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Our main purpose is to develop the theory of existence of pseudo-superinvolutions of the first
kind on finite dimensional central simple associative superalgebras over K, where K is a field
of characteristic not 2. We try to show which kind of finite dimensional central simple associa-
tive superalgebras have a pseudo-superinvolution of the first kind. We will show that a division
superalgebra ® over a field K of characteristic not 2 of even type has pseudo-superinvolution
(ie., K-antiautomorphism J such that (ds)’" = (=1)%ds) of the first kind if and only if D
is of order 2 in the Brauer-Wall group BW(K). We will also show that a division superalge-
bra @ of odd type over a field K of characteristic not 2 has a pseudo-superinvolution of the
first kind if and only if v/-1 € K, and ® is of order 2 in the Brauer-Wall group BW(K). Fi-
nally, we study the existence of pseudo-superinvolutions on central simple superalgebras «# =
Mp+q(90)~

Copyright © 2008 Ameer Jaber. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

Let K be a field of characteristic not 2. An associative superalgebra is a Z,-graded associative K-
algebra of = o4+ <#1. A superalgebra o is central simple over K, if Z(#4) = K, where (Z(J))a =
(a0 € Aulaabp = (—1)“ﬂbﬁaa for all by € 45}, and the only superideals of & are (0) and <.

Finite dimensional central simple associative superalgebras over a field K are isomor-
phic to End V = M,,(®), where @ = 9, + 9 is a finite dimensional associative division super-
algebra over K, that is, all nonzero elements of ®,, a = 0,1, are invertible, and V = V; + V; is
an n-dimensional ® superspace.

If ®; = {0}, the grading of M,,(®) is induced by that of V = Vj + Vi, # = Mp,(9D),
p =dimgVp, g = dim ¢V, so p + 4 is a nontrivial decomposition of n. While if ®; # {0}, then the
grading of M, (®) is given by (M,(®)), = M,(D.), a = 0,1, as we recall.
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Let 4 = &4y + <41 be any associative superalgebra over a field K of characteristic not 2,
and let * : o/ — of be an antiautomorphism on 4, then * is called a pseudo-superinvolution on
A if (ao + bl)** =ap—by.

In recent work on the representations of Jordan superalgebras which has yet to appear,
Martinez and Zelmanov make use of pseudo-superinvolutions.

We recall a theorem of Albert which shows that a finite dimensional central simple alge-
bra over a field k has an involution of the first kind if and only if it is of order 2 in the Brauer
group Br (k). The proof of this classical theorem is in many books of algebra, for example, see
[1, Chapter 8, Section 8].

Throughout my work on the existence of superinvolutions of the first kind which has
yet to appear, we prove that finite dimensional central simple division superalgebras of odd or
even type with nontrivial grading over a field K of characteristic not 2 have no superinvolu-
tions of the first kind, also these results were introduced in [2, Proposition 9], [3]. Moreover,
we introduce an example of a central simple superalgebra «# = M, (®) over a field K of char-
acteristic not 2, where 9 # {0}, such that & has no superinvolution of the first kind, but it is of
order 2 in the Brauer-Wall group BW (K), which means that Albert’s theorem does not hold for
superinvolutions and this is one of the reasons why one introduces a generalization for which
it does.

In [2, Theorem 7], Racine proved that &# = M, (®) has a superinvolution if and only if ®
has. Therefore, if & is a finite dimensional central simple associative superalgebra over a field
K of characteristic not 2 such that < has a superinvolution of the first kind, then o/ = M,,4(9),
where 9D is a division algebra over K.

Let @ be a division superalgebra with nontrivial grading over a field K of characteristic
not 2. Since if & is a central simple associative superalgebra over K, then by [2, Theorem 3]
A = M,(D), where D1 # {0} or # = M, 4(D), where D; = {0}. In Section 2, we give some basic
definitions for the supercase.

In Section 3, we classify the existence of pseudo-superinvolution of the first kind on @
and we prove the following results.

(1) If 4 = M, (D), where D; # {0}, then & has a pseudo-superinvolution of the first kind
if and only if ® has. Therefore, it is enough to classify the existence of a pseudo-
superinvolution of the first kind on ®.

(2) A division superalgebra D of even type over a field K of characteristic not 2 has a pseudo-
superinvolution of the first kind if and only if @ is of order 2 in the Brauer-Wall group
BW (K).

(3) A division superalgebra D of odd type over a field K of characteristic not 2 has a pseudo-
superinvolution of the first kind if and only if /-1 € K and 9 is of order 2 in the Brauer-
Wall group BW (K).

In Section 4, we classify the existence of a pseudo-superinvolution of the first kind on «/ =
Mp4(D), where D is a division algebra over K.

Finally, if K is a field of characteristic 2, and &4 is a central simple associative super-
algebra over K, then a superinvolution (which is a pseudo-superinvolution) on &/ is just an
involution on & respecting the grading. Moreover, if &/ is of order 2 in the Brauer-Wall group
BW (K), then the supercenter of & equals the center of o and ®k = ®k, which means that « is
of order 2 in the Brauer group Br (K). Thus, by theorem of Albert, &/ has an involution of the
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first kind, but since &/ is of order 2 in the Brauer-Wall group BW (K), & has an antiautomor-
phism of the first kind respecting the grading, therefore by [1, Chapter 8, Theorem 8.2], < has
an involution of the first kind respecting the grading, which means that </ has a superinvolu-
tion (which is a pseudo-superinvolution) of the first kind if and only if &/ is of order 2 in the
Brauer-Wall group BW (K).

2. Basic definitions

Definition 2.1. If R = Ry + R; is an associative super-ring, a (right) R-supermodule M is a
right R-module with a grading M = M + M; as Ro-modules such that m,rs € Mg.p for any
my € My, 15 € Rp, a,p € Zy. An R-supermodule M is simple if MR# {0} and M has no
proper subsupermodule.

Following [2], we have the following definition of R-supermodule homomorphism.

Definition 2.2. Suppose that M and N are R-supermodules. An R-supermodule homomor-
phism from M into N is an Rop-module homomorphism h, : M — N,y € Z,, such that
Myhy C Ny and

(marg)hy = (mahy)rg, Vmg € Mg, 15 € Rg, a,p € Zs. (2.1)

Definition 2.3. The opposite super-ring R° of the super-ring R is defined to be R° = R as an
additive group, with the multiplication given by

bpocy = (-1)"c,bs, bse Ry, cy €R,. (2.2)

So if & is a superalgebra, then /° is just the opposite super-ring of «#; one can easily
show that if </ is a central simple associative superalgebra over a field K, then «° is also a
central simple associative superalgebra over K.

Definition 2.4. Let 4 = Ay + 41, B = By + B; be associative superalgebras. Then the graded
tensor product

J@KB = [(Jo & 730) @ (e41 ® 731)] ® [(Jo ® 731) ® (e41 ® Bo)], (23)
where the multiplication on #®B is induced by
(ax®bp)(cy®ds) = (1) azc, ®bpds,  an € Au, ¢y € Ay, b € Bg, ds € Bs. (2.4)

If &/ and B are associative superalgebras, then «/®x B is an associative superalgebra.

The commuting super-ring of R on M is defined to be C = Cy + C;, where
Cy:={cy € EndyM | ¢y1a = (-1)"racy V14 € Ra, @ € Zs}. (2.5)

Definition 2.5. Two finite dimensional central simple superalgebras «# and B over a field K are
called similar (¢# ~ B) if there exist graded K-vector spaces V = Vo Vi, W = Wy @ Wy, such
that 4®x EndxV = Box Endx W as K-superalgebras.
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Similarity is obviously an equivalence relation. The set of similarity classes will be de-
noted by BW (K (the Brauer-Wall group of K). If [&##] denotes the class of A in BW (K) by
using [4, Chapter 4,Theorem 2.3(3)], the operation [#][B] = [#®xB] is well-defined, and
makes the set of similarity classes of finite dimensional central simple superalgebras over K
into a commutative group, BW (K, where the class of the matrix algebras M,,4(K) is a neu-
tral element for this product. Moreover, it was proved in [4, 5] that a central simple associative
superalgebra A is of order 2 in BW (K) if and only if A = A°, the opposite superalgebra.

3. Existence of pseudo-superinvolution on ®

Theorem 3.1 (division superalgebra theorem [3]). If D=Dy+D; is a finite dimensional associative
division superalgebra over a field K, then exactly one of the following holds where throughout & denotes
a finite dimensional associative division algebra over K.

() D=9 =& and D, = 0}
(ii) D = EoxK[u], > =1 € K>, D=E0K1, D =& Ku.

(iii) D = & or M(&), u € D such that u> = A € K/K?, 9y = Co (1), D1 = So(u), where Co(u) =
{de® | du=ud},Se(u) = {d € D|du = —ud}, moreover, in the second case, u = (8 }) and
K [u] does not embed in &.

Following [4], we say that a division superalgebra @ is even if Z(®) N ®; = {0}, where
Z(D) is the center of D, that is, D is even if its form is (i) or (iii), and that D is odd if its form
is (ii). Also, if &# = M, (®) is a finite dimensional central simple superalgebra over a field K,
then we say that & is an even K-superalgebra if D is an even division superalgebra and 4 is
an odd K-superalgebra if D is an odd division superalgebra.
Let V = Vj + V; be a (left) superspace over a division superalgebra C and W = Wy + W;
a right superspace over C. A bilinear pairing (, ), is a biadditive map (,), : VxW — C
satisfying
(v, wp),, € Carprv,  (Cyva,wp), = & (Varwp),,
(3.1)
(Va, wpcy), = (Va, wp),,Cx

for all v, € V,, wp € Wy, and ¢, € Cy. The bilinear pairing ( , ),, is nondegenerate if
(va, W), =1{0} = v, =0, (V,wg), = {0} = wp = 0. (3.2)

If (, ), is nondegenerate, we say that the superspaces V and W are dual.
The right C-superspace W may be viewed as a (left) C°-superspace via

cywp = (—1)ﬂYwﬂcy. (3.3)
An element a, € End¢(V), is said to have an adjoint a}, € End¢- (W), if
(Uﬁaa,‘a)g)v = (—1)“6(vp,w5a;)v, V‘()p € Vﬁ, ws € Ws. (3.4)

Therefore, if D is a division superalgebra and o is an antiautomorphism of 9, then it is an
isomorphism of D onto D° and a right D°-superspace W is a left D superspace under the action

dswp = (-1)%wgdS,  ds € Ds, wp € Wy (3.5)
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Thus, (, ), : V x W — D is a pseudo-sesquilinear pairing of (left) D superspaces, that is,

(dsva, wp),, = ds(va, wp),,
(va, dswy), = (~1)P° (va, wp) 3, (3.6)

(Uad5/ wﬁ)v = (_1)6(,5‘“’"'1) (v“’ wﬁ)vd‘s

forall v, € V,, wp € Wy, ds € Ds. If ~ is a pseudo-superinvolution of D, then D is isomorphic
to D° and we may consider pseudo-sesquilinear pairings of V x V. If e € Z(®) withee = 1, and

5, = {ﬁ v=1 (3.7)
1 v =0,

an e-Hermitian pseudo-superform is a pseudo-sesquilinear pairing satisfying

(v, wp), = ()" Veby (wp, va)

V’

Vo, € Vo, wp € V. (3.8)

The pseudo-superform (, ), is said to be even or odd according to eitherv =0or1.Ife =1
(resp., -1), (, ), is said to be Hermitian (resp., skew-Hermitian).

We say that a super-ring R is prime if for any nonzero superideals I, J, the product
IJ#{0}. If R = M, (9®), where @ is a division superalgebra over a field K, then R is a prime.
We also have the usual characterization for homogeneous elements:

R is prime & a,Rbp # {0} V0#a, € Ra, 0#£bp € Ry. (3.9)

Theorem 3.2. If a central simple superalgebra 4 = M,(®) = Endg(I) over a field K such that
V=1 € K, where I is a minimal right superideal of # and ° is the commuting super-ring of 4 on
I, has a pseudo-superinvolution *, then D has and * is the adjoint with respect to a nondegenerate
Hermitian or skew-Hermitian pseudo-superform on I.

Proof [2, Lemma 5]. D = epAep, and I = epA is a left D superspace for some symmetric primitive
even idempotent e.

If * is a pseudo-superinvolution on & and ej = e, then x|y = ~ is a pseudo-
superinvolution on ®, and for v, = epa, € I, wp = epbp € I, define

0" ’ ; : :
(”Ua, wﬁ) : eoaa<€obﬁ) EOQubﬁeo € %u+ﬁ (3 10)
One checks that for all d5 S %5, U, € Ia, wWep € Iﬂ,

(dsva, wp)y = ds(va,wp)y  (va dswp)y = (1) (v, wp) yds,

. (3.11)
(UW wﬂ)o = (_1)a(ﬁ+1) (wﬁ' 'Ua>0,

that I is self dual with respect to (, ),, and that * is the adjoint with respect to the Hermitian
pseudo-superform ( , ).
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If the minimal right superideal I contains a homogeneous e-symmetric element a};, = ea,,
€ = +1 such that a,I # {0}, then a,I = I, so by [2, Lemma 5], there exists an idempotent f, € I
such that a, fo = a, and I = fo#. Thus, foa, = a, and

ax = eay = e(foax)" = €alfy = aof; = (asfo) fi- (3.12)

Again the proof of [2, Lemma 5] shows that ey = fof; € Ip is a nonzero even symmetric
idempotent and I = ep# and since for C = ep#ey, C° is the commuting super-ring of </ on I,
D=C= 609460.

Assume from now on that if a}, = ea, € I, € = £1, then a,I = {0}.

We will show that if bﬁb; #0 for some by € I, then I"I = {0}. Indeed, by [2, Lemma 2],
bﬁbz #0 implies that {0} # bpb;;J C I. Therefore, bﬁb;;J = I and Jbﬁb; = I*. Since bﬂb; €lis
e-symmetric, "] = JbﬁbEI ={0}.

We claim that aj,a, = 0 for all a, € I,. Let 0# a, € I, by [2, Lemma 5] I = a,# = ep#

and ey = H#a, is a minimal left superideal. If bﬁbﬂ = 0 for all by € ay#4.p, then we are done.
Otherwise, by the preceding argument,

(0) =I'I = Ad%aeh Vau € I,. (3.13)

Thus, aja, = 0, since a, = a,ry for some ry € <4y which implies that aja, = rjaja.r €
HAaia,A = {0}.

From now on, we let I be a minimal right superideal of &/ such that aja, = 0 for all
as € I,. Asin [2, Lemma 5], I = epef = ep#p +eg#1 and hence we have egAej # {0} by prime-
ness. Therefore, ege#, e # {0} for at least one v € Z,. We choose v to be 0, if possible. This will
always be the case if D1 = egf1ep # {0}, for if egetie] # {0}, since ejfe] = (eoeAey)” is a divi-
sion superalgebra, egAoe] 2 egHA1ejHA1e;# {0}. We may therefore assume that if v = 1, then
D, = {0}.

Assume epAye; # {0} If for some r,, € 4, 13, = 6,1, then (eor,,e(’;)* = Oyegryep. If for all
ry € oAy, 1 — 0,1, #0, then
if v = 1, then we have

(eo(ry - 6vrv)e6)* =eg((-1)"ry, — 6,173 €}
=eg(—1,—6,7))e] (3.14)

= —6ye0 (1) — 6,1y €y,
if v = 0, then we have

(eo(ry = 6v1v)eq)” = eo(rv = 6u1y)€g
= —eo(r; — 651v) €} (3.15)

= —6,e0(1; — 6y €}
Thus in all cases, we can choose t,, # 0 € &, such that

(eotvel)” = ebyeotvey, €= 1. (3.16)
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Since ejAeot,e; # {0}, by primeness, and since ej<#pe; is a division algebra, one can choose

s, € o, such that
eysveotve) = ;.
Applying *,
ey = (—1)”Zeotf,e(’§sf,eo = (—1)vzeot§“,e(’§s§eo.
Therefore,
epsvey = epsy ((—1)"ebyeotyelshen)
= (-1)"eb, (ejsveotvey)syeo
= (-1)"eb,esyeo.
If v = 1, then efs}eq = €6, (ejsvep). Thus
(epsveo)” = €6, (egsven).
If v = 0, then efjs}eq = €0, (e]svep). Thus
(etsven)” = €6y (ehsve)-
So in all cases, we have
(epsveo)” = €6, (egsven).
We therefore have

*
eysveotve) = e, eotveysveo = e,

* * *
(eotveg)™ = €byeptyey, (egsveo)” = €byegsveo.

For v, = epa, € I, wp = eobp € I,
anE = eoaabzeg = eoaab;egs,,eotve;.

Define

(Va, wp),, = €0aabjeysveo € eoHarpiv€o = Daspiv-

By the last claim, (v, v4), := eoaqayzeysyeq = 0, for all v, € I,. If (v,, I),, = {0},

epaqAe)svey = {0},
and since ejsyeg #0,

eoa, =0, by primeness.

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)
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Similarly, (I,wp), = {0} implies wg = 0 and (, ), is nondegenerate. If ds € D5, (d5va, wp),, =
ds(v,, wﬁ)v. Moreover

(Va, dswyp),, = (€0aa, dseobp),
= (—1)5ﬁeoaab;e3dgegs,,eo = (—1)5ﬂeoaab;egsveotvegdgeSSveo (3.28)
= (1) (va, wy) eotvedzessven = (-1)% (va, wp)  ds,
where
dg = eotyeydsensyeo. (3.29)

For ds € 9,

5 *
ds = eotye)(eotveydzegsven) essven

2
= (-1)” +6e0tve(§sf,eodgeotf,e§sveo

2 (3.30)
= (-1)" *%eb,eydsedyen
= (-1)"*9(5,) ds = (-1)°ds.
For c, € 9, and ds € D5,
¢ ds = eotyel(c,ds) ersreq = (-1 16, tyerdiciens, e
y“o6 Ovo(yn‘S)o 0 () 0 0%54y€0°vE0 (3.31)

6 6T —
= (-1 eotveydsensveotvencrenspeo = (-1)"dscy.

Thus “-” is a pseudo-superinvolution of ® and (, ), is a nondegenerate pseudosesquilinear
superform on I whose adjoint is *. Finally,

(Va, wp),, = eotvey(eoaabjessven)”egsven

= (—1)“ﬂ+ﬂ(—1)”(‘”/5)eotvegs:‘,eobﬂa’;e{)sveo

(3.32)
= (—1)“ﬂ+ﬂ(—1)”(“+ﬂ)€6veobﬂa2635veo
= ()PP P e, (wp, va) -
If v = 0, then m = (-1)"*Pe6(wg, va),, and hence
(wp,0a)y = (~1)PPe6y (va, wp), (3.33)

Thus (, ), is e-Hermitian pseudo-superform. If v = 1, then we have assumed that ®; = {0}
and therefore (v,, wy); = 0, for all v,, w, € I,. Hence the right-hand side is 0 unless a + § = 1.
Thus for all v, € I, wp € I,

(v, wp), = (1) Peb, (wp,va), = (1) e(=6,) (wp, va),- (3.34)
Thus
(wp,va), = (—1)"‘[;Jrﬂ(-,’(31(va,wﬁ)1 (3.35)

and (, ); is an e-Hermitian pseudo-superform. O
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If 4 = M,(9) is a finite dimensional central simple super algebra over a field K,
where 9 is a finite dimensional division superalgebra with nontrivial grading over K then,
by Theorem 3.2, it is enough to study the existence of pseudo-superinvolutions on D to ascer-
tain the existence of pseudo-superinvolutions on <.

Theorem 3.3. Let ® = Dy + Dyv be an even division superalgebra over a field K of characteristic not
2, then D has a K-pseudo-superinvolution if and only if D = D°, the opposite superalgebra.

Proof. Suppose that @ has a K-pseudo-superinvolution *, then * is a K-antiautomorphism on
D which implies that ® = °.

Conversely, suppose that D = ®°, then there exists a K-antiautomorphism ] on 9. Since
J?isa K -automorphism on 9, there exists a, € 9, such that

x = agxa,’ Vx €. (3.36)

Now, v/ € Z(®) = K(u) implies that #/ = ¢ + du for some ¢,d € K, and v/v/ = (vu)) =
(—uv)! = —v/u/ implies that (c + du)v) = —v/(c + du) = —(c — du)v’, thus ¢ + du = —c + du
implies ¢ = 0, and hence #/ = du, d € K. Moreover, w?) = (W)? 1mp11es that u? = d*u?, so d =1
or d = -1, which means that u/ = u or #/ = —u. So, in all cases w/° = u, thus u/* = aua;' = u
implies that « = 0, and hence a, = ap € 9.
Case(1): if w/ = u, then 9 = D7 implies that ®; has an involution of the first kind, so
by [1, Chapter 8, Theorem 8.2], aoao = a2 for some a € K(u), thus (ag/a)(ap/a) =
(ao/a) (ag/a) = 1. If ag/a = -1, then ay = —a € K(u). If not, then let I : ) — Dy be a
map defined by x! = (1 + ao/ a)'x) (1 + ap/a), an easy computation shows that I is an involu-
tion of the first kind on 9y, since 1! = u, and hence x! = (1 + ay/a) "2/ (1 + ap/a) for all x € D
defines a K-antiautomorphism of the first kind on 9, such that xI* = axalforall x € D, where
a € Z(Dy) = K(u).
So, we find that for the case(1) we can define a K-antiautomorphism (say h) such that

for some a € K (u), x" = axa ! for all x € ®, and u" = u, and moreover, aa” = a"a € K (u).
Suppose that a=c+ du, where ¢,d € K, then v’ = (vhz)h = (ava‘l)h = (cx‘l)hv a®, and

B o= (oM = avhar ! implies that av"a™! = (a™')"v"a", thus adavt(aha) = ot
Z(%) K. Therefore,

, 50, a'a €

(c+du)"(c+du) = (c +du)?® = * + 2cdu + d*u* € K, (3.37)

which implies that 2cd = 0, so ¢ = 0 or d = 0, but by [3], @ does not have a superlnvolutlon
of the first kmd implies that d #0, hence ¢ = 0, therefore & = du. Now, oM = (du)v(du)™!
—v(du)(du)™ = —v, thus hisa K -pseudo-superinvolution on 9.

Case(2): if W/ = —u, then * : @ — D defined by x* = vx/v™! for all x € D is a K-antiautomo-
rphism on 9, and u* = u, also for any x € ®, x** = bxb™!, where b = v(v/ )_1a0 € 9. Therefore,
by case(1), ® has a K-pseudo-superinvolution. O

Theorem 3.4. Let D = Dy + Dou, where u € Z(D), be a division superalgebra of odd type over K,
then D has a pseudo-superinvolution of the first kind if and only if V-1 € K, and D = D°, the opposite
superalgebra.
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Proof. Let * be any pseudo-superinvolution of the first kind on 9®, then u* = au for some a in
K, so u™ = —u = (au)* = a’u, thus a® = -1 implies that /-1 € K.

Conversely, suppose that a = V-1e Kand ® = 9°, then ® = D7, 50 Dp has an involution
of the first kind (say J). Therefore, if * : ® — D is defined by (a + bu)* = a/ + ab’u, where
a,b € 9y, then * is a pseudo-superinvolution on ®, since

(a+bu)” = (ad +ablu) = a+a’bu=a-bu,
(aubu)* = (abu®)" = (ab)*(u?)" = —(ab)* (u*)’ (3.38)
=—(b'u*) (a*u*) = —(bu)*(au)". .

Corollary 3.5. Let ® = 9 + Dou, where u € Z(D), be a division superalgebra of odd type over a field
K, such that a = v/=1 € K. Then the following hold.

(1) If * is a pseudo-superinvolution on D, then we can not choose u € Dy such that u* = uwor u* = —u.

(2) If — is an involution of Dy, then the superalgebra D has a pseudo-superinvolution x extending —
given by

(a+bu)* =a+abu. (3.39)

Proof. (1) If u* = u, then u** = —u = u* = u, a contradiction. Also, if u* = —u, then u** = —u =
—u* = u, a contradiction.
(2) Given an involution “-" of 9, one checks that

(a+bu)* =a+abu (3.40)

defines a pseudo-superinvolution on the superalgebra ® = 9 ® K[u], extending “—,” such that
(u?)" = u?. O

4. Existence of pseudo-superinvolution on & = M, ,(Dy)

We say the central simple superalgebra (¢4, *) with pseudo-superinvolution is simple if the
only x-stable superideals of < are (0) and <. The first lemma is a version of a standard result
for super-rings with superinvolution, and the proof of this lemma is the same as the proof of
[2, Lemma 11].

Lemma 4.1. If & is an associative super-ring with pseudo-superinvolution * such that (4,
*) is simple, then either &4 is simple (as a super-ring) or # = B & B*, with B a simple super-ring.

In the second case, B* is isomorphic to the opposite super-ring B° of B. We will consider
a super-ring «# with nonzero odd part. To avoid double indices, we will write ¢4 = A+ B, where
A = A is the even part and B = &; the odd part. The proof of the next theorem is the same as
the proof of [2, Theorem 12].

Y

Theorem 4.2. Let &# = A + B be an associative super-ring with B# {0}, and “x” a pseudo-
superinvolution of A. If (H4,*) is simple, then either (A, *|4) is simple, or

A=A A,, B =By 9 B,, (41)
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where (Aj, *|a,) are simple and B; are irreducible A-bimodules with
B} =By, B =By, (4.2)
such that
A1B1 = By = B1 Ay, AxBy = By = By Ay,
B1B; = Ay, B;B; = Ay, (4.3)
{0} = A;By = A1B, = B1A1 = B,Ay = B1B; = ByB,.

We will need more information on the pseudo-superinvolutions of <4 when the grading
is not inherited from that of @, that is, @ = 9y, and 4 is finite dimensional. If &# = M,.4(D),
Ao = M, (D) & My(D), p,q > 0, then we are either in that situation or in the other, described in
Theorem 4.2. We consider each case in turn using the notation of Theorem 4.2.

Theorem 4.3. If 4 = M, 4(D0), where Ay = M, (Do) + My(D0), p,q > 0 is a finite dimensional
central simple superalgebra over a field K such that /=1 € K, and * is a pseudo-superinvolution on 4
and (Ao, *|4,) is simple then p = q, M, (Do) has an involution ~ and (A, *) is isomorphic to M, (Do)
with the pseudo-superinvolution * given by

ab ' d ab
(c d> - (az a)’ (44)

fora,b,c,d € M,(D), and a € K such that aax = -1.
Conwersely if M,(Do) has an involution ~ then (4.4) defines a pseudo-superinvolution on the
simple superalgebra A = M,,,,(Dy) over K such that v/-1 € K.

Proof. Since & has a pseudo-superinvolution then, by Theorem 3.2, so has 9. In this case since
D = Py, D has an involution “~” and M,(D) has an involution a = @', t the transpose.
Since (Ao, *|,) is simple, M, (®) is anti-isomorphic to M,(D) and p = q. Up to isomorphism,
(Ao, *|u,) is given by (M, (D) & M, (D), ¥) with (a,b)* = (b, &). Letting

P I, 0 24 00
f11=§6i12<6’0 ’ f22=Z€ii= OI,,

i=p+1

(4.5)
p P
f12=Zeip+i= (8 I(;,)’ f21=Zep+ii=<I(1 8)
i=1 i=1
We have
Ao = Mp (%)fu 5] Mp (%)fzz, (4 6)
=M@ fre M@, fh=fa,  fh=fu |
Hence
fia = (fufief)” = fufiafo, (47)

fi> = cfi2, for some c € M,(9D).
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For any a € M, (9),

(aflz)* = (llfllfu)* = Cflzafzz = Cale- (4.8)
While

(afi2)” = (frz(afn))" = dfucfin = acfr. (4.9)

Therefore ¢ € Z(M,(D)). Moreover f15 = —f12 = (cf12)" = ccf12 implies éc = -I,. Soc =a € K
with aa = 1. Similarly f;l =df,d € Z(M,(9)). But

= fi1 = (fiefa1)” = ~f31 fia = ~dcfoni fi2 = ~dcfn (4.10)
which implies —dc = 1, and hence d = —c™! = —a™! = &. Therefore
(afin)" = afy = aafx (4.11)
or
(28 -(£9). 12
fora,b,c,d € M, (D). The converse is easy to check. O

The proof of the next result is the same as [2, Proposition 14].

Theorem 4.4. If # = Mp,;(Do), p,q > 0, is a central simple superalgebra over a field K, and * is a
pseudo-superinvolution on o4, with

Hy= A1 @Ay  Ar=My(D), A= My (D), o =DB=05+5, (4.13)

and (Ao, *|4,) is not simple then (Ai,*|a,) and (Ay,*|a,) are simple and B; are irreducible 4o-
bimodules with B} = By and B = By satisfying the hypothesis of Theorem 4.2 then “x” is given

by
ab\ a
(22) - (52). w1o

where a € M, (Do), d € My(Do), and ~ is an involution on My(Do), My(Do), and where be
M, (Do) for all b € My, 5(D), and ¢ € My, 4(Do) for all ¢ € M, (D).
Conversely (4.14) defines a pseudo-superinvolution on My ,(Do).

o
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