ON THE L^{P}-CONVERGENCE FOR MULTIDIMENSIONAL ARRAYS OF RANDOM VARIABLES

LE VAN THANH

Received 14 August 2004 and in revised form 4 March 2005

For a d-dimensional array of random variables $\left\{X_{n}, n \in \mathbb{Z}_{+}^{d}\right\}$ such that $\left\{\left|X_{n}\right|^{p}, n \in \mathbb{Z}_{+}^{d}\right\}$ is uniformly integrable for some $0<p<2$, the L^{p}-convergence is established for the sums $\left(1 /|n|^{1 / p}\right)\left(\sum_{j<n}\left(X_{j}-a_{j}\right)\right)$, where $a_{j}=0$ if $0<p<1$, and $a_{j}=E X_{j}$ if $1 \leq p<2$.

1. Introduction

Let \mathbb{Z}_{+}^{d}, where d is an integer, denote the positive integer d-dimensional lattice points. The notation $m \prec n$, where $m=\left(m_{1}, m_{2}, \ldots, m_{d}\right)$ and $n=\left(n_{1}, n_{2}, \ldots, n_{d}\right) \in \mathbb{Z}_{+}^{d}$, means that $m_{i} \leq n_{i}, 1 \leq i \leq d,|n|$ is used for $\prod_{i=1}^{d} n_{i}$.

Gut [2] proved that if $\left\{X, X_{n}, n \in \mathbb{Z}_{+}^{d}\right\}$ is a d-dimensional array of i.i.d. random variables with $E|X|^{p}<\infty(0<p<2)$ and $E X=0$ if $1 \leq p<2$, then

$$
\begin{equation*}
\frac{\sum_{j<n} X_{j}}{|n|^{1 / p}} \longrightarrow 0 \text { in } L^{p} \quad \text { as } \min _{1 \leq i \leq d} n_{i} \longrightarrow \infty, \tag{1.1}
\end{equation*}
$$

where $\left(n_{1}, n_{2}, \ldots, n_{d}\right)=n \in \mathbb{Z}_{+}^{d}$.
In 1999, Hong and Hwang [3] proved that if $\left\{X_{m n}, m \geq 1, n \geq 1\right\}$ is a double array of pairwise independent random variables such that

$$
\begin{equation*}
P\left\{\left|X_{m n}\right|>t\right\} \leq P\{|X|>t\}, \quad t \geq 0, m \geq 1, n \geq 1, \tag{1.2}
\end{equation*}
$$

where X is a random variable, then the condition $E\left(|X|^{p} \log ^{+}|X|\right)<\infty(1<p<2)$ implies that

$$
\begin{equation*}
\frac{\sum_{k=1}^{m} \sum_{l=1}^{n}\left(X_{k l}-E X_{k l}\right)}{(m n)^{1 / p}} \longrightarrow 0 \text { in } L^{1} \quad \text { as } \max \{m, n\} \longrightarrow \infty . \tag{1.3}
\end{equation*}
$$

In this note, we provide conditions for $\left(1 /|n|^{1 / p}\right)\left(\sum_{j<n}\left(X_{j}-a_{j}\right)\right) \rightarrow 0$ in L^{p} as $|n| \rightarrow \infty$, where $n \in \mathbb{Z}_{+}^{d}, j \in \mathbb{Z}_{+}^{d}, a_{j}=0$ if $0<p<1$, and $a_{j}=E X_{j}$ if $1 \leq p<2$.

2. Result

Theorem 2.1. Let $\left\{X_{n}, n \in \mathbb{Z}_{+}^{d}\right\}$ be a d-dimensional array of random variables such that $\left\{\left|X_{n}\right|^{p}, n \in \mathbb{Z}_{+}^{d}\right\}$ is uniformly integrable for some $0<p<2$. Assume that $\left\{X_{n}, n \in \mathbb{Z}_{+}^{d}\right\}$ is pairwise independent if $p=1$ and $\left\{X_{n}, n \in \mathbb{Z}_{+}^{d}\right\}$ is independent if $1<p<2$. Then,

$$
\begin{equation*}
\frac{\sum_{j<n}\left(X_{j}-a_{j}\right)}{|n|^{1 / p}} \longrightarrow 0 \quad \text { in } L^{p} \text { as }|n| \longrightarrow \infty, \tag{2.1}
\end{equation*}
$$

where $a_{j}=0$ if $0<p<1$, and $a_{j}=E X_{j}$ if $1 \leq p<2$.
Proof. For arbitrary $\epsilon>0$, there exists $M>0$ such that

$$
\begin{equation*}
E\left(\left|X_{n}\right|^{p} I\left(\left|X_{n}\right|>M\right)\right)<\epsilon \quad \forall n \in \mathbb{Z}_{+}^{d} . \tag{2.2}
\end{equation*}
$$

Set

$$
\begin{align*}
X_{n}^{\prime}=X_{n} I\left(\left|X_{n}\right| \leq M\right), & n \in \mathbb{Z}_{+}^{d} \\
X_{n}^{\prime \prime}=X_{n} I\left(\left|X_{n}\right|>M\right), & n \in \mathbb{Z}_{+}^{d} . \tag{2.3}
\end{align*}
$$

For all $n \in \mathbb{Z}_{+}^{d}$,

$$
\begin{equation*}
E\left|X_{n}^{\prime \prime}-E X_{n}^{\prime \prime}\right|^{p} \leq 4 E\left|X_{n}^{\prime \prime}\right|^{p}<4 \epsilon . \tag{2.4}
\end{equation*}
$$

If $0<p<1$, then

$$
\begin{align*}
E\left|\sum_{j<n} X_{j}\right|^{p} & \leq E\left|\sum_{j<n} X_{j}^{\prime}\right|^{p}+E\left|\sum_{j<n} X_{j}^{\prime \prime}\right|^{p} \leq E\left|\sum_{j<n} X_{j}^{\prime}\right|^{p}+\sum_{j<n} E\left|X_{j}^{\prime \prime}\right|^{p} \tag{2.5}\\
& \leq(|n| M)^{p}+|n| \epsilon \quad(\text { by }(2.2)) .
\end{align*}
$$

The conclusion (2.1) follows from (2.5).
If $p=1$ and $\left\{X_{n}, n \in \mathbb{Z}_{+}^{d}\right\}$ is pairwise independent, then

$$
\begin{align*}
E\left|\sum_{j<n}\left(X_{j}-E X_{j}\right)\right| \leq & E\left|\sum_{j<n}\left(X_{j}^{\prime}-E X_{j}^{\prime}\right)\right|+\sum_{j<n} E\left|X_{j}^{\prime \prime}-E X_{j}^{\prime \prime}\right| \\
\leq & {\left[E\left|\sum_{j<n}\left(X_{j}^{\prime}-E X_{j}^{\prime}\right)\right|^{2}\right]^{1 / 2}+\sum_{j<n} E\left|X_{j}^{\prime \prime}-E X_{j}^{\prime \prime}\right| } \\
& (\text { by the Jensen inequality }(\text { see }[1, \text { page 103] })) \\
\leq & {\left[\sum_{j<n} E\left(X_{j}^{\prime}-E X_{j}^{\prime}\right)^{2}\right]^{1 / 2}+4|n| \epsilon \quad(\text { by }(2.4)) } \tag{2.6}\\
\leq & \left(|n| M^{2}\right)^{1 / 2}+4|n| \epsilon \\
& \left(\text { since } E\left(X_{j}^{\prime}-E X_{j}^{\prime}\right)^{2}=E\left(X_{j}^{\prime}\right)^{2}-\left(E X_{j}^{\prime}\right)^{2} \leq M^{2}, j \in \mathbb{Z}_{+}^{d}\right) \\
= & o(|n|) \quad \text { as }|n| \longrightarrow \infty .
\end{align*}
$$

If $1<p<2$ and $\left\{X_{n}, n \in \mathbb{Z}_{+}^{d}\right\}$ is independent, then

$$
\begin{align*}
E\left|\sum_{j<n}\left(X_{j}-E X_{j}\right)\right|^{p} \leq & 2^{p-1}\left[E\left|\sum_{j<n}\left(X_{j}^{\prime}-E X_{j}^{\prime}\right)\right|^{p}+E\left|\sum_{j<n}\left(X_{j}^{\prime \prime}-E X_{j}^{\prime \prime}\right)\right|^{p}\right] \\
\leq & 2^{p-1}\left[\left(E\left|\sum_{j<n}\left(X_{j}^{\prime}-E X_{j}^{\prime}\right)\right|^{2}\right)^{p / 2}+2 \sum_{j<n} E\left|X_{j}^{\prime \prime}-E X_{j}^{\prime \prime}\right|^{p}\right] \\
& \quad \text { (by the Jensen inequality }[1] \text { and the von Bahr-Esseen } \\
& \quad \text { inequality }[4]) \tag{2.7}\\
\leq & 2^{p-1}\left(\sum_{j<n} E\left(X_{j}^{\prime}-E X_{j}^{\prime}\right)^{2}\right)^{p / 2}+2^{p+2}|n| \epsilon \quad(\text { by }(2.4)) \\
\leq & 2^{p-1}\left(|n| M^{2}\right)^{p / 2}+2^{p+2}|n| \epsilon \\
& \left(\operatorname{since} E\left(X_{j}^{\prime}-E X_{j}^{\prime}\right)^{2}=E\left(X_{j}^{\prime}\right)^{2}-\left(E X_{j}^{\prime}\right)^{2} \leq M^{2}, j \in \mathbb{Z}_{+}^{d}\right) \\
= & o(|n|) \quad \text { as }|n| \longrightarrow \infty,
\end{align*}
$$

again establishing (2.1).
Note that if $\left\{X, X_{n}, n \in \mathbb{Z}_{+}^{d}\right\}$ are random variables such that $E|X|^{p}<\infty(p>0)$ and $\sup _{n \in \mathbb{Z}_{+}^{d}} P\left\{\left|X_{n}\right|>t\right\} \leq P\{|X|>t\}$ for all $t \geq 0$, then $\left\{\left|X_{n}\right|^{p}, n \in \mathbb{Z}_{+}^{d}\right\}$ is uniformly integrable. The following corollary follows immediately from Theorem 2.1.
Corollary 2.2. Let $\left\{X, X_{n}, n \in \mathbb{Z}_{+}^{d}\right\}$ be random variables such that $E|X|^{p}<\infty$ for some $0<p<2$, and $\sup _{n \in \mathbb{Z}_{+}^{d}} P\left\{\left|X_{n}\right|>t\right\} \leq P\{|X|>t\}$ for all $t \geq 0$. Assume that $\left\{X_{n}, n \in \mathbb{Z}_{+}^{d}\right\}$ is pairwise independent if $p=1$ and $\left\{X_{n}, n \in \mathbb{Z}_{+}^{d}\right\}$ is independent if $1<p<2$. Then,

$$
\begin{equation*}
\frac{\sum_{j<n}\left(X_{j}-a_{j}\right)}{|n|^{1 / p}} \longrightarrow 0 \text { in } L^{p} \quad \text { as }|n| \longrightarrow \infty, \tag{2.8}
\end{equation*}
$$

where $a_{j}=0$ if $0<p<1$, and $a_{j}=E X_{j}$ if $1 \leq p<2$.

Acknowledgment

The author is grateful to Professor Andrew Rosalsky (University of Florida, USA) for the reference [2].

References

[1] Y. S. Chow and H. Teicher, Probability Theory: Independence, Interchangeability, Martingales, 3rd ed., Springer Texts in Statistics, Springer-Verlag, New York, 1997.
[2] A. Gut, Marcinkiewicz laws and convergence rates in the law of large numbers for random variables with multidimensional indices, Ann. Probab. 6 (1978), no. 3, 469-482.
[3] D. H. Hong and S. Y. Hwang, Marcinkiewicz-type strong law of large numbers for double arrays of pairwise independent random variables, Int. J. Math. Math. Sci. 22 (1999), no. 1, 171-177.
[4] B. von Bahr and C. Esseen, Inequalities for the r th absolute moment of a sum of random variables, $1 \leq r \leq 2$, Ann. Statist. 36 (1965), 299-303.

Le Van Thanh: Department of Mathematics, Vinh University, Nghe An 42118, Vietnam E-mail address: lvthanhvinh@yahoo.com

