)− g(u)∈ ρ∂ϕ
(
g(u),g(u)

)
⇐⇒ g(z)∈ g(u) + ρ∂ϕ

(
g(u),g(u)

)≡ (I + ρ∂ϕ
(·,g(u)

))(
g(u)

)

⇐⇒ g(u)= (I + ρ∂ϕ
(·,g(u)

))−1
g(z)≡ Jϕ(g(u))g(z),

(2.20)

the required result. �

Lemma 2.7. Let the operator T be g-monotone and hemicontinuous and let the operator
g be convex. If the bifunction ϕ(·,·) is convex in the first argument, then problem (2.1) is
equivalent to finding u∈H such that

〈
Tv,g(v)− g(u)

〉
+ϕ
(
g(v),g(u)

)−ϕ
(
g(u),g(u)

)≥ 0, ∀v ∈H. (2.21)

Proof. Let u∈H be a solution of (2.1). Then

〈
Tu,g(v)− g(u)

〉
+ϕ
(
g(v),g(u)

)−ϕ
(
g(u),g(u)

)≥ 0, ∀v ∈H , (2.22)
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which implies, using the g-monotonicity of T ,

〈
Tv,g(v)− g(u)

〉
+ϕ
(
g(v),g(u)

)−ϕ
(
g(u),g(u)

)≥ 0, ∀v ∈H. (2.23)

Conversely, let u∈H be such that (2.21) holds. For t ∈ [0,1], u,v ∈H , vt = u+ t(v−u)∈
H . Taking v = vt in (2.21), we have

0≤ t
〈
Tvt,g(v)− g(u)

〉
+ϕ
(
g
(
vt
)
,u
)−ϕ(u,u)

≤ t
〈
Tvt,g(v)− g(u)

〉
+ t
{
ϕ
(
g(v),g(u)

)−ϕ
(
g(u),g(u)

)}
,

(2.24)

since g is convex and ϕ(·,·) is also convex with respect to the first argument.
Dividing the above inequality by t and letting t→ 0, we have

〈
Tu,g(v)− g(u)

〉
+ϕ
(
g(v),g(u)

)−ϕ
(
g(u),g(u)

)≥ 0, ∀v ∈H , (2.25)

the required (2.1). �

Remark 2.8. Inequality of type (2.21) is called the dual general mixed quasivariational
inequality. From Lemma 2.7, it is clear that the solution sets of both problems (2.1) and
(2.21) are equivalent. Lemma 2.7 plays an important part in the approximation of the
variational inequalities. Lemma 2.7 can be viewed as a natural generalization of Minty’s
lemma (see [9]).

We now study those conditions under which the mixed quasivariational inequality
(2.1) has a unique solution, which is the main motivation of our next result.

Theorem 2.9. Let T be a strongly g-monotone with constant α > 0 and g-Lipschitz contin-
uous operator with constant β > 0. Let g be an injective operator. If the bifunction ϕ(·,·) is
skew-symmetric and 0 < ρ < 2α/β2, then the general mixed quasivariational inequality (2.1)
has a unique solution.

Proof. (a) Uniqueness. Let u1 �= u2 ∈H be two solutions of (2.1). Then, we have

〈
Tu1,g(v)− g

(
u1
)〉

+ϕ
(
g(v),g

(
u1
))−ϕ

(
g
(
u1
)
,g
(
u1
))≥ 0, ∀v ∈H , (2.26)〈

Tu2,g(v)− g
(
u2
)〉

+ϕ
(
g(v),g

(
u2
))−ϕ

(
g
(
u2
)
,g
(
u2
))≥ 0, ∀v ∈H. (2.27)

Taking v = u2 in (2.26) and v = u1 in (2.27), adding the resultant and using the skew-
symmetry of the bifunction ϕ(·,·), we have

〈
Tu1−Tu2,g

(
u1
)− g

(
u2
)〉≤ ϕ

(
g
(
u1
)
,g
(
u2
))−ϕ

(
g
(
u1
)
,g
(
u1
))−ϕ

(
g
(
u2
)
,g
(
u2
))

+ϕ
(
g
(
u2
)
,g
(
u1
))

≤ 0.
(2.28)

Since T is strongly g-monotone, there exists a constant α > 0 such that

α
∥∥g(u1

)− g
(
u2
)∥∥2 ≤ 〈Tu1−Tu2,g

(
u1
)− g

(
u2
)〉≤ 0, (2.29)
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which implies that g(u1)= g(u2)→ u1 = u2, the uniqueness of the solution of (2.1), since
g is an injective operator.

(b) Existence. We now use the auxiliary principle technique to prove the existence of a
solution of (2.1). For a given u∈H , we consider the problem of finding a unique w ∈H
such that

〈
g(w),g(v)− g(w)

〉
+ ρϕ

(
g(v),g(w)

)− ρϕ
(
g(w),g(w)

)
≥ 〈g(u),g(v)− g(w)

〉− ρ
〈
Tu,g(v)− g(w)

〉
, ∀v ∈H ,

(2.30)

where ρ > 0 is a constant. The parameter ρ plays a crucial part in proving that the map-
ping defined by the relation (2.30) is a contraction and consequently has a fixed point
satisfying the original problem.

The inequality of type (2.30) is called the auxiliary variational inequality associated
with problem (2.1). It is clear that the relation (2.30) defines a mapping u→ w. It is
enough to show that the mapping u→w, defined by the relation (2.30), has a fixed point
belonging to H satisfying the mixed quasivariational inequality (2.1). Let w1 �=w2 be two
solutions of (2.30) related to u1,u2 ∈ H , respectively. It is sufficient to show that for a
well-chosen ρ > 0,

∥∥w1−w2
∥∥≤ θ

∥∥u1−u2
∥∥, (2.31)

with 0 < θ < 1, where θ is independent of u1 and u2. Taking v = w2 (resp., w1) in (2.30)
related to u1 (resp., u2), adding the resultants, and using the skew-symmetry of the bi-
function ϕ(·,·), we have

〈
g
(
w1
)− g

(
w2
)
,g
(
w1
)− g

(
w2
)〉≤ 〈g(u1

)− g
(
u2
)− ρ

(
Tu1−Tu2

)
,g
(
w1
)− g

(
w2
)〉

,
(2.32)

from which we have
∥∥g(w1

)− g
(
w2
)∥∥2 ≤ ∥∥g(u1

)− g
(
u2
)− ρ

(
Tu1−Tu2

)∥∥2

≤ ∥∥g(u1
)− g

(
u2
)∥∥2− 2ρ

〈
g
(
u1
)− g

(
u2
)
,Tu1−Tu2

〉

+ ρ2
∥∥Tu1−Tu2

∥∥2

≤ ∥∥g(u1
)− g

(
u2
)∥∥2− 2ρα

∥∥g(u1
)− g

(
u2
)∥∥2

+ ρ2β2
∥∥g(u1

)− g
(
u2
)∥∥2

≤ (1− 2ρα+ ρ2β2)∥∥g(u1
)− g

(
u2
)∥∥2

,
(2.33)

since T is both a strongly monotone and Lipschitz continuous operator with constants
α > 0 and β > 0, respectively. Since g is injective, it follows that

∥∥w1−w2
∥∥≤ θ

∥∥u1−u2
∥∥, (2.34)

where θ =
√

1− 2ρα+ ρ2β2 < 1 for 0 < ρ < 2α/β2, showing that the mapping defined by
(2.30) has a fixed point belonging to H , which is the solution of (2.1), the required result.

�
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We note that if the operator T is symmetric, positive, and the bifunction ϕ(·,·) is
convex in the first argument, then the solution of the auxiliary mixed quasivariational
inequality (2.30) is equivalent to finding the minimum of the functional I[w], where

I[w]= 1
2

〈
g(w)− g(u),g(w)− g(u)

〉
+ ρ
〈
Tu,g(w)− g(u)

〉

+ ρϕ
(
g(u),g(w)

)− ρϕ
(
g(u),g(u)

)
, ∀u∈H ,

(2.35)

which is a differentiable functional associated with the inequality (2.30). This auxiliary
functional can be used to construct a gap (merit) function whose stationary points solve
the variational inequality (2.1). In fact, one can easily show that the mixed quasivaria-
tional inequality (2.1) is equivalent to the optimization problem. This approach is used
to suggest and analyze some descent iterative methods for solving mixed quasivariational
inequalities.

We also need the following condition.

Assumption 2.10. For all u,v,w ∈H , the operator Jϕ(u) satisfies the condition

∥∥Jϕ(u)w− Jϕ(v)w
∥∥≤ ν‖u− v‖, (2.36)

where ν > 0 is a constant. It is shown in [12] that Assumption 2.10 is satisfied for some
special cases.

Definition 2.11. A function M : H → R∪ {+∞} is called a merit (gap) function for the
mixed quasivariational inequalities (2.1) if and only if

(i) M(u)≥ 0,∀v ∈H ;
(ii) M(u)= 0 if and only if u∈H solves (2.1).

3. Main results

In this section, we consider some merit functions and obtain error bounds for the gen-
eral mixed quasivariational inequalities (2.1) and related optimization problems. For this
purpose, we need the following result, which can be proved by using Lemma 2.6.

Lemma 3.1. The general mixed quasivariational inequality (2.1) has a solution u ∈ H if
and only if u∈H satisfies the relation

g(u)= Jϕ(g(u))
[
g(u)− ρTu

]
, (3.1)

where ρ > 0 is a constant and Jϕ(g(u)) = (I + ρ∂ϕ(·,g(u)))−1 is the resolvent operator.

Lemma 3.1 implies that the mixed quasivariational inequalities (2.1) are equivalent
to the fixed-point problem (3.1). This alternative equivalent formulation plays an im-
portant part in suggesting and analyzing several iterative methods for solving variational
inequalities. This fixed-point formulation has been used to suggest the following iterative
method for problem (2.1).
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We now consider the residue vector

Rρ(u)≡ R(u) := g(u)− Jϕ(g(u))
[
g(u)− ρTu

]
. (3.2)

It is clear from Lemma 3.1 that (2.1) has a solution u∈H if and only if u∈H is a root of
the equation

R(u)= 0. (3.3)

It is known that the normal residue vector R(u) defined by the relation (3.2) is a merit
function for the mixed quasivariational inequality (2.1). We use this merit function to
derive the global error bounds for the solution of (2.1).

Theorem 3.2. Let u ∈ H be a solution of (2.1) and let Assumption 2.10 hold. Let g be
both strongly nonexpanding and Lipschitz continuous with constants σ > 0 and δ > 0. If the
operator T is both strongly g-monotone and g-Lipschitz continuous with constants α > 0 and
β > 0, respectively, then

1
k1

∥∥R(u)
∥∥≤ ‖u−u‖ ≤ k2

∥∥R(u)
∥∥, ∀u∈H , (3.4)

where k1, k2 are generic constants.

Proof. Let u∈H be solution of (2.1). Then

〈
Tu,g(v)− g(u)

〉
+ϕ
(
g(v),g(u)

)−ϕ
(
g(u),g(u)

)≥ 0, ∀v ∈H. (3.5)

Taking g(v)= Jϕ(g(u))[g(u)− ρTu] in (3.5), we have

〈
Tu, Jϕ(g(u))

[
g(u)− ρTu

]− g(u)
〉

+ϕ
(
Jϕ(g(u))

[
g(u)− ρTu

]
,g(u)

)
−ϕ

(
g(u),g(u)

)≥ 0.
(3.6)

Letting g(u)= Jϕ(g(u))[g(u)− ρTu], g(z)= g(u)− ρTu, and g(v)= g(u) in (2.18), we have

〈
ρTu+ Jϕ(g(u))

[
g(u)− ρTu

]− g(u),g(u)− Jϕ(g(u))
[
g(u)− ρTu

]〉
+ ρϕ

(
g(u)

)
, Jϕ(g(u))

[
g(u)− ρTu

]
− ρϕ

(
Jϕ(g(u))

[
g(u)− ρTu

]
, Jϕ(g(u))

[
g(u)− ρTu

])≥ 0.

(3.7)

Adding (3.6), (3.7), and using the skew-symmetry of the bifunction ϕ(·,·), we obtain

〈
Tu−Tu+

1
ρ

(
g(u)− Jϕ(g(u))

[
g(u)− ρTu

])
, Jϕ(g(u))

[
g(u)− ρTu

]− g(u)
�
≥ 0. (3.8)
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Since T is a strongly g-monotone and g is nonexpanding, there exists a constant α > 0
such that

α‖u−u‖2 ≤ ∥∥g(u)− g(u)
∥∥2 ≤ 〈Tu−Tu,g(u)− g(u)

〉
= 〈Tu−Tu,g(u)− Jϕ[u− ρTu]

〉
+
〈
Tu−Tu, Jϕ(g(u))

[
g(u)− ρTu

]− g(u)
〉

≤ 1
ρ

〈
g(u)− Jϕ(g(u))

[
g(u)− ρTu

]
, Jϕ(g(u))

[
g(u)− ρTu

]− g(u) + g(u)− g(u)
〉

+
〈
Tu−Tu, Jϕ(g(u))

[
g(u)− ρTu

]− g(u)
〉

≤−1
ρ

∥∥R(u)
∥∥2

+
1
ρ

∥∥R(u)
∥∥∥∥g(u)− g(u)

∥∥+‖Tu−Tu‖∥∥R(u)
∥∥

≤ 1
ρ

(1 +β)
∥∥R(u)

∥∥∥∥g(u)− g(u)
∥∥

≤ δ

ρ
(1 +β)

∥∥R(u)
∥∥‖u−u‖,

(3.9)

which implies that

‖u−u‖ ≤ k2
∥∥R(u)

∥∥, (3.10)

the right-hand inequality in (3.4) with k2 = (δ/αρ)(1 + β), where δ > 0 is the Lipschitz
constant of g.

Now from Assumption 2.10 and g-Lipschitz continuity of T , we have

∥∥R(u)
∥∥= ∥∥g(u)− Jϕ(g(u))

[
g(u)− ρTu

]∥∥
= ∥∥g(u)− g(u) + Jϕ(g(u))

[
g(u)− ρTu

]− Jϕ(g(u))
[
g(u)− ρTu

]∥∥
≤ ∥∥g(u)− g(u)

∥∥+
∥∥Jϕ(g(u))

[
g(u)− ρTu

]− Jϕ(g(u))
[
g(u)− ρTu

]∥∥
+
∥∥Jϕ(g(u))

[
g(u)− ρTu

]− Jϕ(g(u))
[
g(u)− ρTu

]∥∥
≤ ∥∥g(u)− g(u)

∥∥+ ν
∥∥g(u)− g(u)

∥∥+
∥∥g(u)− g(u) + ρ(Tu−Tu)

∥∥
≤ {2 + ν + ρβ

}∥∥g(u)− g(u)
∥∥= k1‖u−u‖,

(3.11)

from which we have

1
k1

∥∥R(u)
∥∥≤ ‖u−u‖, (3.12)

the leftmost inequality in (3.4) with k1 = (2 + ν + ρβ)δ, where δ > 0 is the Lipschitz con-
stant of g. Combining (3.10) and (3.12), we obtain the required (3.4). �

Letting u= 0 in (3.4), we have

1
k1

∥∥R(0)
∥∥≤ ‖u‖ ≤ k2

∥∥R(0)
∥∥. (3.13)

Combining (3.4) and (3.13), we obtain the relative error bounds for any point u∈H .
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Theorem 3.3. Assume that all the assumptions of Theorem 3.2 hold. If 0 �= u ∈ H is the
unique solution of (2.1), then

c1

∥∥∥∥R(u)
R(0)

∥∥∥∥≤
∥∥∥∥u−u

u

∥∥∥∥≤ c2

∥∥∥∥R(u)
R(0)

∥∥∥∥. (3.14)

We now consider another merit function associated with problem (2.1), which can be
viewed as a regularized merit function. From (2.35), we have

Mρ(u) :=max
v∈H

{〈
Tu,g(u)− g(v)

〉−ϕ
(
g(v),g(v)

)
+ϕ
(
g(u),g(v)

)

− 1
2ρ

∥∥g(u)− g(v)
∥∥2
}

, u∈H ,
(3.15)

which is called the regularized merit (gap) function associated with problem (2.1).
We note that if ϕ(·,·) = ϕ(·) is an indicator function of a closed convex set K in H ,

then the merit function (3.15) reduces to the known merit function for general varia-
tional inequalities (2.4), that is,

Mρ(u) :=max
v∈K

{〈
Tu,g(u)− g(v)

〉− 1
2ρ

∥∥g(u)− g(v)
∥∥2
}

, u∈ K , (3.16)

which is a natural extension of a regularized merit function of Fukushima [4]. Thus it is
clear that the merit function Mρ(u) defined by (3.15) can be viewed as a natural general-
ization of the regularized merit function associated with the general variational inequali-
ties (2.4).

We note that the function Mρ(u) can be written as

Mρ(u)= 〈Tu,g(u)− Jϕ(g(u))
[
g(u)− ρTu

]〉
+ϕ
(
g(u), Jϕ(g(u))

[
g(u)− ρTu

])
−ϕ

(
Jϕ(g(u))

[
g(u)− ρTu

]
, Jϕ(g(u))

[
g(u)− ρTu

])

− 1
2ρ

∥∥g(u)− Jϕ(g(u))
[
g(u)− ρTu

]∥∥2
, ∀u∈H ,

(3.17)

from which it follows that Mρ(u)≥ 0, for all u∈H .
We now show that the function Mρ(u) defined by (3.15) is a merit function and this is

the main motivation of our next result.

Theorem 3.4. For all u∈H ,

Mρ(u)≥ 1
2ρ

∥∥R(u)
∥∥2
. (3.18)

In particular, Mρ(u)= 0 if and only if u∈H is a solution of (2.1).
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Proof. Setting g(v)= g(u), g(u)= Jϕ(g(u))[g(u)− ρTu], and g(z)= g(u)− ρTu in (2.18),
we have

〈
Tu− 1

ρ

(
g(u)− Jϕ(g(u))

[
g(u)− ρTu

])
,g(u)− Jϕ(g(u))

[
g(u)− ρTu

]�

+ϕ
(
g(u), Jϕ(g(u))

[
g(u)− ρTu

])

−ϕ
(
Jϕ(g(u))

[
g(u)− ρTu

]
, Jϕ(g(u))

[
g(u)− ρTu

])≥ 0,

(3.19)

which implies that

〈
Tu,R(u)

〉−ϕ
(
Jϕ(g(u))

[
g(u)− ρTu

]
, Jϕ(g(u))

[
g(u)− ρTu

])

+ϕ
(
g(u), Jϕ(g(u))

[
g(u)− ρTu

])≥ 1
ρ

∥∥R(u)
∥∥2
.

(3.20)

Combining (3.17) and (3.20), we have

Mρ(u)= 〈Tu,R(u)
〉−ϕ

(
Jϕ(g(u))

[
g(u)− ρTu

]
, Jϕ(g(u))

[
g(u)− ρTu

])

+ϕ
(
g(u), Jϕ(g(u))

[
g(u)− ρTu

])− 1
2ρ

∥∥R(u)
∥∥2

≥ 1
2ρ

∥∥R(u)
∥∥2− 1

2ρ

∥∥R(u)
∥∥2

= 1
2ρ

∥∥R(u)
∥∥2

,

(3.21)

the required result (3.18). Clearly, we have Mρ(u)≥ 0, for all u∈H .
Now if Mρ(u) = 0, then clearly R(u) = 0. Hence by Lemma 3.1, we see that u ∈ H is

a solution of (2.1). Conversely, if u∈H is a solution of (2.1), then g(u)= Jϕ(g(u))[g(u)−
ρTu] by Lemma 3.1. Consequently, from (3.15), we see that Mρ(u)= 0, the required re-
sult. �

From Theorem 3.4, we see that the function Mρ(u) defined by (3.15) is a merit func-
tion for the mixed quasivariational inequalities (2.1). It is known that the regularized
merit function is differentiable whenever T and the bifunction ϕ(·,·) are differentiable.
We now derive the error bounds without using the Lipschitz continuity of the T .

Theorem 3.5. Let T be strongly monotone with a constant α > 0 and let the bifunction
ϕ(·,·) be a skew-symmetric function. If g is strongly nonexpanding with a constant σ > 0,
then

‖u−u‖2 ≤ (2ρ)
(2αρ− 1)σMρ(u)

, ∀u∈H. (3.22)
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Proof. From (3.15) and the strong monotonicity of T , we have

Mρ(u)≥ 〈Tu,g(u)− g(u)
〉

+ϕ
(
g(u),g(u)

)−ϕ
(
g(u),g(u)

)− 1
2ρ

∥∥g(u)− g(u)
∥∥2

≥ 〈Tu,g(u)− g(u)
〉

+α
∥∥g(u)− g(u)

∥∥2
+ϕ
(
g(u),g(u)

)−ϕ
(
g(u),g(u)

)

− 1
2ρ

∥∥g(u)− g(u)
∥∥2
.

(3.23)

Taking v = u in (3.5), we have

〈
Tu,g(u)− g(u)

〉
+ϕ
(
g(u),g(u)

)−ϕ
(
g(u),g(u)

)≥ 0. (3.24)

From (3.23), (3.24), and using the strong nonexpansion of g with constant σ > 0, we have

Mρ(u)≥ α
∥∥g(u)− g(u)

∥∥2− 1
2ρ

∥∥g(u)− g(u)
∥∥2

=
(
α− 1

2ρ

)
σ
∥∥g(u)− g(u)

∥∥2
,

(3.25)

from which the result (3.22) follows. �

We consider another merit function associated with mixed quasivariational inequali-
ties (2.1), which can be viewed as a difference of two regularized merit functions. Such a
type of merit functions was introduced and studied by many authors for solving varia-
tional inequalities and complementarity problems; see [4, 20, 23]. Here we define the D-
merit function by a formal difference of the regularized merit function defined by (3.15).
To this end, we consider the function

Dρ,µ(u)=max
v∈H

{〈
Tu,g(u)− g(v)

〉
+ϕ
(
g(u),g(v)

)−ϕ
(
g(v),g(v)

)

+
1

2ρ

∥∥g(u)− g(v)
∥∥2− 1

2ρ

∥∥g(u)− g(v)
∥∥2
}

, ∀v ∈H ,
(3.26)

which is called the D-merit function associated with the mixed quasivariational inequal-
ities (2.1). The D-merit function defined by (3.26) can be written as

Dρ,µ(u)= 〈Tu, Jϕ(g(u))
[
g(u)−µTu

]− Jϕ(g(u))
[
g(u)− ρTu

]〉
+ϕ
(
Jϕ(g(u))

[
g(u)−µTu

]
,g(u)

)−ϕ
(
Jϕ(g(u))

[
g(u)− ρTu

]
,g(u)

)

+
1

2µ

∥∥g(u)− Jϕ(g(u))
[
g(u)−µTu

]∥∥2− 1
2ρ

∥∥g(u)− Jϕ(g(u))
[
g(u)− ρTu

]∥∥2

= 〈Tu,Rρ(u)−Rµ(u)
〉

+ϕ
(
Jϕ(g(u))

[
g(u)−µTu

]
,g(u)

)

−ϕ
(
Jϕ(g(u))

[
g(u)− ρTu

]
,g(u)

)
+

1
2µ

∥∥Rµ(u)
∥∥2

− 1
2ρ

∥∥Rρ(u)
∥∥2

, u∈H , ρ > µ > 0.

(3.27)
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It is clear that the Dρ,µ(u) is finite everywhere. We now show that the function Dρ,µ(u)
defined by (3.26) is indeed a merit function for the mixed quasivariational inequalities
(2.1) and this is the motivation of our next result.

Theorem 3.6. For all u∈H , ρ > µ > 0,

(ρ−µ)
∥∥Rρ(u)

∥∥2 ≥ 2ρµDρ,µ(u)≥ (ρ−µ)
∥∥Rµ(u)

∥∥2
. (3.28)

In particular, Dρ,µ(u)= 0 if and only if u∈H solves problem (2.1).

Proof. Taking g(v)= Jϕ(g(u))[g(u)− µTu], g(u)= Jϕ(g(u))[g(u)− ρTu], and g(z)= g(u)−
ρTu in (2.18), we have

〈
Jϕ(g(u))

[
g(u)− ρTu

]− g(u) + ρTu, Jϕ(g(u))
[
g(u)−µTu

]− Jϕ(g(u))
[
g(u)− ρTu

]〉
+ ρϕ

(
Jϕ(g(u))

[
g(u)−µTu

]
, Jϕ(g(u))

[
g(u)− ρTu

])
− ρϕ

(
Jϕ(g(u))

[
g(u)− ρTu

]
, Jϕ(g(u))

[
g(u)− ρTu

])≥ 0,

(3.29)

which implies that

〈
Tu,Rρ(u)−Rµ(u)

〉
+ϕ
(
Jϕ(g(u))

[
g(u)−µTu

]
, Jϕ(g(u))

[
g(u)− ρTu

])
−ϕ

(
Jϕ(g(u))

[
g(u)− ρTu

]
, Jϕ(g(u))

[
g(u)− ρTu

])

≥ 1
2ρ

〈
Rρ(u),Rρ(u)−Rµ(u)

〉
.

(3.30)

From (3.27) and (3.30), we have

Dρ,µ(u)≥ 1
2ρ

〈
Rρ(u),Rρ(u)−Rµ(u)

〉
+

1
2µ

∥∥Rµ(u)
∥∥2− 1

2ρ

∥∥Rρ(u)
∥∥2

= 1
2

(
1
µ
− 1
ρ

)∥∥Rµ(u)
∥∥2

+
1

2ρ

〈
Rρ(u),Rρ(u)−Rµ(u)

〉

− 1
2ρ

∥∥Rρ(u)−Rµ(u)
∥∥2− 1

2ρ

〈
Rµ(u),Rρ(u)−Rµ(u)

〉

= 1
2

(
1
µ
− 1
ρ

)∥∥Rµ(u)
∥∥2

+
1

2ρ

∥∥Rρ(u)−Rµ(u)
∥∥2

≥ 1
2

(
1
µ
− 1
ρ

)∥∥Rµ(u)
∥∥2

,

(3.31)

which implies the rightmost inequality in (3.28).
In a similar way, by taking g(u)= Jϕ(g(u))[g(u)− µTu], g(z)= g(u)− µTu, and g(v)=

Jϕ(g(u))[g(u)− ρTu] in (2.18), we have

〈
Jϕ(g(u))

[
g(u)−µTu

]− g(u) +µTu, Jϕ(g(u))
[
g(u)− ρTu

]− Jϕ(g(u))
[
g(u)−µTu

]〉
+ ρϕ

(
Jϕ(g(u))

[
g(u)− ρTu

]
, Jϕ(g(u))

[
g(u)−µTu

])
− ρϕ

(
Jϕ(g(u))

[
g(u)−µTu

]
, Jϕ(g(u))

[
g(u)−µTu

])≥ 0,

(3.32)
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which implies that
〈
Tu,Rρ(u)−Rµ(u)

〉
+ϕ
(
Jϕ(g(u))

[
g(u)−µTu

]
, Jϕ(g(u))

[
g(u)− ρTu

])

−ϕ
(
Jϕ(g(u))

[
g(u)− ρTu

]
, Jϕ(g(u))

[
g(u)− ρTu

])≥ 1
2ρ

〈
Rρ(u),Rρ(u)−Rµ(u)

〉
.

(3.33)

Consequently, from (3.27) and (3.33), we obtain

Dρ,µ(u)≤ 1
µ

〈
Rµ(u),Rρ(u)−Rµ(u)

〉
+

1
2µ

∥∥Rµ(u)
∥∥2− 1

2ρ

∥∥Rρ(u)
∥∥2

= 1
2

(
1
µ
− 1
ρ

)∥∥Rµ(u)
∥∥2

+
1

2ρ

〈
Rρ(u),Rρ(u)−Rµ(u)

〉

− 1
2ρ

∥∥Rρ(u)−Rµ(u)
∥∥2− 1

2ρ

〈
Rµ(u),Rρ(u)−Rµ(u)

〉

= 1
2

(
1
µ
− 1
ρ

)∥∥Rρ(u)
∥∥2− 1

2
µ
∥∥Rρ(u)−Rµ(u)

∥∥2

≤ 1
2

(
1
µ
− 1
ρ

)∥∥Rρ(u)
∥∥2

,

(3.34)

which implies the leftmost inequality in (3.28).
Combining (3.31) and (3.34), we obtain (3.28), the required result. �

Using essentially the technique of Theorem 3.5, we can obtain the following result.

Theorem 3.7. Let u∈H be a solution of (2.1). If the operator T is strongly monotone with
constant α > 0 and g is strongly nonexpanding with constant σ > 0, then

‖u−u‖2 ≤ (2ρµ)(
ρ(2µα+ 1)−µ

)
σDρ,µ

, ∀u∈H. (3.35)

Proof. Let u∈H be a solution of (2.1). Then, taking v = u in (3.5), we have
〈
Tu,g(u)− g(u)

〉
+ϕ
(
g(u),g(u)

)−ϕ
(
g(u),g(u)

)≥ 0. (3.36)

Also from (3.26), (3.36), and strong monotonicity of T , we have

Dρ,µ(u)≥ 〈Tu,g(u)− g(u)
〉−ϕ

(
g(u),g(u)

)
+ϕ
(
g(u),g(u)

)

+
1

2µ

∥∥g(u)− g(u)
∥∥2− 1

2ρ

∥∥g(u)− g(u)
∥∥2

≥ 〈Tu,g(u)− g(u)
〉−ϕ

(
g(u),g(u)

)
+ϕ
(
g(u),g(u)

)

+α
∥∥g(u)− g(u)

∥∥2
+

1
2µ

∥∥g(u)− g(u)
∥∥2− 1

2ρ

∥∥g(u)− g(u)
∥∥2

≥ σ
(
α+

1
2µ
− 1

2ρ

)
‖u−u‖2,

(3.37)

from which the required result (3.35) follows, where σ > 0 is a strongly expansivoty con-
stant of g. �
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