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By using the continuation theorem of coincidence degree theory and Lyapunov functions,
we study the existence and global stability of periodic solutions for a class of generalized
nonautonomous neural networks with distributed delays.

1. Introduction

The study of the dynamics of neural networks has greatly attracted the attention of the
scientific community because of their promising potential for the tasks of classification,
associative memory, and parallel computations, and their ability to solve difficult opti-
mization problems. Many papers [1, 4, 5, 8, 9, 10, 12, 13, 14, 15] have been devoted to
discussing the stability of neural networks with delays. Recently, the authors of [7] have
studied the globally exponential stability of the trivial solution for the following general-
ized neural networks with distributed delays

ẋi(t)=−di
(
xi(t)

)
+

n∑
j=1

ωij
(
x1(t), . . . ,xn(t)

)
f j
(
xj(t)

)
+

n∑
j=1

ωτi j
(
x1(t), . . . ,xn(t)

)

×
∫ t
−∞

ki j(t− s) f j
(
xj(s)

)
ds, i= 1,2, . . . ,n,

(1.1)

where xi is the state of the i-neuron at time t, A= (ωij) and B = (ωτi j) are n×n intercon-
nection matrices, respectively, f j is an activation function. However, under some practical
circumstances, the connection weights, the activation functions, and the rate functions of
most neural network models (i.e., ωij , ωτi j , f j , and di in system (1.1)) depend not only on
the state xi(t) but also on the time t, so the nonautonomous system can be applied in
wider fields. In this paper, we are concerned with the following nonautonomous neural
network system

ẋi(t)=−di
(
t,xi(t)

)
+

n∑
j=1

ωij
(
t,x1(t), . . . ,xn(t)

)
f j
(
t,xj(t)

)
+

n∑
j=1

ωτi j
(
t,x1(t), . . . ,xn(t)

)

×
∫ t
−∞

ki j(t− s) f j
(
t,xj(s)

)
ds, i= 1,2, . . . ,n.

(1.2)
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It is well known that studies on neural network dynamical systems not only involve a dis-
cussion of stability properties, but also involve many dynamic behaviors such as periodic
oscillatory behavior, almost-periodic oscillatory properties, chaos, and bifurcation [11],
and to the best of our knowledge, few authors considered the existence of periodic solu-
tions for the model (1.2). Our purpose of this paper is to prove the existence and stability
of periodic solutions of (1.2).

Throughout this paper, we assume that
(H1) for each i = 1,2, . . . ,n, di ∈ C(R2,R) is T-periodic with respect to its first argu-

ment, and limu→+∞di(t,u) = +∞ and limu→−∞di(t,u) = −∞ are uniformly in t,
respectively;

(H2) for each i, j = 1,2, . . . ,n, ki j is real-valued nonnegative continuous function de-
fined on [0,∞) and

∫∞
0 ki j(s)ds= 1;

(H3) for each i, j = 1,2, . . . ,n, fi ∈ C(R2,R), ωτi j ,ωij ∈ C(Rn+1,R) are bounded and fi,
ωτi j , and ωij are T-periodic with respect to their first arguments, respectively.

The organization of this paper is as follows. In the second section, we prove the ex-
istence of periodic solutions of system (1.2) by applying the continuation theorem of
coincidence degree theory. In the third section, some sufficient conditions are obtained
to show the global asymptotic stability of periodic solutions of system (1.2).

2. Existence of positive periodic solutions

In this section, based on the Mawhin’s continuation theorem, we will study the existence
of at least one positive periodic solution of (1.2). First, we will make some preparations.

Let X ,Y be normed vector spaces, L : DomL⊂ X → Y a linear mapping, and N : X →
Y a continuous mapping. The mapping Lwill be called a Fredholm mapping of index zero
if dimKerL= codimImL < +∞ and ImL is closed in Y . If L is a Fredholm mapping of in-
dex zero and there exist continuous projectors P : X → X and Q : Y → Y such that ImP =
KerL, KerQ = ImL = Im(I −Q), it follows that mapping L|DomL∩KerP : (I − P)X → ImL
is invertible. We denote the inverse of that mapping by KP . If Ω is an open bounded
subset of X , the mapping N will be called L-compact on Ω if QN(Ω) is bounded and
KP(I −Q)N : Ω→ X is compact. Since ImQ is isomorphic to KerL, there exists an iso-
morphism J : ImQ→ KerL.

Now, we introduce Mawhin’s continuation theorem [2, page 40] as follows.

Lemma 2.1. Let Ω⊂ X be an open bounded set and let N : X → Y be a continuous operator
which is L-compact on Ω. Assume

(a) for each λ∈ (0,1), x ∈ ∂Ω∩DomL, Lx �= λNx;
(b) for each x ∈ ∂Ω∩KerL, QNx �= 0;
(c) deg(JNQ,Ω∩KerL,0) �= 0.

Then Lx =Nx has at least one solution in Ω∩DomL.

Theorem 2.2. Assume that (H1)–(H3) hold. Then the system (1.2) has at least one T-
periodic solution.

Proof. In order to apply the continuation theorem of coincidence degree theory to estab-
lish the existence of a T-periodic solution of (1.2), we take

X = Y = {x ∈ C(R,Rn
)

: x(t+T)= x(t), t ∈ R} (2.1)
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and denote

‖x‖ = sup
t∈[0,T]

n∑
i=1

∣∣xi(t)∣∣, (2.2)

then X is a Banach space. Set

L : DomL∩X , Lx = ẋ(t), x ∈ X , (2.3)

where DomL= {x ∈ C1(R,Rn)} and N : X → X ,

(
Nxi

)
(t)=−di

(
t,xi(t)

)
+

n∑
j=1

ωij
(
t,x1(t), . . . ,xn(t)

)
f j
(
t,xj(t)

)
+

n∑
j=1

ωτi j
(
t,x1(t), . . . ,xn(t)

)

×
∫ t
−∞

ki j(t− s) f j
(
t,xj(s)

)
ds, i= 1,2, . . . ,n.

(2.4)

Define two projectors P and Q as

Qx = Px = 1
T

∫ T
0
x(s)ds, x ∈ X. (2.5)

Clearly, KerL= Rn, ImL= {(x1, . . . ,xn)T ∈ X :
∫ T

0 xi(t)dt = 0, i= 1,2, . . . ,n} is closed in X
and dim KerL = codimImL = n. Hence, L is a Fredholm mapping of index 0. Further-
more, similar to the proof of [6, Theorem 1], one can easily show that N is L-compact on
Ω with any open bounded set Ω⊂ X .

Corresponding to operator equation Lx = λNx, λ∈ (0,1), we have

dxi
dt
=− λdi

(
t,xi(t)

)
+ λ

n∑
j=1

ωij
(
t,x1(t), . . . ,xn(t)

)
f j
(
t,xj(t)

)
+ λ

n∑
j=1

ωτi j
(
t,x1(t), . . . ,xn(t)

)

×
∫ t
−∞

ki j(t− s) f j
(
t,xj(s)

)
ds, i= 1,2, . . . ,n.

(2.6)

Suppose that x = (x1, . . . ,xn)∈ X is a solution of (2.6) for some λ∈ (0,1). Let ξi ∈ [0,T]
such that xi(ξi)=maxt∈[0,ω] xi(t), i= 1,2, . . . ,n, then

− λdi
(
ξi,xi

(
ξi
))

+ λ
n∑
j=1

ωij
(
ξi,x1

(
ξi
)
, . . . ,xn

(
ξi
))
f j
(
ξi,xj

(
ξi
))

+ λ
n∑
j=1

ωτi j
(
ξi,x1

(
ξi
)
, . . . ,xn

(
ξi
))∫ ξi

−∞
ki j
(
ξi− s

)
f j
(
ξi,xj(s)

)
ds= 0, i= 1,2, . . . ,n.

(2.7)
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In view of (H2) and (H3), we have

di
(
ξi,xi

(
ξi
))≤ n∑

j=1

∣∣ωij(ξi,x1
(
ξi
)
, . . . ,xn

(
ξi
))∣∣∣∣ f j(ξi,xj(ξi))∣∣

+
n∑
j=1

∣∣ωτi j(ξi,x1
(
ξi
)
, . . . ,xn

(
ξi
))∣∣

×
∣∣∣∣
∫ ξi
−∞

ki j
(
ξi− s

)
f j
(
ξi,xj(s)

)
ds
∣∣∣∣

≤ nω f +nωτ f , i= 1,2, . . . ,n,

(2.8)

whereω=max{|ωij(t,ν1, . . . ,νn)|, (t,ν1, . . . ,νn)T ∈ Rn+1, i, j= 1,2, . . . ,n},ωτ =max{|ωτi j(t,
ν1, . . . ,νn)|, (t,ν1, . . . ,νn)T ∈ Rn+1, i, j = 1,2, . . . ,n}, f =max{| f j(t,µj)|, (t,µj)T ∈ R2, j =
1,2, . . . ,n}. According to (H1) and (2.8), we know that there exists a constant A1 > 0 such
that

xi
(
ξi
)≤ A1, i= 1,2, . . . ,n. (2.9)

Similarly, let ηi ∈ [0,ω] such that xi(ηi)=mint∈[0,ω] xi(t), i= 1,2, . . . ,n, then

− λdi
(
ηi,xi

(
ηi
))

+ λ
n∑
j=1

ωij
(
ηi,x1

(
ηi
)
, . . . ,xn

(
ηi
))
f j
(
ηi,xj

(
ηi
))

+ λ
n∑
j=1

ωτi j
(
ηi,x1

(
ηi
)
, . . . ,xn

(
ηi
))∫ ηi

−∞
ki j
(
ηi− s

)
f j
(
ηi,xj(s)

)
ds= 0, i= 1,2, . . . ,n.

(2.10)

Then,

di
(
ηi,xi

(
ηi
))≥− n∑

j=1

∣∣ωij(ηi,x1
(
ηi
)
, . . . ,xn

(
ηi
))∣∣∣∣ f j(ηi,xj(ηi))∣∣

−
n∑
j=1

∣∣ωτi j(ηi,x1
(
ηi
)
, . . . ,xn

(
ηi
))∣∣

×
∣∣∣∣
∫ ηi
−∞

ki j
(
ηi− s

)
f j
(
ηi,xj(s)

)
ds
∣∣∣∣

≥−nω f −nωτ f , i= 1,2, . . . ,n,

(2.11)

where ω, f ,ωτ is the same as those in (2.8). Therefore, there exists a constant A2 > 0 such
that

xi
(
ηi
)≥−A2, i= 1,2, . . . ,n. (2.12)
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Denote D =max{nA1,nA2}+E, where E is a positive constant, clearly, D is independent
of λ. Now, we take Ω= {x ∈ X , ‖x‖ < D}. This Ω satisfies condition (a) in Lemma 2.1.

When x ∈ ∂Ω∩KerL= ∂Ω∩Rn, x is a constant vector in Rn with ‖x‖ =D. Then

xTQNx =− 1
T

n∑
i=1

xi

∫ T
0

[
di
(
t,xi

)− n∑
j=1

ωij
(
t,x1, . . . ,xn

)
f j
(
t,xj

)

−
n∑
j=1

ωτi j
(
t,x1, . . . ,xn

)∫ t
−∞

ki j(t− s) f j
(
t,xj

)
ds
]
dt

≤− 1
T

n∑
i=1

xi

∫ T
0

[
di
(
t,xi

)−nω f −nωτ f ]dt
< 0, i= 1,2, . . . ,n.

(2.13)

If necessary, we can let E be greater such that−(1/T)
∑n

i=1 xi
∫ T

0 [di(t,xi)−nω f −nωτ f ]dt
< 0. This prove that condition (b) in Lemma 2.1 is satisfied.

Finally, we will prove that condition (c) in Lemma 2.1 is also satisfied. Let ψ(ν;x) =
−νx+ (1− ν)QNx, then for any x ∈ ∂Ω∩KerL, xTψ(ν,x) < 0, we get

deg(JQM,Ω∩KerL,0) �= 0. (2.14)

Thus, by Lemma 2.1, we conclude that Lx = Nx has at least one solution in X , that is,
(1.2) has at least one positive T-periodic solution. The proof is complete. �

3. Global asymptotic stability of periodic solutions

Let x(t) = (x1(t), . . . ,xn(t)) be any solution of (1.2) and x∗(t) = (x∗1 (t), . . . ,x∗n (t)) a T-
periodic solution of (1.2). Set u(t)= x(t)− x∗(t), then

dui(t)
dt

=−αi
(
ui(t)

)
+βi

(
ui(t)

)
+ γi

(
ui(t)

)
, i= 1,2, . . . ,n, (3.1)

where

αi
(
ui(t)

)=di(t,xi(t))−di(t,x∗i (t)
)
,

βi
(
ui(t)

)= n∑
j=1

ωij
(
t,x1(t), . . . ,xn(t)

)
f j
(
t,xj(t)

)− n∑
j=1

ωij
(
t,x∗1 (t), . . . ,x∗n (t)

)
f j
(
t,x∗j (t)

)
,

γi
(
ui(t)

)= n∑
j=1

ωτi j
(
t,x1(t), . . . ,xn(t)

)∫ t
−∞

ki j(t− s) f j
(
t,xj(s)

)
ds

−
n∑
j=1

ωτi j
(
t,x∗1 (t), . . . ,x∗n (t)

)∫ t
−∞

ki j(t− s) f j
(
t,x∗j (s)

)
ds.

(3.2)
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In the sequel, we will use the following notations:

ωij =max
{
ωij
(
t,ν1, . . . ,νn

)
,
(
t,ν1, . . . ,νn

)T ∈ Rn+1}, f j =max
{
f j(t,µ), (t,µ)T ∈ R2}.

(3.3)

Theorem 3.1. Assume that (H1)–(H3) hold. Furthermore, assume that
(H4) for each i = 1,2, . . . ,n, fi : R2 → R is globally Lipschitz continuous with a Lipschitz

constant Fi with respect to its second argument,
(H5) for each i= 1,2, . . . ,n, di ∈ C1(R2,R) and there exists a constant Di ≥ 0 such that

[
di(t,u)

]′
u ≥Di, u∈ R, (3.4)

(H6) for each i, j = 1,2, . . . ,n, there exist constants lBi j ≥ 0 and lBτi j ≥ 0 such that

∣∣ωij(t,x1(t), . . . ,xn(t)
)−ωij(t, y1(t), . . . , yn(t)

)∣∣≤ n∑
l=1

lBi j
∣∣xl(t)− yl(t)

∣∣, t ∈ R,

∣∣ωτi j(t,x1(t), . . . ,xn(t)
)−ωτi j(t, y1(t), . . . , yn(t)

)∣∣≤ n∑
l=1

lBτi j
∣∣xl(t)− yl(t)

∣∣, t ∈ R,

(3.5)

(H7) for each i= 1,2, . . . ,n,

Mi :=Di−Fi
n∑
j=1

(
ωji +ωτji

)− n∑
j=1

n∑
l=1

(i
Bl j + iBτl j

)
f j > 0, (3.6)

then (1.2) has a unique T-periodic solution which is globally asymptotically stable.

Proof. We consider the Lyapunov function

V(t)=V1(t) +V2(t), (3.7)

where

V1(t)=
n∑
i=1

∣∣ui(t)∣∣,

V2(t)=
n∑
i=1

n∑
j=1

ωτi jFj

∫∞
0
Kij(s)

∫ t
t−s

∣∣uj(z)
∣∣dzds.

(3.8)
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Calculating the derivatives of V1 and V2 along the solution of (3.1), respectively,

du

dt

∣∣∣∣
(3.1)

=
n∑
i=1

sign
(
ui(t)

)
u̇i(t)

=
n∑
i=1

sign
(
ui(t)

){−αi(ui(t))+βi
(
ui(t)

)
+ γi

(
ui(t)

)}

≤
n∑
i=1

{−Di

∣∣ui(t)∣∣+
∣∣βi(ui(t))∣∣+

∣∣γi(ui(t))∣∣}

≤
n∑
i=1

{
−Di

∣∣ui(t)∣∣+
n∑
j=1

∣∣ωij(t,x1(t), . . . ,xn(t)
)∣∣∣∣ f j(t,xj(t))− f j

(
t,x∗j (t)

)∣∣

+
n∑
j=1

∣∣ωij(t,x1(t), . . . ,xn(t)
)−ωij(t,x∗1 (t), . . . ,x∗n (t)

)∣∣∣∣ f j(t,x∗j (t)
)∣∣

+
n∑
j=1

∣∣ωτi j(t,x1(t), . . . ,xn(t)
)∣∣∫ t

−∞
ki j(t− s)

×| f j
(
t,xj(s)

)− f j
(
t,x∗j (s)

)∣∣ds
+

n∑
j=1

∣∣ωτi j(t,x1(t), . . . ,xn(t)
)

−ωτi j
(
t,x∗1 (t), . . . ,x∗n (t)

)∣∣∣∣∣∣
∫ t
−∞

ki j(t− s) f j
(
t,x∗j (s)

)
ds
∣∣∣∣
}

,

≤
n∑
i=1

{
−Di

∣∣ui(t)∣∣+
n∑
j=1

ωijFj
∣∣uj(t)∣∣+

n∑
j=1

n∑
l=1

lBi j
∣∣ul(t)∣∣ f j

+
n∑
j=1

ωτi j

∫ t
−∞

ki j(t− s)Fj
∣∣uj(s)∣∣ds+

n∑
j=1

n∑
l=1

lBτi j
∣∣ul(t)∣∣ f j

}

=
n∑
i=1

{
−Di

∣∣ui(t)∣∣+
n∑
j=1

ωijFj
∣∣uj(t)∣∣+

n∑
j=1

n∑
l=1

lBi j
∣∣ul(t)∣∣ f j

+
n∑
j=1

ωτi jFj

∫∞
0
ki j(s)

∣∣uj(t− s)∣∣ds+
n∑
j=1

n∑
l=1

lBτi j
∣∣ul(t)∣∣ f j

}
,

(3.9)

dV2

dt

∣∣∣∣
(3.1)

=
n∑
i=1

( n∑
j=1

ωτi jFj

∫∞
0
ki j(s)

∣∣uj(t)∣∣ds−
n∑
j=1

ωτi jFj

∫∞
0
ki j(s)

∣∣uj(t− s)∣∣ds
)
.

(3.10)

So,

dV(t)
dt

∣∣∣∣
(3.1)

≤
n∑
i=1

{
−Di

∣∣ui(t)∣∣+
n∑
j=1

ωijFj
∣∣uj(t)∣∣+

n∑
j=1

n∑
l=1

(l
Bi j + lBτi j

)∣∣ul(t)∣∣ f j
+

n∑
j=1

ωτi jFj
∣∣uj(t)∣∣

}
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=
n∑
i=1

{
−Di

∣∣ui(t)∣∣+
n∑
j=1

(
ωij +ωτi j

)
Fj
∣∣uj(t)∣∣

+
n∑
j=1

n∑
l=1

(l
Bi j + lBτi j

)∣∣ul(t)∣∣ f j
}

≤
n∑
i=1

{
−Di +Fi

n∑
j=1

(
ωji +ωτji

)
+

n∑
j=1

n∑
l=1

(i
Bl j + iBτl j

)
f j

}∣∣ui(t)∣∣
≤ 0.

(3.11)

In view of (3.7) and (3.10), we see that
∑n

i=1 |ui(t)| is bounded for all t ≥ 0. For the proof
of Theorem 2.2, it follows that for each i = 1,2, . . . ,n, x∗i (t) is bounded. Hence the solu-
tions of (1.2) exist and are bounded for all t ≥ 0. Integrating both sides of (3.11) from 0
to t, we get

V(t) +
∫ t

0

n∑
i=1

Mi

∣∣ui(s)∣∣ds≤V(0), (3.12)

which implies ui(t)∈ L1[0,∞). Therefore, by Barbalatt’s lemma [3, Lemma 1.2.2, page 4],
we have

lim
t→∞ui(t)= 0. (3.13)

This completes the proof. �

Acknowledgments

This work is supported by the National Natural Sciences Foundation of China under
Grant 10361006 and the Natural Sciences Foundation of Yunnan Province under Grant
2003A0001M.

References

[1] M. Dong, Global exponential stability and existence of periodic solutions of CNNs with delays,
Phys. Lett. A 300 (2002), no. 1, 49–57.

[2] R. E. Gaines and J. L. Mawhin, Coincidence Degree, and Nonlinear Differential Equations,
Springer, Berlin, 1977.

[3] K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics,
Mathematics and Its Applications, vol. 74, Kluwer Academic Publishers, Dordrecht, 1992.

[4] K. Gopalsamy and X. Z. He, Stability in asymmetric Hopfield nets with transmission delays, Phys.
D 76 (1994), no. 4, 344–358.

[5] M. Joy, On the global convergence of a class of functional-differential equations with applications
in neural network theory, J. Math. Anal. Appl. 232 (1999), no. 1, 61–81.

[6] Y. Li and Y. Kuang, Periodic solutions of periodic delay Lotka-Volterra equations and systems, J.
Math. Anal. Appl. 255 (2001), no. 1, 260–280.



Yongkun Li et al. 1005

[7] X. Liao, K. W. Wong, and C. Li, Global exponential stability for a class of generalized neural
networks with distributed delays, Nonlinear Anal. Real World Appl. 5 (2004), no. 3, 527–
547.

[8] T. Roska, C. W. Wu, and L. O. Chua, Stability of cellular neural networks with dominant nonlin-
ear and delay-type templates, IEEE Trans. Circuits Systems I Fund. Theory Appl. 40 (1993),
no. 4, 270–272.

[9] V. Sree Hari Rao and B. R. M. Phaneendra, Global dynamics of bidirectional associative memory
neural networks involving transmission delays and dead zones, Neural Networks 12 (1999),
455–465.

[10] P. van den Driessche and X. Zou, Global attractivity in delayed Hopfield neural network models,
SIAM J. Appl. Math. 58 (1998), no. 6, 1878–1890.

[11] J. Wei and S. Ruan, Stability and bifurcation in a neural network model with two delays, Phys. D
130 (1999), no. 3-4, 255–272.

[12] Y. Yi, P. A. Heng, and K. S. Leung, Convergence analysis of cellular neural networks with un-
bounded delay, IEEE Trans. Circuits Systems I Fund. Theory Appl. 48 (2001), no. 6, 680–
687.

[13] J. Zhang, Absolutely exponential stability in delayed cellular neural networks, Int. J. Circuit The-
ory and Applications 30 (2002), no. 4, 395–409.

[14] , Global stability analysis in delayed cellular neural networks, Comput. Math. Appl. 45
(2003), no. 10-11, 1707–1720.

[15] , Globally exponential stability of neural networks with variable delays, IEEE Trans. Cir-
cuits Systems I Fund. Theory Appl. 50 (2003), no. 2, 288–291.

Yongkun Li: Department of Mathematics, Yunnan University, Kunming, Yunnan 650091, China
E-mail address: yklie@ynu.edu.cn

Lifei Zhu: Department of Mathematics and Statistics, McGill University, Montreal, QC, Canada
H3A 2K6

E-mail address: zhu@math.mcgill.ca

Wenxiang Liu: Department of Mathematical and Statistical Sciences, University of Alberta,
Edmonton, AB, Canada T6G 2G1

E-mail address: wliu@math.ualberta.ca

mailto:yklie@ynu.edu.cn
mailto:zhu@math.mcgill.ca
mailto:wliu@math.ualberta.ca

