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Our main purpose is to develop the theory of existence of pseudo-superinvolutions of the first
kind on finite dimensional central simple associative superalgebras over K, where K is a field
of characteristic not 2. We try to show which kind of finite dimensional central simple associa-
tive superalgebras have a pseudo-superinvolution of the first kind. We will show that a division
superalgebra D over a field K of characteristic not 2 of even type has pseudo-superinvolution
(i.e., K-antiautomorphism J such that (dδ)

J2 = (−1)δdδ) of the first kind if and only if D
is of order 2 in the Brauer-Wall group BW(K). We will also show that a division superalge-
bra D of odd type over a field K of characteristic not 2 has a pseudo-superinvolution of the
first kind if and only if

√−1 ∈ K, and D is of order 2 in the Brauer-Wall group BW(K). Fi-
nally, we study the existence of pseudo-superinvolutions on central simple superalgebras A =
Mp+q(D0).
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1. Introduction

Let K be a field of characteristic not 2. An associative superalgebra is a Z2-graded associative K-
algebraA = A0 +A1.A superalgebraA is central simple overK, if ̂Z(A) = K, where ( ̂Z(A))α =
{aα ∈ Aα |aαbβ = (−1)αβbβaα for all bβ ∈ Aβ}, and the only superideals ofA are (0) andA.

Finite dimensional central simple associative superalgebras over a field K are isomor-
phic to End V ∼= Mn(D), where D = D0 +D1 is a finite dimensional associative division super-
algebra over K, that is, all nonzero elements of Dα, α = 0, 1, are invertible, and V = V0 + V1 is
an n-dimensional D superspace.

If D1 = {0}, the grading of Mn(D) is induced by that of V = V0 + V1, A = Mp+q(D),
p = dim DV0, q = dim DV1, so p+q is a nontrivial decomposition of n. While ifD1 /= {0}, then the
grading ofMn(D) is given by (Mn(D))α = Mn(Dα), α = 0, 1, as we recall.
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Let A = A0 + A1 be any associative superalgebra over a field K of characteristic not 2,
and let ∗ : A → A be an antiautomorphism on A, then ∗ is called a pseudo-superinvolution on
A if (a0 + b1)

∗∗ = a0 − b1.
In recent work on the representations of Jordan superalgebras which has yet to appear,

Martinez and Zelmanovmake use of pseudo-superinvolutions.
We recall a theorem of Albert which shows that a finite dimensional central simple alge-

bra over a field k has an involution of the first kind if and only if it is of order 2 in the Brauer
group Br (k). The proof of this classical theorem is in many books of algebra, for example, see
[1, Chapter 8, Section 8].

Throughout my work on the existence of superinvolutions of the first kind which has
yet to appear, we prove that finite dimensional central simple division superalgebras of odd or
even type with nontrivial grading over a field K of characteristic not 2 have no superinvolu-
tions of the first kind, also these results were introduced in [2, Proposition 9], [3]. Moreover,
we introduce an example of a central simple superalgebra A = Mn(D) over a field K of char-
acteristic not 2, where D1 /= {0}, such thatA has no superinvolution of the first kind, but it is of
order 2 in the Brauer-Wall group BW (K), which means that Albert’s theorem does not hold for
superinvolutions and this is one of the reasons why one introduces a generalization for which
it does.

In [2, Theorem 7], Racine proved that A = Mn(D) has a superinvolution if and only if D
has. Therefore, if A is a finite dimensional central simple associative superalgebra over a field
K of characteristic not 2 such thatA has a superinvolution of the first kind, thenA = Mp+q(D),
where D is a division algebra over K.

Let D be a division superalgebra with nontrivial grading over a field K of characteristic
not 2. Since if A is a central simple associative superalgebra over K, then by [2, Theorem 3]
A = Mn(D), whereD1 /= {0} orA = Mp+q(D), whereD1 = {0}. In Section 2, we give some basic
definitions for the supercase.

In Section 3, we classify the existence of pseudo-superinvolution of the first kind on D
and we prove the following results.

(1) If A = Mn(D), where D1 /= {0}, then A has a pseudo-superinvolution of the first kind
if and only if D has. Therefore, it is enough to classify the existence of a pseudo-
superinvolution of the first kind on D.

(2) A division superalgebraD of even type over a fieldK of characteristic not 2 has a pseudo-
superinvolution of the first kind if and only if D is of order 2 in the Brauer-Wall group
BW (K).

(3) A division superalgebra D of odd type over a fieldK of characteristic not 2 has a pseudo-
superinvolution of the first kind if and only if

√−1 ∈ K and D is of order 2 in the Brauer-
Wall group BW (K).

In Section 4, we classify the existence of a pseudo-superinvolution of the first kind on A =
Mp+q(D), where D is a division algebra over K.

Finally, if K is a field of characteristic 2, and A is a central simple associative super-
algebra over K, then a superinvolution (which is a pseudo-superinvolution) on A is just an
involution on A respecting the grading. Moreover, if A is of order 2 in the Brauer-Wall group
BW (K), then the supercenter ofA equals the center ofA and ̂⊗K = ⊗K, which means thatA is
of order 2 in the Brauer group Br (K). Thus, by theorem of Albert, A has an involution of the
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first kind, but since A is of order 2 in the Brauer-Wall group BW (K), A has an antiautomor-
phism of the first kind respecting the grading, therefore by [1, Chapter 8, Theorem 8.2], A has
an involution of the first kind respecting the grading, which means that A has a superinvolu-
tion (which is a pseudo-superinvolution) of the first kind if and only if A is of order 2 in the
Brauer-Wall group BW (K).

2. Basic definitions

Definition 2.1. If R = R0 + R1 is an associative super-ring, a (right) R-supermodule M is a
right R-module with a grading M = M0 +M1 as R0-modules such that mαrβ ∈ Mα+β for any
mα ∈ Mα, rβ ∈ Rβ, α, β ∈ Z2. An R-supermodule M is simple if MR/= {0} and M has no
proper subsupermodule.

Following [2], we have the following definition of R-supermodule homomorphism.

Definition 2.2. Suppose that M and N are R-supermodules. An R-supermodule homomor-
phism from M into N is an R0-module homomorphism hγ : M → N, γ ∈ Z2, such that
Mαhγ ⊆ Nα+γ and

(

mαrβ
)

hγ =
(

mαhγ

)

rβ, ∀mα ∈ Mα, rβ ∈ Rβ, α, β ∈ Z2. (2.1)

Definition 2.3. The opposite super-ring R◦ of the super-ring R is defined to be R◦ = R as an
additive group, with the multiplication given by

bβ ◦ cγ := (−1)βγcγbβ, bβ ∈ Rβ , cγ ∈ Rγ . (2.2)

So if A is a superalgebra, then A◦ is just the opposite super-ring of A; one can easily
show that if A is a central simple associative superalgebra over a field K, then A◦ is also a
central simple associative superalgebra over K.

Definition 2.4. Let A = A0 + A1, B = B0 + B1 be associative superalgebras. Then the graded
tensor product

Â⊗KB =
[(A0 ⊗ B0

) ⊕ (A1 ⊗ B1
)] ⊕ [

(A0 ⊗ B1
) ⊕ (A1 ⊗ B0

)]

, (2.3)

where the multiplication onÂ⊗KB is induced by

(

aα ⊗ bβ
)(

cγ ⊗ dδ

)

= (−1)βγaαcγ ⊗ bβdδ, aα ∈ Aα, cγ ∈ Aγ , bβ ∈ Bβ, dδ ∈ Bδ. (2.4)

If A and B are associative superalgebras, then Â⊗KB is an associative superalgebra.

The commuting super-ring of R onM is defined to be C = C0 + C1, where

Cγ :=
{

cγ ∈ EndγM | cγrα = (−1)αγrαcγ ∀rα ∈ Rα, α ∈ Z2
}

. (2.5)

Definition 2.5. Two finite dimensional central simple superalgebras A and B over a field K are
called similar (A ∼ B) if there exist graded K-vector spaces V = V0 ⊕ V1, W = W0 ⊕W1, such
thatÂ⊗K EndKV ∼= B̂⊗K EndKW as K-superalgebras.
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Similarity is obviously an equivalence relation. The set of similarity classes will be de-
noted by BW (K) (the Brauer-Wall group of K). If [A] denotes the class of A in BW (K) by
using [4, Chapter 4,Theorem 2.3(3)], the operation [A][B] = [Â⊗KB] is well-defined, and
makes the set of similarity classes of finite dimensional central simple superalgebras over K
into a commutative group, BW (K), where the class of the matrix algebras Mp+q(K) is a neu-
tral element for this product. Moreover, it was proved in [4, 5] that a central simple associative
superalgebra A is of order 2 in BW (K) if and only if A ≈ A◦, the opposite superalgebra.

3. Existence of pseudo-superinvolution on D

Theorem 3.1 (division superalgebra theorem [3]). If D=D0+D1 is a finite dimensional associative
division superalgebra over a fieldK, then exactly one of the following holds where throughout E denotes
a finite dimensional associative division algebra over K.

(i) D = D0 = E, and D1 = {0}.
(ii) D = E⊗KK[u], u2 = λ ∈ K×, D0 = E ⊗K1, D1 = E ⊗Ku.

(iii) D = E or M2(E), u ∈ D such that u2 = λ ∈ K/K2, D0 = CD(u),D1 = SD(u), where CD(u) =
{d ∈ D | du = ud}, SD(u) = {d ∈ D |du = −ud}, moreover, in the second case, u = ( 0 1

λ 0 ) and
K[u] does not embed in E.

Following [4], we say that a division superalgebra D is even if Z(D) ∩ D1 = {0}, where
Z(D) is the center of D, that is, D is even if its form is (i) or (iii), and that D is odd if its form
is (ii). Also, if A = Mn(D) is a finite dimensional central simple superalgebra over a field K,
then we say that A is an even K-superalgebra if D is an even division superalgebra and A is
an odd K-superalgebra if D is an odd division superalgebra.

Let V = V0 + V1 be a (left) superspace over a division superalgebra C and W = W0 +W1

a right superspace over C. A bilinear pairing ( , )ν is a biadditive map ( , )ν : V × W → C
satisfying

(

vα,wβ

)

ν
∈ Cα+β+ν,

(

cγvα,wβ

)

ν
= cγ

(

vα,wβ

)

ν
,

(

vα,wβcγ
)

ν
=
(

vα,wβ

)

νcγ
(3.1)

for all vα ∈ Vα, wβ ∈ Wβ, and cγ ∈ Cγ . The bilinear pairing ( , )ν is nondegenerate if
(

vα,W
)

ν = {0} =⇒ vα = 0,
(

V,wβ

)

ν
= {0} =⇒ wβ = 0. (3.2)

If ( , )ν is nondegenerate, we say that the superspaces V andW are dual.
The right C-superspace W may be viewed as a (left) C◦-superspace via

cγwβ := (−1)βγwβcγ . (3.3)

An element aα ∈ EndC(V )α is said to have an adjoint a∗
α ∈ EndC◦(W)α if

(

vβaα,wδ

)

ν
= (−1)αδ(vβ,wδa

∗
α

)

ν
, ∀vβ ∈ Vβ, wδ ∈ Wδ. (3.4)

Therefore, if D is a division superalgebra and σ is an antiautomorphism of D, then it is an
isomorphism ofD ontoD◦ and a rightD◦-superspaceW is a leftD superspace under the action

dδwβ := (−1)δβwβd
σ
δ , dδ ∈ Dδ, wβ ∈ Wβ. (3.5)
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Thus, ( , )ν : V ×W → D is a pseudo-sesquilinear pairing of (left) D superspaces, that is,

(

dδvα,wβ

)

ν
= dδ

(

vα,wβ

)

ν
,

(

vα, dδwβ

)

ν
= (−1)βδ(vα,wβ

)

ν
dσ
δ ,

(

vαdδ,wβ

)

ν
= (−1)δ(β+ν+1)(vα,wβ

)

ν
dδ

(3.6)

for all vα ∈ Vα, wβ ∈ Wβ, dδ ∈ Dδ. If − is a pseudo-superinvolution of D, then D is isomorphic
toD◦ and we may consider pseudo-sesquilinear pairings of V ×V . If ε ∈ Z(D)with εε = 1, and

δν =

{√−1 ν = 1,

1 ν = 0,
(3.7)

an ε-Hermitian pseudo-superform is a pseudo-sesquilinear pairing satisfying

(

vα,wβ

)

ν
= (−1)α(β+1)εδν

(

wβ, vα

)

ν
, ∀vα ∈ Vα, wβ ∈ Vβ. (3.8)

The pseudo-superform ( , )ν is said to be even or odd according to either ν = 0 or 1. If ε = 1
(resp., −1), ( , )ν is said to be Hermitian (resp., skew-Hermitian).

We say that a super-ring R is prime if for any nonzero superideals I, J , the product
IJ /= {0}. If R = Mn(D), where D is a division superalgebra over a field K, then R is a prime.
We also have the usual characterization for homogeneous elements:

R is prime ⇐⇒ aαRbβ /= {0} ∀0/=aα ∈ Rα, 0/= bβ ∈ Rβ. (3.9)

Theorem 3.2. If a central simple superalgebra A = Mn(D) ∼= EndD(I) over a field K such that√−1 ∈ K, where I is a minimal right superideal of A and D◦ is the commuting super-ring of A on
I, has a pseudo-superinvolution ∗, then D has and ∗ is the adjoint with respect to a nondegenerate
Hermitian or skew-Hermitian pseudo-superform on I.

Proof [2, Lemma 5]. D = e0Ae0, and I = e0A is a leftD superspace for some symmetric primitive
even idempotent e0.

If ∗ is a pseudo-superinvolution on A and e∗0 = e0, then ∗|D = − is a pseudo-
superinvolution on D, and for vα = e0aα ∈ Iα, wβ = e0bβ ∈ Iβ, define

(

vα,wβ

)

0 := e0aα

(

e0bβ
)∗ = e0aαb

∗
βe0 ∈ Dα+β. (3.10)

One checks that for all dδ ∈ Dδ, vα ∈ Iα, wβ ∈ Iβ,

(

dδvα,wβ

)

0 = dδ

(

vα,wβ

)

0,
(

vα, dδwβ

)

0 = (−1)βδ(vα,wβ

)

0dδ,

(

vα,wβ

)

0 = (−1)α(β+1)(wβ, vα

)

0,
(3.11)

that I is self dual with respect to ( , )0, and that ∗ is the adjoint with respect to the Hermitian
pseudo-superform ( , )0.
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If the minimal right superideal I contains a homogeneous ε-symmetric element a∗
α = εaα,

ε = ±1 such that aαI /= {0}, then aαI = I, so by [2, Lemma 5], there exists an idempotent f0 ∈ I0
such that aαf0 = aα and I = f0A. Thus, f0aα = aα and

aα = εa∗
α = ε

(

f0aα

)∗ = εa∗
αf

∗
0 = aαf

∗
0 =

(

aαf0
)

f∗
0 . (3.12)

Again the proof of [2, Lemma 5] shows that e0 = f0f
∗
0 ∈ I0 is a nonzero even symmetric

idempotent and I = e0A and since for C = e0Ae0, C◦ is the commuting super-ring of A on I,
D = C = e0Ae0.

Assume from now on that if a∗
α = εaα ∈ Iα, ε = ±1, then aαI = {0}.

We will show that if bβb∗β /= 0 for some bβ ∈ Iβ, then I∗I = {0}. Indeed, by [2, Lemma 2],
bβb

∗
β /= 0 implies that {0}/= bβb

∗
β
A ⊆ I. Therefore, bβb∗βA = I and Abβb

∗
β
= I∗. Since bβb

∗
β
∈ I is

ε-symmetric, I∗I = Abβb
∗
β
I = {0}.

We claim that a∗
αaα = 0 for all aα ∈ Iα. Let 0/=aα ∈ Iα, by [2, Lemma 5] I = aαA = e0A

and Ae0 = Aaα is a minimal left superideal. If bβb∗β = 0 for all bβ ∈ aαAα+β, then we are done.
Otherwise, by the preceding argument,

{0} = I∗I = Aa∗
αaαA ∀aα ∈ Iα. (3.13)

Thus, a∗
αaα = 0, since aα = aαr0 for some r0 ∈ A0 which implies that a∗

αaα = r∗0a
∗
αaαr0 ∈

Aa∗
αaαA = {0}.

From now on, we let I be a minimal right superideal of A such that a∗
αaα = 0 for all

aα ∈ Iα. As in [2, Lemma 5], I = e0A = e0A0+e0A1 and hence we have e0Ae∗0 /= {0} by prime-
ness. Therefore, e0Aνe

∗
0 /= {0} for at least one ν ∈ Z2. We choose ν to be 0, if possible. This will

always be the case if D1 = e0A1e0 /= {0}, for if e0A1e
∗
0 /= {0}, since e∗0Ae∗0 = (e0Ae0)

∗ is a divi-
sion superalgebra, e0A0e

∗
0 ⊇ e0A1e

∗
0A1e

∗
0 /= {0}. We may therefore assume that if ν = 1, then

D1 = {0}.
Assume e0Aνe

∗
0 /= {0}. If for some rν ∈ Aν, r∗ν = δνrν, then (e0rνe∗0)

∗ = δνe0rνe
∗
0. If for all

rν ∈ Aν, r∗ν − δνrν /= 0, then
if ν = 1, then we have

(

e0
(

r∗ν − δνrν
)

e∗0
)∗ = e0

(

(−1)νrν − δνr
∗
ν

)

e∗0

= e0
( − rν − δνr

∗
ν

)

e∗0

= −δνe0
(

r∗ν − δνrν
)

e∗0,

(3.14)

if ν = 0, then we have

(

e0
(

r∗ν − δνrν
)

e∗0
)∗ = e0

(

rν − δνr
∗
ν

)

e∗0

= −e0
(

r∗ν − δνrν
)

e∗0

= −δνe0
(

r∗ν − δνrν
)

e∗0.

(3.15)

Thus in all cases, we can choose tν /= 0 ∈ Aν such that

(

e0tνe
∗
0
)∗ = εδνe0tνe

∗
0, ε = ±1. (3.16)
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Since e∗0Ae0tνe
∗
0 /= {0}, by primeness, and since e∗0A0e

∗
0 is a division algebra, one can choose

sν ∈ Aν such that

e∗0sνe0tνe
∗
0 = e∗0. (3.17)

Applying ∗,

e0 = (−1)ν2e0t∗νe∗0s∗νe0 = (−1)ν2e0t∗νe∗0s∗νe0. (3.18)

Therefore,

e∗0sνe0 = e∗0sν
(

(−1)νεδνe0tνe
∗
0s

∗
νe0

)

= (−1)νεδν

(

e∗0sνe0tνe
∗
0
)

s∗νe0

= (−1)νεδνe
∗
0s

∗
νe0.

(3.19)

If ν = 1, then e∗0s
∗
νe0 = εδν(e∗0sνe0). Thus

(

e∗0sνe0
)∗ = εδν

(

e∗0sνe0
)

. (3.20)

If ν = 0, then e∗0s
∗
νe0 = εδν(e∗0sνe0). Thus

(

e∗0sνe0
)∗ = εδν

(

e∗0sνe0
)

. (3.21)

So in all cases, we have

(

e∗0sνe0
)∗ = εδν

(

e∗0sνe0
)

. (3.22)

We therefore have

e∗0sνe0tνe
∗
0 = e∗0, e0tνe

∗
0sνe0 = e0,

(

e0tνe
∗
0
)∗ = εδνe0tνe

∗
0,

(

e∗0sνe0
)∗ = εδνe

∗
0sνe0.

(3.23)

For vα = e0aα ∈ Iα, wβ = e0bβ ∈ Iβ,

vαw
∗
β
= e0aαb

∗
β
e∗0 = e0aαb

∗
β
e∗0sνe0tνe

∗
0. (3.24)

Define

(

vα,wβ

)

ν
:= e0aαb

∗
βe

∗
0sνe0 ∈ e0Aα+β+νe0 = Dα+β+ν. (3.25)

By the last claim, (vα, vα)ν := e0aαa
∗
αe

∗
0sνe0 = 0, for all vα ∈ Iα. If (vα, I)ν = {0},

e0aαAe∗0sνe0 = {0}, (3.26)

and since e∗0sνe0 /= 0,

e0aα = 0, by primeness. (3.27)
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Similarly, (I,wβ)ν = {0} implies wβ = 0 and ( , )ν is nondegenerate. If dδ ∈ Dδ, (dδvα,wβ)ν =
dδ(vα,wβ)ν. Moreover

(

vα, dδwβ

)

ν =
(

e0aα, dδe0bβ
)

ν

= (−1)δβe0aαb
∗
βe

∗
0d

∗
δe

∗
0sνe0 = (−1)δβe0aαb

∗
βe

∗
0sνe0tνe

∗
0d

∗
δe

∗
0sνe0

= (−1)δβ(vα,wβ

)

ν
e0tνe

∗
0d

∗
δe

∗
0sνe0 = (−1)δβ(vα,wβ

)

ν
dδ,

(3.28)

where

dδ := e0tνe
∗
0d

∗
δe

∗
0sνe0. (3.29)

For dδ ∈ Dδ,

dδ = e0tνe
∗
0
(

e0tνe
∗
0d

∗
δe

∗
0sνe0

)∗
e∗0sνe0

= (−1)ν2+δe0tνe∗0s∗νe0dδe0t
∗
νe

∗
0sνe0

= (−1)ν2+δεδνe0dδεδνe0

= (−1)ν2+δ(δν

)2
dδ = (−1)δdδ.

(3.30)

For cγ ∈ Dγ and dδ ∈ Dδ,

cγdδ = e0tνe
∗
0
(

cγdδ

)∗
e∗0sνe0 = (−1)γδe0tνe∗0d∗

δc
∗
γe

∗
0sνe0

= (−1)γδe0tνe∗0d∗
δe

∗
0sνe0tνe

∗
0c

∗
γe

∗
0sνe0 = (−1)γδdδcγ .

(3.31)

Thus “−” is a pseudo-superinvolution of D and ( , )ν is a nondegenerate pseudosesquilinear
superform on I whose adjoint is ∗. Finally,

(

vα,wβ

)

ν = e0tνe
∗
0
(

e0aαb
∗
βe

∗
0sνe0

)∗
e∗0sνe0

= (−1)αβ+β(−1)ν(α+β)e0tνe∗0s∗νe0bβa∗
αe

∗
0sνe0

= (−1)αβ+β(−1)ν(α+β)εδνe0bβa
∗
αe

∗
0sνe0

= (−1)αβ+β(−1)ν(α+β)εδν(wβ, vα)ν .

(3.32)

If ν = 0, then (vα,wβ)0 = (−1)αβ+βεδ0(wβ, vα)0, and hence

(

wβ, vα

)

0 = (−1)αβ+βεδ0
(

vα,wβ

)

0. (3.33)

Thus ( , )0 is ε-Hermitian pseudo-superform. If ν = 1, then we have assumed that D1 = {0}
and therefore (vα,wα)1 = 0, for all vα,wα ∈ Iα. Hence the right-hand side is 0 unless α + β = 1.
Thus for all vα ∈ Iα, wβ ∈ Iβ,

(

vα,wβ

)

ν = (−1)ν+αβ+βεδν

(

wβ, vα

)

ν = (−1)αβ+βε(−δν)
(

wβ, vα

)

ν . (3.34)

Thus
(

wβ, vα

)

1 = (−1)αβ+βεδ1
(

vα,wβ

)

1 (3.35)

and ( , )1 is an ε-Hermitian pseudo-superform.
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If A = Mn(D) is a finite dimensional central simple super algebra over a field K,
where D is a finite dimensional division superalgebra with nontrivial grading over K then,
by Theorem 3.2, it is enough to study the existence of pseudo-superinvolutions on D to ascer-
tain the existence of pseudo-superinvolutions onA.

Theorem 3.3. Let D = D0 + D0v be an even division superalgebra over a field K of characteristic not
2, then D has a K-pseudo-superinvolution if and only if D ≈ D◦, the opposite superalgebra.

Proof. Suppose that D has a K-pseudo-superinvolution ∗, then ∗ is a K-antiautomorphism on
D which implies that D ≈ D◦.

Conversely, suppose that D ≈ D◦, then there exists a K-antiautomorphism J on D. Since
J2 is a K-automorphism on D, there exists aα ∈ Dα such that

xJ2 = aαxa
−1
α ∀x ∈ D. (3.36)

Now, uJ ∈ Z(D0) = K(u) implies that uJ = c + du for some c, d ∈ K, and uJvJ = (vu)J =
(−uv)J = −vJuJ implies that (c + du)vJ = −vJ(c + du) = −(c − du)vJ , thus c + du = −c + du

implies c = 0, and hence uJ = du, d ∈ K. Moreover, (u2)J = (uJ)2 implies that u2 = d2u2, so d = 1
or d = −1, which means that uJ = u or uJ = −u. So, in all cases uJ2 = u, thus uJ2 = aαua

−1
α = u

implies that α = 0, and hence aα = a0 ∈ D0.
Case(1): if uJ = u, then D0 ≈ D◦

0 implies that D0 has an involution of the first kind, so
by [1, Chapter 8, Theorem 8.2], a0a

J
0 = α2 for some α ∈ K(u), thus (a0/α)(a0/α)

J =
(a0/α)

J(a0/α) = 1. If a0/α = −1, then a0 = −α ∈ K(u). If not, then let I : D0 → D0 be a
map defined by xI = (1 + a0/α)

−1xJ(1 + a0/α), an easy computation shows that I is an involu-
tion of the first kind on D0, since uI = u, and hence xI = (1 + a0/α)

−1xJ(1 + a0/α) for all x ∈ D
defines aK-antiautomorphism of the first kind onD, such that xI2 = αxα−1 for all x ∈ D, where
α ∈ Z(D0) = K(u).

So, we find that for the case(1) we can define a K-antiautomorphism (say h) such that
for some α ∈ K(u), xh2

= αxα−1 for all x ∈ D, and uh = u, and moreover, ααh = αhα ∈ K(u).
Suppose that α = c + du, where c, d ∈ K, then vh3

= (vh2
)h = (αvα−1)h = (α−1)hvhαh, and

vh3
= (vh)h

2
= αvhα−1, implies that αvhα−1 = (α−1)hvhαh, thus αhαvh(αhα)−1 = vh, so, αhα ∈

̂Z(D) = K. Therefore,

(c + du)h(c + du) = (c + du)2 = c2 + 2cdu + d2u2 ∈ K, (3.37)

which implies that 2cd = 0, so c = 0 or d = 0, but by [3], D does not have a superinvolution
of the first kind, implies that d /= 0, hence c = 0, therefore α = du. Now, vh2

= (du)v(du)−1 =
−v(du)(du)−1 = −v, thus h is a K-pseudo-superinvolution on D.
Case(2): if uJ = −u, then ∗ : D → D defined by x∗ = vxJv−1 for all x ∈ D is a K-antiautomo-
rphism on D, and u∗ = u, also for any x ∈ D, x∗∗ = bxb−1, where b = v(vJ)−1a0 ∈ D0. Therefore,
by case(1), D has a K-pseudo-superinvolution.

Theorem 3.4. Let D = D0 + D0u, where u ∈ Z(D), be a division superalgebra of odd type over K,
then D has a pseudo-superinvolution of the first kind if and only if

√−1 ∈ K, and D ≈ D◦, the opposite
superalgebra.
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Proof. Let ∗ be any pseudo-superinvolution of the first kind on D, then u∗ = αu for some α in
K, so u∗∗ = −u = (αu)∗ = α2u, thus α2 = −1 implies that

√−1 ∈ K.
Conversely, suppose that α =

√−1 ∈ K andD ≈ D◦, thenD0 ≈ D◦
0, soD0 has an involution

of the first kind (say J). Therefore, if ∗ : D → D is defined by (a + bu)∗ = aJ + αbJu, where
a, b ∈ D0, then ∗ is a pseudo-superinvolution on D, since

(a + bu)∗∗ = (aJ + αbJu)
∗
= a + α2bu = a − bu,

(aubu)∗ = (abu2)
∗
= (ab)∗(u2)

∗
= −(ab)∗(u∗)2

= −(b∗u∗)(a∗u∗) = −(bu)∗(au)∗.

(3.38)

Corollary 3.5. Let D = D0 +D0u, where u ∈ Z(D), be a division superalgebra of odd type over a field
K, such that α =

√−1 ∈ K. Then the following hold.

(1) If ∗ is a pseudo-superinvolution onD, then we can not choose u ∈ D1 such that u∗ = u or u∗ = −u.
(2) If − is an involution of D0, then the superalgebra D has a pseudo-superinvolution ∗ extending −

given by

(a + bu)∗ = a + αbu. (3.39)

Proof. (1) If u∗ = u, then u∗∗ = −u = u∗ = u, a contradiction. Also, if u∗ = −u, then u∗∗ = −u =
−u∗ = u, a contradiction.

(2) Given an involution “−” of D0, one checks that

(a + bu)∗ = a + αbu (3.40)

defines a pseudo-superinvolution on the superalgebraD = D0⊗K[u], extending “−,” such that
(u2)∗ = u2.

4. Existence of pseudo-superinvolution on A = Mp+q(D0)

We say the central simple superalgebra (A, ∗) with pseudo-superinvolution is simple if the
only ∗-stable superideals of A are (0) and A. The first lemma is a version of a standard result
for super-rings with superinvolution, and the proof of this lemma is the same as the proof of
[2, Lemma 11].

Lemma 4.1. If A is an associative super-ring with pseudo-superinvolution ∗ such that (A,
∗) is simple, then eitherA is simple (as a super-ring) orA = B ⊕ B∗, with B a simple super-ring.

In the second case, B∗ is isomorphic to the opposite super-ring B◦ of B. We will consider
a super-ringAwith nonzero odd part. To avoid double indices, we will writeA = A+B, where
A = A0 is the even part and B = A1 the odd part. The proof of the next theorem is the same as
the proof of [2, Theorem 12].

Theorem 4.2. Let A = A + B be an associative super-ring with B /= {0}, and “∗” a pseudo-
superinvolution ofA. If (A, ∗) is simple, then either (A, ∗|A) is simple, or

A = A1 ⊕A2, B = B1 ⊕ B2, (4.1)
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where (Ai, ∗|Ai
) are simple and Bi are irreducible A-bimodules with

B∗
1 = B2, B∗

2 = B1, (4.2)

such that

A1B1 = B1 = B1A2, A2B2 = B2 = B2A1,

B1B2 = A1, B2B1 = A2,

{0} = A2B1 = A1B2 = B1A1 = B2A2 = B1B1 = B2B2.

(4.3)

We will need more information on the pseudo-superinvolutions of A when the grading
is not inherited from that of D, that is, D = D0, and A is finite dimensional. If A = Mp+q(D),
A0 = Mp(D) ⊕Mq(D), p, q > 0, then we are either in that situation or in the other, described in
Theorem 4.2. We consider each case in turn using the notation of Theorem 4.2.

Theorem 4.3. If A = Mp+q(D0), where A0 = Mp(D0) + Mq(D0), p, q > 0 is a finite dimensional
central simple superalgebra over a field K such that

√−1 ∈ K, and ∗ is a pseudo-superinvolution onA
and (A0, ∗|A0) is simple then p = q,Mp(D0) has an involution ∼ and (A, ∗) is isomorphic toM2p(D0)
with the pseudo-superinvolution ∗ given by

(

a b
c d

)∗
=

(

˜d α˜b
α̃c̃ ã

)

, (4.4)

for a, b, c, d ∈ Mp(D0), and α ∈ K such that αα̃ = −1.
Conversely if Mp(D0) has an involution ∼ then (4.4) defines a pseudo-superinvolution on the

simple superalgebraA = Mp+p(D0) over K such that
√−1 ∈ K.

Proof. Since A has a pseudo-superinvolution then, by Theorem 3.2, so has D. In this case since
D = D0, D has an involution “−” and Mp(D) has an involution ã = at, t the transpose.
Since (A0, ∗|A0) is simple, Mq(D) is anti-isomorphic to Mp(D) and p = q. Up to isomorphism,
(A0, ∗|A0) is given by (Mp(D) ⊕Mp(D), ∗) with (a, b)∗ = (˜b, ã). Letting

f11 =
p

∑

i=1

eii =

(

Ip 0
0 0

)

, f22 =
2p
∑

i=p+1

eii =

(

0 0
0 Ip

)

f12 =
p

∑

i=1

eip+i =

(

0 Ip
0 0

)

, f21 =
p

∑

i=1

ep+ii =

(

0 0
Ip 0

)

.

(4.5)

We have

A0 = Mp(D)f11 ⊕Mp(D)f22,

A1 = Mp(D)f12 ⊕Mp(D)f21, f∗
11 = f22, f∗

22 = f11.
(4.6)

Hence

f∗
12 =

(

f11f12f22
)∗ = f11f

∗
12f22,

f∗
12 = cf12, for some c ∈ Mp(D).

(4.7)
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For any a ∈ Mp(D),
(

af12
)∗ =

(

af11f12
)∗ = cf12ãf22 = cãf12. (4.8)

While
(

af12
)∗ =

(

f12
(

af22
))∗ = ãf11cf12 = ãcf12. (4.9)

Therefore c ∈ Z(Mp(D)). Moreover f∗∗
12 = −f12 = (cf12)

∗ = c̃cf12 implies c̃c = −Ip. So c = α ∈ K
with αα̃ = −1. Similarly f∗

21 = df21, d ∈ Z(Mp(D)). But

f22 = f∗
11 =

(

f12f21
)∗ = −f∗

21f
∗
12 = −dcf21f12 = −dcf22 (4.10)

which implies −dc = 1, and hence d = −c−1 = −α−1 = α̃. Therefore
(

af12
)∗ = ãf∗

21 = ãα̃f21 (4.11)

or
(

a b
c d

)∗
=

(

˜d α˜b
α̃c̃ ã

)

, (4.12)

for a, b, c, d ∈ Mp(D). The converse is easy to check.

The proof of the next result is the same as [2, Proposition 14].

Theorem 4.4. If A = Mp+q(D0), p, q > 0, is a central simple superalgebra over a field K, and ∗ is a
pseudo-superinvolution onA, with

A0 = A1 ⊕A2, A1 = Mp

(D0
)

, A2 = Mq

(D0
)

, A1 = B = B1 + B2, (4.13)

and (A0, ∗|A0) is not simple then (A1, ∗|A1) and (A2, ∗|A2) are simple and Bi are irreducible A0-
bimodules with B∗

1 = B2 and B∗
2 = B1 satisfying the hypothesis of Theorem 4.2 then “∗” is given

by
(

a b
c d

)∗
=

(

ã c̃

−˜b ˜d

)

, (4.14)

where a ∈ Mp(D0), d ∈ Mq(D0), and ∼ is an involution on Mp(D0), Mq(D0), and where ˜b ∈
Mq,p(D0) for all b ∈ Mp,q(D0), and c̃ ∈ Mp,q(D0) for all c ∈ Mq,p(D0).

Conversely (4.14) defines a pseudo-superinvolution onMp+q(D0).
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