Research Article

Properties of Matrix Variate Beta Type 3 Distribution

Arjun K. Gupta ${ }^{1}$ and Daya K. Nagar ${ }^{2}$

${ }^{1}$ Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH 43403-0221, USA
${ }^{2}$ Departamento de Matemáticas, Universidad de Antioquia, Calle 67, No. 53-108, Medellín, Colombia
Correspondence should be addressed to Daya K. Nagar, dayaknagar@yahoo.com
Received 27 September 2008; Accepted 29 May 2009
Recommended by Kenneth Berenhaut
We study several properties of matrix variate beta type 3 distribution. We also derive probability density functions of the product of two independent random matrices when one of them is beta type 3. These densities are expressed in terms of Appell's first hypergeometric function F_{1} and Humbert's confluent hypergeometric function Φ_{1} of matrix arguments. Further, a bimatrix variate generalization of the beta type 3 distribution is also defined and studied.

Copyright © 2009 A. K. Gupta and D. K. Nagar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The beta families of distributions are defined by the density functions

$$
\begin{align*}
& \frac{u^{\alpha-1}(1-u)^{\beta-1}}{B(\alpha, \beta)}, \quad 0<u<1, \tag{1.1}\\
& \frac{v^{\alpha-1}(1+v)^{-(\alpha+\beta)}}{B(\alpha, \beta)}, \quad v>0, \tag{1.2}
\end{align*}
$$

respectively, where $\alpha>0, \beta>0$, and

$$
\begin{equation*}
B(\alpha, \beta)=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)} . \tag{1.3}
\end{equation*}
$$

The beta type 1 and beta type 2 are very flexible distributions for positive random variables and have wide applications in statistical analysis, for example, see Johnson et al. [1].

Recently, Cardeño et al. [2] have defined and studied family of beta type 3 distributions. A random variable w is said to follow a beta type 3 distribution if its density function is given by

$$
\begin{equation*}
\frac{2^{\alpha} w^{\alpha-1}(1-w)^{\beta-1}}{B(\alpha, \beta)(1+w)^{\alpha+\beta}}, \quad 0<w<1 \tag{1.4}
\end{equation*}
$$

If a random variable u has the p.d.f (1.1), then we will write $u \sim B 1(\alpha, \beta)$, and if the p.d.f. of a random variable v is given by (1.2), then $v \sim B 2(\alpha, \beta)$. The density (1.4) will be designated by $w \sim B 3(\alpha, \beta)$. The matrix variate generalizations of (1.1) and (1.2) have been studied extensively in the literature, for example, see Gupta and Nagar [3]. The matrix variate beta type 3 distribution has been defined, and some of its properties have been studied by Gupta and Nagar [4].

In this paper, we study several properties of matrix variate beta type 3 distribution. We also derive probability density functions of the product of two independent random matrices when one of them is beta type 3. We also define bimatrix beta type 3 distribution and study some of its properties.

2. Some Known Results and Definitions

We begin with a brief review of some definitions and notations. We adhere to standard notations (cf. Gupta and Nagar [3]). Let $A=\left(a_{i j}\right)$ be an $m \times m$ matrix. Then, A^{\prime} denotes the transpose of $A ; \operatorname{tr}(A)=a_{11}+\cdots+a_{m m} ; \operatorname{etr}(A)=\exp (\operatorname{tr}(A)) ; \operatorname{det}(A)=\operatorname{determinant}$ of A; $\|A\|=$ norm of $A ; A>0$ means that A is symmetric positive definite and $A^{1 / 2}$ denotes the unique symmetric positive definite square root of $A>0$. The multivariate gamma function which is frequently used in multivariate statistical analysis is defined by

$$
\begin{align*}
\Gamma_{m}(a) & =\int_{X>0} \operatorname{etr}(-X) \operatorname{det}(X)^{a-(m+1) / 2} d X \\
& =\pi^{m(m-1) / 4} \prod_{i=1}^{m} \Gamma\left(a-\frac{i-1}{2}\right), \quad \operatorname{Re}(a)>\frac{m-1}{2} \tag{2.1}
\end{align*}
$$

The multivariate generalization of the beta function is given by

$$
\begin{align*}
B_{m}(a, b) & =\int_{0}^{I_{m}} \operatorname{det}(X)^{a-(m+1) / 2} \operatorname{det}\left(I_{m}-X\right)^{b-(m+1) / 2} d X \tag{2.2}\\
& =\frac{\Gamma_{m}(a) \Gamma_{m}(b)}{\Gamma_{m}(a+b)}=B_{m}(b, a)
\end{align*}
$$

where $\operatorname{Re}(a)>(m-1) / 2$ and $\operatorname{Re}(b)>(m-1) / 2$.
The generalized hypergeometric coefficient $(a)_{\rho}$ is defined by

$$
\begin{equation*}
(a)_{\rho}=\prod_{i=1}^{m}\left(a-\frac{i-1}{2}\right)_{r_{i}} \tag{2.3}
\end{equation*}
$$

where $\rho=\left(r_{1}, \ldots, r_{m}\right), r_{1} \geq \cdots \geq r_{m} \geq 0, r_{1}+\cdots+r_{m}=r$, and $(a)_{k}=a(a+1) \cdots(a+k-1)$, $k=1,2, \ldots$ with $(a)_{0}=1$. The generalized hypergeometric function of one matrix is defined by

$$
\begin{equation*}
{ }_{p} F_{q}\left(a_{1}, \ldots, a_{p} ; b_{1}, \ldots, b_{q} ; X\right)=\sum_{k=0}^{\infty} \sum_{\kappa \vdash k} \frac{\left(a_{1}\right)_{\kappa} \cdots\left(a_{p}\right)_{\kappa}}{\left(b_{1}\right)_{\kappa} \cdots\left(b_{q}\right)_{\kappa}} \frac{C_{\kappa}(X)}{k!}, \tag{2.4}
\end{equation*}
$$

where $a_{i}, i=1, \ldots, p, b_{j}, j=1, \ldots, q$ are arbitrary complex numbers, $X(m \times m)$ is a complex symmetric matrx, and $\sum_{\kappa \vdash k}$ denotes summation over all partitions κ. Conditions for convergence of the series in (2.4) are available in the literature. From (2.4) it follows that

$$
\begin{gather*}
{ }_{0} F_{0}(X)=\sum_{k=0}^{\infty} \sum_{k \vdash-k} \frac{C_{\kappa}(X)}{k!}=\sum_{k=0}^{\infty} \frac{(\operatorname{tr} X)^{k}}{k!}=\operatorname{etr}(X), \tag{2.5}\\
{ }_{1} F_{0}(a ; X)=\sum_{k=0}^{\infty} \sum_{k \vdash k} \frac{(a)_{\kappa} C_{\kappa}(X)}{k!}=\operatorname{det}\left(I_{m}-X\right)^{-a}, \quad\|X\|<1, \tag{2.6}\\
{ }_{1} F_{1}(a ; c ; X)=\sum_{k=0}^{\infty} \sum_{\kappa \vdash-k} \frac{(a)_{\kappa}}{(c)_{\kappa}} \frac{C_{\kappa}(X)}{k!}, \tag{2.7}\\
{ }_{2} F_{1}(a, b ; c ; X)=\sum_{k=0}^{\infty} \sum_{\kappa \vdash k} \frac{(a)_{\kappa}(b)_{\kappa}}{(c)_{\kappa}} \frac{C_{\kappa}(X)}{k!}, \quad\|X\|<1 . \tag{2.8}
\end{gather*}
$$

The integral representations of the confluent hypergeometric function ${ }_{1} F_{1}$ and the Gauss hypergeometric function ${ }_{2} F_{1}$ are given by

$$
\begin{align*}
{ }_{1} F_{1}(a ; c ; X) & =\frac{\Gamma_{m}(c)}{\Gamma_{m}(a) \Gamma_{m}(c-a)} \int_{0}^{I_{m}} \operatorname{etr}(R X) \operatorname{det}(R)^{a-(m+1) / 2} \operatorname{det}\left(I_{m}-R\right)^{c-a-(m+1) / 2} d R, \tag{2.9}\\
{ }_{2} F_{1}(a, b ; c ; X) & =\frac{\Gamma_{m}(c)}{\Gamma_{m}(a) \Gamma_{m}(c-a)} \int_{0}^{I_{m}} \operatorname{det}(R)^{a-(m+1) / 2} \operatorname{det}\left(I_{m}-R\right)^{c-a-(m+1) / 2} \operatorname{det}\left(I_{m}-X R\right)^{-b} d R, \tag{2.10}
\end{align*}
$$

where $\operatorname{Re}(a)>(m-1) / 2$ and $\operatorname{Re}(c-a)>(m-1) / 2$. For properties and further results on these functions the reader is referred to Constantine [5] and Gupta and Nagar [3].

Davis [6, 7] introduced a class of polynomials $C_{\phi}^{\kappa, \lambda}(X, Y)$ of $m \times m$ symmetric matrix arguments X and Y, which are invariant under the transformation $(X, Y) \rightarrow$ $\left(H X H^{\prime}, H Y H^{\prime}\right), H \in O(m)$. For properties and applications of invariant polynomials we refer to Davis [6, 7], Chikuse [8], and Nagar and Gupta [9]. Let κ, λ, ϕ, and ρ be ordered partitions of the nonnegative integers $k, \ell, f=k+\ell$ and r, respectively, into not more than m
parts. Then

$$
\begin{gather*}
C_{\phi}^{\kappa, \lambda}(X, X)=\theta_{\phi}^{\kappa, \lambda} C_{\phi}(X), \quad \theta_{\phi}^{\kappa, \lambda}=\frac{C_{\phi}^{\kappa, \lambda}\left(I_{m}, I_{m}\right)}{C_{\phi}\left(I_{m}\right)} \tag{2.11}\\
C_{\phi}^{\kappa, \lambda}\left(X, I_{m}\right)=\theta_{\phi}^{\kappa, \lambda} \frac{C_{\phi}\left(I_{m}\right) C_{\kappa}(X)}{C_{\kappa}\left(I_{m}\right)} \tag{2.12}\\
C_{\kappa}^{\kappa, 0}(X, Y) \equiv C_{\kappa}(X), \quad C_{\lambda}^{0, \lambda}(X, Y) \equiv C_{\lambda}(Y) \tag{2.13}\\
C_{\kappa}(X) C_{\lambda}(Y)=\sum_{\phi \in \kappa \cdot \lambda} \theta_{\phi}^{\kappa, \lambda} C_{\phi}^{\kappa, \lambda}(X, Y) \tag{2.14}
\end{gather*}
$$

where $\phi \in \mathcal{\kappa} \cdot \lambda$ signifies that irreducible representation of $G l(m, R)$ indexed by 2ϕ occurs in the decomposition of the Kronecker product $2 \kappa \otimes 2 \lambda$ of the irreducible representations indexed by 2κ and 2λ. Further

$$
\begin{align*}
& \int_{0}^{I_{m}} \operatorname{det}(R)^{t-(m+1) / 2} \operatorname{det}\left(I_{m}-R\right)^{u-(m+1) / 2} C_{\phi}^{\kappa, \lambda}\left(R, I_{m}-R\right) \mathrm{d} R=\frac{\Gamma_{m}(t, \kappa) \Gamma_{m}(u, \lambda)}{\Gamma_{m}(t+u, \phi)} \theta_{\phi}^{\kappa, \lambda} C_{\phi}\left(I_{m}\right), \tag{2.15}\\
& \int_{0}^{I_{m}} \operatorname{det}(R)^{t-(m+1) / 2} \operatorname{det}\left(I_{m}-R\right)^{u-(m+1) / 2} C_{\phi}^{\kappa, \lambda}(A R, B R) \mathrm{d} R=\frac{\Gamma_{m}(t, \phi) \Gamma_{m}(u)}{\Gamma_{m}(t+u, \phi)} C_{\phi}^{\kappa, \lambda}(A, B) \tag{2.16}
\end{align*}
$$

In expressions (2.15) and (2.16), $\Gamma_{m}(a, \rho)$ is defined by

$$
\begin{equation*}
\Gamma_{m}(a, \rho)=(a)_{\rho} \Gamma_{m}(a) \tag{2.17}
\end{equation*}
$$

Note that $\Gamma_{m}(a, 0)=\Gamma_{m}(a)$, which is the multivariate gamma function.
The matrix variate generalizations of (1.1), (1.2), and (1.4) are given as follows (Gupta and Nagar $[3,4]$).

Definition 2.1. An $m \times m$ random symmetric positive definite matrix U is said to have a matrix variate beta type 1 distribution with parameters (α, β), denoted as $U \sim B 1(m, \alpha, \beta)$, if its p.d.f. is given by

$$
\begin{equation*}
\frac{\operatorname{det}(U)^{\alpha-(m+1) / 2} \operatorname{det}\left(I_{m}-U\right)^{\beta-(m+1) / 2}}{B_{m}(\alpha, \beta)}, \quad 0<U<I_{m}, \tag{2.18}
\end{equation*}
$$

where $\alpha>(m-1) / 2$ and $\beta>(m-1) / 2$.

If $U \sim B 1(m, \alpha, \beta)$, then the cumulative distribution function $F(\Lambda)=P(U<\Lambda)$ is given by

$$
\begin{align*}
F(\Lambda)= & \frac{\Gamma_{m}(\alpha+\beta) \Gamma_{m}[(m+1) / 2]}{\Gamma_{m}(\beta) \Gamma_{m}[\alpha+(m+1) / 2]} \operatorname{det}(\Lambda)^{\alpha} \tag{2.19}\\
& \times{ }_{2} F_{1}\left(\alpha,-\beta+\frac{m+1}{2} ; \alpha+\frac{m+1}{2} ; \Lambda\right), 0<\Lambda<I_{m}, \\
E\left[\operatorname{det}(U)^{r_{1}} \operatorname{det}\left(I_{m}-U\right)^{r_{2}}\right]= & \frac{\Gamma_{m}\left(\alpha+r_{1}\right) \Gamma_{m}\left(\beta+r_{2}\right) \Gamma_{m}(\alpha+\beta)}{\Gamma_{m}(\alpha) \Gamma_{m}(\beta) \Gamma_{m}\left(\alpha+\beta+r_{1}+r_{2}\right)} . \tag{2.20}
\end{align*}
$$

Definition 2.2. An $m \times m$ random symmetric positive definite matrix V is said to have a matrix variate beta type 2 distribution with parameters (α, β), denoted as $V \sim B 2(m, \alpha, \beta)$, if its p.d.f. is given by

$$
\begin{equation*}
\frac{\operatorname{det}(V)^{\alpha-(m+1) / 2} \operatorname{det}\left(I_{m}+V\right)^{-(\alpha+\beta)}}{B_{m}(\alpha, \beta)}, \quad V>0 \tag{2.21}
\end{equation*}
$$

where $\alpha>(m-1) / 2$ and $\beta>(m-1) / 2$.
Definition 2.3. An $m \times m$ random symmetric positive definite matrix W is said to have a matrix variate beta type 3 distribution with parameters (α, β), denoted as $W \sim B 3(m, \alpha, \beta)$, if its p.d.f. is given by

$$
\begin{equation*}
\frac{2^{m \alpha} \operatorname{det}(W)^{\alpha-(m+1) / 2} \operatorname{det}\left(I_{m}-W\right)^{\beta-(m+1) / 2}}{B_{m}(\alpha, \beta) \operatorname{det}\left(I_{m}+W\right)^{\alpha+\beta}}, \quad 0<W<I_{m} \tag{2.22}
\end{equation*}
$$

where $\alpha>(m-1) / 2$ and $\beta>(m-1) / 2$.

3. Hypergeometric Functions of Two Matrices

In this section we define Appell's first hypergeometric function F_{1} and Humbert's confluent hypergeometric function Φ_{1} of $m \times m$ symmetric matrices Z_{1} and Z_{2} and give their series expansions involving invariant polynomials. Following Prudnikov et al. [10, equations 7.2.4(43), (48)], F_{1} and Φ_{1} are defined as

$$
\begin{align*}
F_{1}\left(a, b_{1}, b_{2} ; c ; Z_{1}, Z_{2}\right) & =\frac{\Gamma_{m}(c)}{\Gamma_{m}(a) \Gamma_{m}(c-a)} \int_{0}^{I_{m}} \frac{\operatorname{det}(V)^{a-(m+1) / 2} \operatorname{det}\left(I_{m}-V\right)^{c-a-(m+1) / 2} d V}{\operatorname{det}\left(I_{m}-V Z_{1}\right)^{b_{1}} \operatorname{det}\left(I_{m}-V Z_{2}\right)^{b_{2}}} \tag{3.1}\\
\Phi_{1}\left[a, b_{1} ; c ; Z_{1}, Z_{2}\right] & =\frac{\Gamma_{m}(c)}{\Gamma_{m}(a) \Gamma_{m}(c-a)} \int_{0}^{I_{m}} \frac{\operatorname{det}(V)^{a-(m+1) / 2} \operatorname{det}\left(I_{m}-V\right)^{c-a-(m+1) / 2} d V}{\operatorname{det}\left(I_{m}-V Z_{1}\right)^{b_{1}} \operatorname{etr}\left(-V Z_{2}\right)} \tag{3.2}
\end{align*}
$$

respectively, where $\operatorname{Re}(a)>(m-1) / 2$ and $\operatorname{Re}(c-a)>(m-1) / 2$. Note that for $b_{1}=0, F_{1}$ and Φ_{1} reduce to ${ }_{2} F_{1}$ and ${ }_{1} F_{1}$ functions, respectively. Expanding $\operatorname{det}\left(I_{m}-V Z_{1}\right)^{-b_{1}},\left\|V Z_{1}\right\|<1$,
$\operatorname{det}\left(I_{m}-V Z_{2}\right)^{-b_{2}},\left\|V Z_{2}\right\|<1$ and $\operatorname{etr}\left(V Z_{2}\right)$ using (2.6) and (2.5), and applying (2.14), one can write

$$
\begin{align*}
& \operatorname{det}\left(I_{m}-V Z_{1}\right)^{-b_{1}} \operatorname{det}\left(I_{m}-V Z_{2}\right)^{-b_{2}} \\
& \quad=\sum_{k=0}^{\infty} \sum_{\ell=0}^{\infty} \sum_{k \vdash k} \sum_{\lambda \vdash \ell} \sum_{\phi \in \kappa \cdot \lambda} \frac{\left(b_{1}\right)_{\kappa}\left(b_{2}\right)_{\lambda}}{k!\ell!} C_{\phi}^{\kappa, \lambda}\left(V Z_{1}, V Z_{2}\right), \quad\left\|Z_{1}\right\|<1,\left\|Z_{2}\right\|<1, \tag{3.3}\\
& \operatorname{det}\left(I_{m}-V Z_{1}\right)^{-b_{1}} \operatorname{etr}\left(V Z_{2}\right) \\
& \quad=\sum_{k=0}^{\infty} \sum_{\ell=0}^{\infty} \sum_{\kappa \vdash \cdot k} \sum_{\lambda \vdash \ell} \sum_{\phi \in \kappa \cdot \lambda} \frac{\left(b_{1}\right)_{\kappa}}{k!\ell!} C_{\phi}^{\kappa, \lambda}\left(V Z_{1}, V Z_{2}\right), \quad\left\|Z_{1}\right\|<1 . \tag{3.4}
\end{align*}
$$

Now, substituting (3.3) and (3.4) in (3.1) and (3.2), respectively, and integrating V using (2.16), the series expansions for F_{1} and Φ_{1} are derived as

$$
\begin{align*}
F_{1}\left(a, b_{1}, b_{2} ; c ; Z_{1}, Z_{2}\right) & =\sum_{k=0}^{\infty} \sum_{\ell=0}^{\infty} \sum_{k \vdash k} \sum_{\lambda \vdash \ell} \sum_{\phi \in \kappa \cdot \lambda} \frac{\left(b_{1}\right)_{\kappa}\left(b_{2}\right)_{\lambda}}{k!\ell!} \frac{(a)_{\phi}}{(c)_{\phi}} C_{\phi}^{\kappa, \lambda}\left(Z_{1}, Z_{2}\right), \\
\Phi_{1}\left[a, b_{1} ; c ; Z_{1}, Z_{2}\right] & =\sum_{k=0}^{\infty} \sum_{\ell=0}^{\infty} \sum_{k \vdash k} \sum_{\lambda \vdash \ell} \sum_{\phi \in \kappa \cdot l} \frac{\left(b_{1}\right)_{\kappa}}{k!\ell!} \frac{(a)_{\phi}}{(c)_{\phi}} C_{\phi}^{\kappa, \lambda}\left(Z_{1}, Z_{2}\right) . \tag{3.5}
\end{align*}
$$

4. Properties

In this section we derive several properties of the matrix variate beta type 3 distribution. For the sake of completeness we first state the following results established in Gupta and Nagar [4].
(1) Let $W \sim B 3(m, \alpha, \beta)$ and $A(m \times m)$ be a constant nonsingular matrix. Then, the density of $X=A W A^{\prime}$ is

$$
\begin{equation*}
\frac{2^{m \alpha} \operatorname{det}(X)^{\alpha-(m+1) / 2} \operatorname{det}\left(A A^{\prime}-X\right)^{\beta-(m+1) / 2}}{\operatorname{det}\left(A A^{\prime}\right)^{-(m+1) / 2} B_{m}(\alpha, \beta) \operatorname{det}\left(A A^{\prime}+X\right)^{\alpha+\beta}}, \quad 0<X<A A^{\prime} \tag{4.1}
\end{equation*}
$$

(2) Let $W \sim B 3(m, \alpha, \beta)$ and $H(m \times m)$ be an orthogonal matrix, whose elements are either constants or random variables distributed independent of W. Then, the distribution of W is invariant under the transformation $W \rightarrow H W H^{\prime}$, and is independent of H in the latter case.
(3) Let $W \sim B 3(m, \alpha, \beta)$. Then, the density of $Y=W^{-1}$ is

$$
\begin{equation*}
\frac{2^{m \alpha} \operatorname{det}\left(Y-I_{m}\right)^{\beta-(m+1) / 2}}{B_{m}(\alpha, \beta) \operatorname{det}\left(I_{m}+Y\right)^{\alpha+\beta}}, \quad \Upsilon>I_{m} \tag{4.2}
\end{equation*}
$$

(4) If $U \sim B 1(m, \alpha, \beta)$, then $\left(I_{m}+U\right)^{-1}\left(I_{m}-U\right) \sim B 3(m, \beta, \alpha)$ and $\left(2 I_{m}-U\right)^{-1} U \sim$ $B 3(m, \alpha, \beta)$.
(5) If $V \sim B 2(m, \alpha, \beta)$, then $\left(2 I_{m}+V\right)^{-1} V \sim B 3(m, \alpha, \beta)$ and $\left(I_{m}+2 V\right)^{-1} \sim B 3(m, \beta, \alpha)$.
(6) If $W \sim B 3(m, \alpha, \beta)$, then $2\left(I_{m}+W\right)^{-1} W \sim B 1(m, \alpha, \beta),\left(I_{m}+W\right)^{-1}\left(I_{m}-W\right) \sim$ $B 1(m, \beta, \alpha), 2\left(I_{m}-W\right)^{-1} W \sim B 2(m, \alpha, \beta)$, and $(1 / 2)\left(I_{m}-W\right) W^{-1} \sim B 2(m, \beta, \alpha)$.
(7) Let $W=\binom{W_{11} W_{12}}{W_{21} W_{22}}, W_{11}(q \times q)$. Define $W_{11 \cdot 2}=W_{11}-W_{12} W_{22}^{-1} W_{21}$ and $W_{22 \cdot 1}=$ $W_{22}-W_{21} W_{11}^{-1} W_{12 .}$. If $W \sim B 3(m, \alpha, \beta)$, then $W_{22 \cdot 1} \sim B 3(m-q, \alpha-q / 2, \beta)$ and $W_{11 \cdot 2} \sim$ $B 3(q, \alpha-(m-q) / 2, \beta)$.
(8) Let $A(q \times m)$ be a constant matrix of rank $q(\leq m)$. If $W \sim B 3(m, \alpha, \beta)$, then $\left[\left(A A^{\prime}\right)^{-1 / 2} A W^{-1} A^{\prime}\left(A A^{\prime}\right)^{-1 / 2}\right]^{-1} \sim B 3(q, \alpha-(m-q) / 2, \beta)$.
(9) Let $W \sim B 3(m, \alpha, \beta)$ and $\mathbf{a} \in \mathbb{R}^{m}, \mathbf{a} \neq 0$, then $\mathbf{a}^{\prime} \mathbf{a}\left(\mathbf{a}^{\prime} W^{-1} \mathbf{a}\right)^{-1} \sim B 3(\alpha-(m-1) / 2, \beta)$. Further, if $\mathbf{y}(m \times 1)$ is a random vector, independent of W, and $P(\mathbf{y} \neq 0)=1$, then it follows that $\mathbf{y}^{\prime} \mathbf{y}\left(\mathbf{y}^{\prime} W^{-1} \mathbf{y}\right)^{-1} \sim B 3(\alpha-(m-1) / 2, \beta)$.

From the above results it is straightforward to show that, if $\mathbf{c}(m \times 1)$ is a nonzero constant vector or a random vector independent of W with $P(c \neq 0)=1$, then

$$
\begin{align*}
& \frac{\mathbf{c}^{\prime}\left(W^{-1}-I_{m}\right) \mathbf{c}}{\mathbf{c}^{\prime}\left(W^{-1}+I_{m}\right) \mathbf{c}} \sim B 1\left(\beta, \alpha-\frac{m-1}{2}\right), \\
& \frac{2 \mathbf{c}^{\prime} \mathbf{c}}{\mathbf{c}^{\prime}\left(W^{-1}+I_{m}\right) \mathbf{c}} \sim B 1\left(\alpha-\frac{m-1}{2}, \beta\right), \tag{4.3}\\
& \frac{2 \mathbf{c}^{\prime} \mathbf{c}}{\mathbf{c}^{\prime}\left(W^{-1}-I_{m}\right) \mathbf{c}} \sim B 2\left(\alpha-\frac{m-1}{2}, \beta\right), \\
& \frac{\mathbf{c}^{\prime}\left(W^{-1}-I_{m}\right) \mathbf{c}}{2 \mathbf{c}^{\prime} \mathbf{c}} \sim B 2\left(\beta, \alpha-\frac{m-1}{2}\right) .
\end{align*}
$$

The expectation of $W^{-1}, E\left(W^{-1}\right)$, can easily be obtained from the above results. For any fixed $\mathbf{c} \in \mathbb{R}^{m}, \mathbf{c} \neq 0$,

$$
\begin{equation*}
E\left[\frac{\mathbf{c}^{\prime}\left(W^{-1}-I_{m}\right) \mathbf{c}}{2 \mathbf{c}^{\prime} \mathbf{c}}\right]=E(v), \tag{4.4}
\end{equation*}
$$

where $v \sim B 2(\beta, \alpha-(m-1) / 2)$. Hence, for all $\mathbf{c} \in \mathbb{R}^{m}$,

$$
\begin{equation*}
\mathbf{c}^{\prime} E\left(W^{-1}-I_{m}\right) \mathbf{c}=2 \mathbf{c}^{\prime} \mathbf{c} E(v)=\frac{2 \beta}{\alpha-(m+1) / 2} \mathbf{c}^{\prime} \mathbf{c}, \quad \alpha>\frac{m+1}{2}, \tag{4.5}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
E\left(W^{-1}\right)=\frac{2 \beta+\alpha-(m+1) / 2}{\alpha-(m+1) / 2} I_{m}, \quad \alpha>\frac{m+1}{2} . \tag{4.6}
\end{equation*}
$$

The matrix variate beta type 3 distribution can be derived by using independent gamma matrices. An $m \times m$ random symmetric positive definite matrix Y is said to have a matrix variate gamma distribution with parameters $\Psi(>0)$, and $\kappa(>(m-1) / 2)$, denoted by $\Upsilon \sim$ $G a(m, \kappa, \Psi)$, if its p.d.f. is given by

$$
\begin{equation*}
\frac{\operatorname{etr}\left(-\Psi^{-1} Y\right) \operatorname{det}(Y)^{\kappa-(m+1) / 2}}{\Gamma_{m}(\mathcal{\kappa}) \operatorname{det}(\Psi)^{\kappa}}, \quad \Upsilon>0 \tag{4.7}
\end{equation*}
$$

It is well known that if Y_{1} and Y_{2} are independent, $Y_{i} \sim \operatorname{Ga}\left(m, \kappa_{i}, I_{m}\right), i=1,2$, then (i) $\left(Y_{1}+Y_{2}\right)^{-1 / 2} Y_{1}\left(Y_{1}+Y_{2}\right)^{-1 / 2}$ and $Y_{1}+Y_{2}$ are independent and (ii) $Y_{2}^{-1 / 2} Y_{1} Y_{2}^{-1 / 2}$ and $Y_{1}+$ Y_{2} are independent. Further, $\left(Y_{1}+Y_{2}\right)^{-1 / 2} Y_{1}\left(Y_{1}+Y_{2}\right)^{-1 / 2} \sim B 1\left(m, \kappa_{1}, \kappa_{2}\right), Y_{2}^{-1 / 2} Y_{1} Y_{2}^{-1 / 2} \sim$ $B 2\left(m, \kappa_{1}, \kappa_{2}\right)$ and $Y_{1}+Y_{2} \sim \operatorname{Ga}\left(m, \kappa_{1}+\kappa_{2}, I_{m}\right)$. In the following theorem we derive similar result for matrix variate beta type 3 distribution.

Theorem 4.1. Let the $m \times m$ random matrices Y_{1} and Y_{2} be independent, $Y_{i} \sim G a\left(m, \kappa_{i}, I_{m}\right)$, $i=1$, 2. Then, $\left(Y_{1}+2 Y_{2}\right)^{-1 / 2} Y_{1}\left(Y_{1}+2 Y_{2}\right)^{-1 / 2} \sim B 3\left(m, \kappa_{1}, \kappa_{2}\right)$.

Proof. The joint density function of Y_{1} and Y_{2} is given by

$$
\begin{equation*}
\frac{\operatorname{etr}\left[-\left(\Upsilon_{1}+\Upsilon_{2}\right)\right] \operatorname{det}\left(Y_{1}\right)^{\kappa_{1}-(m+1) / 2} \operatorname{det}\left(Y_{2}\right)^{\kappa_{2}-(m+1) / 2}}{\Gamma_{m}\left(\kappa_{1}\right) \Gamma_{m}\left(\kappa_{2}\right)}, \quad Y_{1}>0, \Upsilon_{2}>0 \tag{4.8}
\end{equation*}
$$

Making the transformation $W=Y^{-1 / 2} Y_{1} Y^{-1 / 2}$ and $Y=Y_{1}+2 Y_{2}$ with the Jacobian $J\left(Y_{1}, Y_{2} \rightarrow\right.$ $W, Y)=2^{-m(m+1) / 2} \operatorname{det}(Y)^{(m+1) / 2}$ in the joint density of Y_{1} and Y_{2}, we obtain the joint density of W and Y as

$$
\begin{align*}
& \frac{\operatorname{det}(W)^{\kappa_{1}-(m+1) / 2} \operatorname{det}\left(I_{m}-W\right)^{\kappa_{2}-(m+1) / 2}}{2^{m \kappa_{2}} \Gamma_{m}\left(\kappa_{1}\right) \Gamma_{m}\left(\kappa_{2}\right)} \tag{4.9}\\
& \quad \times \operatorname{etr}\left[-\frac{1}{2}\left(I_{m}+W\right) Y\right] \operatorname{det}(Y)^{\kappa_{1}+\kappa_{2}-(m+1) / 2}, \quad 0<W<I_{m}, Y>0 .
\end{align*}
$$

Now, the desired result is obtained by integrating Y using (2.1).
Next, we derive the cumulative distribution function (cdf) and several expected values of functions of beta type 3 matrix.

If $W \sim B 3(m, \alpha, \beta)$, then the cdf of W, denoted by $G(\Omega)$, is given by

$$
\begin{align*}
G(\Omega) & =P(W<\Omega) \\
& =P\left(U<\left(I_{m}+\Omega\right)^{-1}\left(I_{m}-\Omega\right)\right) \tag{4.10}
\end{align*}
$$

where $U \sim B 1(m, \beta, \alpha)$. Now, using (2.19), the $\operatorname{cdf} G(\Omega)$ is obtained as

$$
\begin{align*}
G(\Omega)= & \frac{\Gamma_{m}(\alpha+\beta) \Gamma_{m}[(m+1) / 2]}{\Gamma_{m}(\alpha) \Gamma_{m}[\beta+(m+1) / 2]} \operatorname{det}\left(\left(I_{m}+\Omega\right)^{-1}\left(I_{m}-\Omega\right)\right)^{\beta} \tag{4.11}\\
& \times{ }_{2} F_{1}\left(\beta,-\alpha+\frac{m+1}{2} ; \beta+\frac{m+1}{2} ;\left(I_{m}+\Omega\right)^{-1}\left(I_{m}-\Omega\right)\right)
\end{align*}
$$

where $0<\Omega<I_{m}$.
Theorem 4.2. Let $W \sim B 3(m, \alpha, \beta)$, then

$$
\begin{align*}
E\left[\frac{\operatorname{det}(W)^{r} \operatorname{det}\left(I_{m}-W\right)^{s}}{\operatorname{det}\left(I_{m}+W\right)^{t}}\right]= & 2^{-m(\beta+t)} \frac{\Gamma_{m}(\alpha+r) \Gamma_{m}(\beta+s) \Gamma_{m}(\alpha+\beta)}{\Gamma_{m}(\alpha) \Gamma_{m}(\beta) \Gamma_{m}(\alpha+\beta+r+s)} \tag{4.12}\\
& \times{ }_{2} F_{1}\left(\beta+s, \alpha+\beta+t ; \alpha+\beta+r+s ; \frac{I_{m}}{2}\right)
\end{align*}
$$

where $\operatorname{Re}(\alpha+r)>(m-1) / 2$ and $\operatorname{Re}(\beta+s)>(m-1) / 2$.
Proof. By definition

$$
\begin{align*}
& E\left[\frac{\operatorname{det}(W)^{r} \operatorname{det}\left(I_{m}-W\right)^{s}}{\operatorname{det}\left(I_{m}+W\right)^{t}}\right] \tag{4.13}\\
& \quad=\frac{2^{m \alpha}}{B_{m}(\alpha, \beta)} \int_{0}^{I_{m}} \frac{\operatorname{det}(W)^{\alpha+r-(m+1) / 2} \operatorname{det}\left(I_{m}-W\right)^{\beta+s-(m+1) / 2} d W}{\operatorname{det}\left(I_{m}+W\right)^{\alpha+\beta+t}}
\end{align*}
$$

Writing

$$
\begin{equation*}
\operatorname{det}\left(I_{m}+W\right)^{-(\alpha+\beta+t)}=2^{-m(\alpha+\beta+t)} \operatorname{det}\left(I_{m}-\frac{1}{2}\left(I_{m}-W\right)\right)^{-(\alpha+\beta+t)} \tag{4.14}
\end{equation*}
$$

and substituting $Z=I_{m}-W$, we have

$$
\begin{align*}
& E\left[\frac{\operatorname{det}(W)^{r} \operatorname{det}\left(I_{m}-W\right)^{s}}{\operatorname{det}\left(I_{m}+W\right)^{t}}\right] \\
& \quad=\frac{1}{2^{m(\beta+t)} B_{m}(\alpha, \beta)} \int_{0}^{I_{m}} \frac{\operatorname{det}(Z)^{\beta+s-(m+1) / 2} \operatorname{det}\left(I_{m}-Z\right)^{\alpha+r-(m+1) / 2} d Z}{\operatorname{det}\left(I_{m}-Z / 2\right)^{\alpha+\beta+t}} \tag{4.15}\\
& \quad=\frac{B_{m}(\alpha+r, \beta+s)}{2^{m(\beta+t)} B_{m}(\alpha, \beta)}{ }_{2} F_{1}\left(\beta+s, \alpha+\beta+t ; \alpha+\beta+r+s ; \frac{I_{m}}{2}\right)
\end{align*}
$$

where the integral has been evaluated using integral representation of the Gauss hypergeometric function given in (2.10).

Corollary 4.3. Let $W \sim B 3(m, \alpha, \beta)$, then for $\operatorname{Re}(h)>-\alpha+(m-1) / 2$, one has

$$
\begin{gather*}
E\left[\frac{\operatorname{det}(W)^{h}}{\operatorname{det}\left(I_{m}+W\right)^{h}}\right]=\frac{\Gamma_{m}(\alpha+\beta) \Gamma_{m}(\alpha+h)}{2^{m h} \Gamma_{m}(\alpha) \Gamma_{m}(\alpha+\beta+h)}, \tag{4.16}\\
E\left[\operatorname{det}(W)^{h}\right]=\frac{\Gamma_{m}(\alpha+\beta) \Gamma_{m}(\alpha+h)}{2^{m \beta} \Gamma_{m}(\alpha) \Gamma_{m}(\alpha+\beta+h)^{2}} F_{1}\left(\beta, \alpha+\beta ; \alpha+\beta+h ; \frac{I_{m}}{2}\right) .
\end{gather*}
$$

Further, for $\operatorname{Re}(h)>-\beta+(m-1) / 2$,

$$
\begin{align*}
E\left[\operatorname{det}\left(I_{m}+W\right)^{h}\right]= & \frac{\Gamma_{m}(\alpha+\beta) \Gamma_{m}(\beta+h)}{2^{m \beta} \Gamma_{m}(\beta) \Gamma_{m}(\alpha+\beta+h)} \tag{4.17}\\
& \times{ }_{2} F_{1}\left(\beta+h, \alpha+\beta ; \alpha+\beta+h, \frac{I_{m}}{2}\right)
\end{align*}
$$

From the density of W, we have

$$
\begin{align*}
E\left[C_{\kappa}(W)\right]= & \frac{2^{m \alpha}}{B_{m}(\alpha, \beta)} \\
& \times \int_{0}^{I_{m}} \frac{C_{\kappa}(W) \operatorname{det}(W)^{\alpha-(m+1) / 2} \operatorname{det}\left(I_{m}-W\right)^{\beta-(m+1) / 2} d W}{\left(I_{m}+W\right)^{\alpha+\beta}} . \tag{4.18}
\end{align*}
$$

Now, expanding $\left(I_{m}+W\right)^{-(\alpha+\beta)}$ in series involving zonal polynomials using (2.6), the above expression is rewritten as

$$
\begin{align*}
E\left[C_{\kappa}(W)\right]= & \frac{1}{2^{m \beta} B_{m}(\alpha, \beta)} \sum_{\ell=0}^{\infty} \sum_{\lambda+\ell} \frac{(\alpha+\beta)_{\lambda}}{2^{\ell} \ell!} \tag{4.19}\\
& \times \int_{0}^{I_{m}} C_{\kappa}(W) \operatorname{det}(W)^{\alpha-(m+1) / 2} \operatorname{det}\left(I_{m}-W\right)^{\beta-(m+1) / 2} C_{\lambda}\left(I_{m}-W\right) d W .
\end{align*}
$$

Further, writing

$$
\begin{equation*}
C_{\kappa}(W) C_{\lambda}\left(I_{m}-W\right)=\sum_{\phi \in \kappa \cdot \lambda} \theta_{\phi}^{\kappa, \lambda} C_{\phi}^{\kappa, \lambda}\left(W, I_{m}-W\right) \tag{4.20}
\end{equation*}
$$

and integrating W using (2.15), we get

$$
\begin{align*}
E\left[C_{\kappa}(W)\right]= & \frac{1}{2^{m \beta} B_{m}(\alpha, \beta)} \sum_{\ell=0}^{\infty} \sum_{\lambda \vdash \ell} \frac{(\alpha+\beta)_{\lambda}}{2^{\ell} \ell!} \sum_{\phi \in \kappa \cdot \lambda} \theta_{\phi}^{\kappa, \lambda} \\
& \times \int_{0}^{I_{m}} \operatorname{det}(W)^{\alpha-(m+1) / 2} \operatorname{det}\left(I_{m}-W\right)^{\beta-(m+1) / 2} C_{\phi}^{\kappa, \lambda}\left(W, I_{m}-W\right) d W \tag{4.21}\\
= & \frac{1}{2^{m \beta}} \sum_{\ell=0}^{\infty} \sum_{\lambda \vdash \ell} \frac{(\alpha+\beta)_{\lambda}}{2^{\ell} \ell!} \sum_{\phi \in \kappa \cdot \lambda}\left(\theta_{\phi}^{\kappa, \lambda}\right)^{2} \frac{(\alpha)_{\kappa}(\beta)_{\lambda}}{(\alpha+\beta)_{\phi}} C_{\phi}\left(I_{m}\right)
\end{align*}
$$

5. Distributions of Random Quadratic Forms

In this section we obtain distributional results for the product of two independent random matrices involving beta type 3 distribution.

Theorem 5.1. Let $X_{1} \sim B 1\left(m, \alpha_{1}, \beta_{1}\right)$ and $X_{2} \sim B 3\left(m, \alpha_{2}, \beta_{2}\right)$ be independent. Then, the p.d.f. of $Z=X_{2}^{1 / 2} X_{1} X_{2}^{1 / 2}$ is

$$
\begin{align*}
& \frac{2^{-m \beta_{2}} \Gamma_{m}\left(\alpha_{1}+\beta_{1}\right) \Gamma_{m}\left(\alpha_{2}+\beta_{2}\right)}{\Gamma_{m}\left(\alpha_{1}\right) \Gamma_{m}\left(\alpha_{2}\right) \Gamma_{m}\left(\beta_{1}+\beta_{2}\right)} \operatorname{det}(Z)^{\alpha_{1}-(m+1) / 2} \operatorname{det}\left(I_{m}-Z\right)^{\beta_{1}+\beta_{2}-(m+1) / 2} \tag{5.1}\\
& \quad \times F_{1}\left(\beta_{2}, \alpha_{1}+\beta_{1}-\alpha_{2}, \alpha_{2}+\beta_{2}, \beta_{1}+\beta_{2} ; I_{m}-Z, \frac{I_{m}-Z}{2}\right), \quad 0<Z<I_{m}
\end{align*}
$$

Proof. Using the independence, the joint p.d.f. of X_{1} and X_{2} is given by

$$
\begin{align*}
& K_{1} \operatorname{det}\left(X_{1}\right)^{\alpha_{1}-(m+1) / 2} \operatorname{det}\left(I_{m}-X_{1}\right)^{\beta_{1}-(m+1) / 2} \\
& \quad \times \frac{\operatorname{det}\left(X_{2}\right)^{\alpha_{2}-(m+1) / 2} \operatorname{det}\left(I_{m}-X_{2}\right)^{\beta_{2}-(m+1) / 2}}{\operatorname{det}\left(I_{m}+X_{2}\right)^{\alpha_{2}+\beta_{2}}} \tag{5.2}
\end{align*}
$$

where $0<X_{i}<I_{m}, i=1,2$, and

$$
\begin{equation*}
K_{1}=2^{\alpha_{2} m}\left\{B_{m}\left(\alpha_{1}, \beta_{1}\right) B_{m}\left(\alpha_{2}, \beta_{2}\right)\right\}^{-1} \tag{5.3}
\end{equation*}
$$

Transforming $Z=X_{2}^{1 / 2} X_{1} X_{2}^{1 / 2}, X_{2}=X_{2}$ with the Jacobian $J\left(X_{1}, X_{2} \rightarrow Z, X_{2}\right)=$ $\operatorname{det}\left(X_{2}\right)^{-(m+1) / 2}$ we obtain the joint p.d.f. of Z and X_{2} as

$$
\begin{equation*}
K_{1} \operatorname{det}(Z)^{\alpha_{1}-(m+1) / 2} \frac{\operatorname{det}\left(X_{2}-Z\right)^{\beta_{1}-(m+1) / 2} \operatorname{det}\left(I_{m}-X_{2}\right)^{\beta_{2}-(m+1) / 2}}{\operatorname{det}\left(X_{2}\right)^{\alpha_{1}+\beta_{1}-\alpha_{2}} \operatorname{det}\left(I_{m}+X_{2}\right)^{\alpha_{2}+\beta_{2}}} \tag{5.4}
\end{equation*}
$$

where $0<Z<X_{2}<I_{m}$. To find the marginal p.d.f. of Z, we integrate (5.4) with respect to X_{2} to get

$$
\begin{align*}
& K_{1} \operatorname{det}(Z)^{\alpha_{1}-(m+1) / 2} \\
& \quad \times \int_{Z}^{I_{m}} \frac{\operatorname{det}\left(X_{2}-Z\right)^{\beta_{1}-(m+1) / 2} \operatorname{det}\left(I_{m}-X_{2}\right)^{\beta_{2}-(m+1) / 2} d X_{2}}{\operatorname{det}\left(X_{2}\right)^{\alpha_{1}+\beta_{1}-\alpha_{2}} \operatorname{det}\left(I_{m}+X_{2}\right)^{\alpha_{2}+\beta_{2}}} . \tag{5.5}
\end{align*}
$$

In (5.5) change of variable $V=\left(I_{m}-Z\right)^{-1 / 2}\left(I_{m}-X_{2}\right)\left(I_{m}-Z\right)^{-1 / 2}$ with the Jacobian $J\left(X_{2} \rightarrow\right.$ $V)=\operatorname{det}\left(I_{m}-Z\right)^{(m+1) / 2}$ yields

$$
\begin{align*}
& K_{1} 2^{-m\left(\alpha_{2}+\beta_{2}\right)} \operatorname{det}(Z)^{\alpha_{1}-(m+1) / 2} \operatorname{det}\left(I_{m}-Z\right)^{\beta_{1}+\beta_{2}-(m+1) / 2} \\
& \quad \times \int_{0}^{I_{m}} \frac{\operatorname{det}(V)^{\beta_{2}-(m+1) / 2} \operatorname{det}\left(I_{m}-V\right)^{\beta_{1}-(m+1) / 2} d V}{\operatorname{det}\left(I_{m}-\left(I_{m}-Z\right) V\right)^{\alpha_{1}+\beta_{1}-\alpha_{2}} \operatorname{det}\left(I_{m}-\left(I_{m}-Z\right) V / 2\right)^{\alpha_{2}+\beta_{2}}} \tag{5.6}\\
& = \\
& \quad K_{1} 2^{-m\left(\alpha_{2}+\beta_{2}\right)} \operatorname{det}(Z)^{\alpha_{1}-(m+1) / 2} \operatorname{det}\left(I_{m}-Z\right)^{\beta_{1}+\beta_{2}-(m+1) / 2} \\
& \quad \times \frac{\Gamma_{m}\left(\beta_{1}\right) \Gamma_{m}\left(\beta_{2}\right)}{\Gamma_{m}\left(\beta_{1}+\beta_{2}\right)} F_{1}\left(\beta_{2}, \alpha_{1}+\beta_{1}-\alpha_{2}, \alpha_{2}+\beta_{2}, \beta_{1}+\beta_{2} ; I_{m}-Z, \frac{I_{m}-Z}{2}\right),
\end{align*}
$$

where the last step has been obtained by using the definition of F_{1}. Finally, substituting for K_{1} we obtain the desired result.

Corollary 5.2. Let X_{1} and X_{2} be independent random matrices, $X_{1} \sim B 1\left(m, \alpha_{1}, \beta_{1}\right)$ and $X_{2} \sim$ B3 $\left(m, \alpha_{2}, \beta_{2}\right)$. If $\alpha_{2}=\alpha_{1}+\beta_{1}$, then the p.d.f. of $Z=X_{2}^{1 / 2} X_{1} X_{2}^{1 / 2}$ is given by

$$
\begin{align*}
& \frac{2^{-m \beta_{2}} \Gamma_{m}\left(\alpha_{1}+\beta_{1}+\beta_{2}\right)}{\Gamma_{m}\left(\alpha_{1}\right) \Gamma_{m}\left(\beta_{1}+\beta_{2}\right)} \operatorname{det}(Z)^{\alpha_{1}-(m+1) / 2} \operatorname{det}\left(I_{m}-Z\right)^{\beta_{1}+\beta_{2}-(m+1) / 2} \tag{5.7}\\
& \quad \times{ }_{2} F_{1}\left(\beta_{2}, \alpha_{1}+\beta_{1}+\beta_{2} ; \beta_{1}+\beta_{2} ; \frac{I_{m}-Z}{2}\right), \quad 0<Z<I_{m}
\end{align*}
$$

Theorem 5.3. Let X_{1} and X_{2} be independent random matrices, $X_{1} \sim B 3\left(m, \alpha_{1}, \beta_{1}\right)$ and $X_{2} \sim$ $B 2\left(m, \alpha_{2}, \beta_{2}\right)$. Then, the p.d.f. of $Z=X_{1}^{1 / 2} X_{2} X_{1}^{1 / 2}$ is given by

$$
\begin{align*}
& \frac{2^{-m \beta_{1}} B_{m}\left(\beta_{1}, \alpha_{1}+\beta_{2}\right)}{B_{m}\left(\alpha_{1}, \beta_{1}\right) B_{m}\left(\alpha_{2}, \beta_{2}\right)} \frac{\operatorname{det}(Z)^{\alpha_{2}-(m+1) / 2}}{\operatorname{det}\left(I_{m}+Z\right)^{\alpha_{2}+\beta_{2}}} \tag{5.8}\\
& \quad \times F_{1}\left(\beta_{1}, \alpha_{1}+\beta_{1}, \alpha_{2}+\beta_{2} ; \alpha_{1}+\beta_{1}+\beta_{2} ; \frac{I_{m}}{2},\left(I_{m}+Z\right)^{-1}\right), \quad Z>0
\end{align*}
$$

Proof. Since X_{1} and X_{2} are independent, their joint p.d.f. is given by

$$
\begin{equation*}
K_{2} \frac{\operatorname{det}\left(X_{1}\right)^{\alpha_{1}-(m+1) / 2} \operatorname{det}\left(I_{m}-X_{1}\right)^{\beta_{1}-(m+1) / 2} \operatorname{det}\left(X_{2}\right)^{\alpha_{2}-(m+1) / 2}}{\operatorname{det}\left(I_{m}+X_{1}\right)^{\alpha_{1}+\beta_{1}} \operatorname{det}\left(I_{m}+X_{2}\right)^{\alpha_{2}+\beta_{2}}} \tag{5.9}
\end{equation*}
$$

where $0<X_{1}<I_{m}, X_{2}>0$, and

$$
\begin{equation*}
K_{2}=2^{m \alpha_{1}}\left\{B_{m}\left(\alpha_{1}, \beta_{1}\right) B_{m}\left(\alpha_{2}, \beta_{2}\right)\right\}^{-1} \tag{5.10}
\end{equation*}
$$

Now consider the transformation $Z=X_{1}^{1 / 2} X_{2} X_{1}^{1 / 2}$ and $V=I_{m}-X_{1}$ whose Jacobian is $J\left(X_{1}, X_{2} \rightarrow V, Z\right)=\operatorname{det}\left(I_{m}-V\right)^{-(m+1) / 2}$. Thus, we obtain the joint p.d.f. of V and Z as

$$
\begin{equation*}
\frac{K_{2} \operatorname{det}(Z)^{\alpha_{2}-(m+1) / 2}}{2^{m\left(\alpha_{1}+\beta_{1}\right)} \operatorname{det}\left(I_{m}+Z\right)^{\alpha_{2}+\beta_{2}}} \frac{\operatorname{det}(V)^{\beta_{1}-(m+1) / 2} \operatorname{det}\left(I_{m}-V\right)^{\alpha_{1}+\beta_{2}-(m+1) / 2}}{\operatorname{det}\left(I_{m}-V / 2\right)^{\alpha_{1}+\beta_{1}} \operatorname{det}\left(I_{m}-\left(I_{m}+Z\right)^{-1} V\right)^{\alpha_{2}+\beta_{2}}} \tag{5.11}
\end{equation*}
$$

where $Z>0$ and $0<V<I_{m}$. Finally, integrating V using (3.1) and substituting for K_{2}, we obtain the desired result.

In the next theorem we derive the density of $Z_{1}=X^{-1 / 2} Y X^{-1 / 2}$, where the random matrices X and Y are independent, $X \sim B 3(m, \alpha, \beta)$, and the distribution of Y is matrix variate gamma.

Theorem 5.4. Let the $m \times m$ random matrices X and Y be independent, $X \sim B 3(m, \alpha, \beta)$ and $Y \sim$ $G a\left(m, \kappa, I_{m}\right)$. Then, the p.d.f. of $Z_{1}=X^{-1 / 2} Y X^{-1 / 2}$ is given by

$$
\begin{equation*}
\frac{\Gamma_{m}(\alpha+\kappa) \Gamma_{m}(\alpha+\beta) \operatorname{det}\left(Z_{1}\right)^{\kappa-(m+1) / 2} \operatorname{etr}\left(-Z_{1}\right)}{2^{m \beta} \Gamma_{m}(\kappa) \Gamma_{m}(\alpha) \Gamma_{m}(\alpha+\beta+\kappa)} \boldsymbol{\Phi}_{1}\left(\beta, \alpha+\beta ; \alpha+\beta+\kappa ; \frac{I_{m}}{2}, Z_{1}\right) \tag{5.12}
\end{equation*}
$$

where $Z_{1}>0$.
Proof. The joint p.d.f. of X and Y is given by

$$
\begin{equation*}
\frac{\operatorname{det}(X)^{\alpha-(m+1) / 2} \operatorname{det}\left(I_{m}-X\right)^{\beta-(m+1) / 2} \operatorname{det}(Y)^{\kappa-(m+1) / 2}}{2^{-m \alpha} \Gamma(\kappa) B(\alpha, \beta) \operatorname{det}\left(I_{m}+X\right)^{\alpha+\beta} \operatorname{etr}(Y)} \tag{5.13}
\end{equation*}
$$

where $0<X<I_{m}$ and $Y>0$. Now, transforming $Z_{1}=X^{-1 / 2} Y X^{-1 / 2}$ and $W=I_{m}-X$, with the Jacobian $J\left(X, Y \rightarrow W, Z_{1}\right)=\operatorname{det}\left(I_{m}-W\right)^{(m+1) / 2}$, we obtain the joint p.d.f. of Z_{1} and W as

$$
\begin{equation*}
\frac{\operatorname{etr}\left(-Z_{1}\right) \operatorname{det}\left(Z_{1}\right)^{\kappa-(m+1) / 2}}{2^{m \beta} \Gamma(\kappa) B(\alpha, \beta)} \frac{\operatorname{det}(W)^{\beta-(m+1) / 2} \operatorname{det}\left(I_{m}-W\right)^{\alpha+\kappa-(m+1) / 2}}{\operatorname{det}\left(I_{m}-W / 2\right)^{\alpha+\beta} \operatorname{etr}\left(-W Z_{1}\right)} \tag{5.14}
\end{equation*}
$$

where $0<W<I_{m}$ and $Z_{1}>0$. Now, integrating W using (3.2), we get the marginal density of Z_{1}.

6. Bimatrix Beta Type 3 Distribution

The bimatrix generalization of the beta type 1 density is defined by

$$
\begin{gather*}
\frac{\operatorname{det}\left(U_{1}\right)^{\alpha_{1}-(m+1) / 2} \operatorname{det}\left(U_{2}\right)^{\alpha_{2}-(m+1) / 2} \operatorname{det}\left(I_{m}-U_{1}-U_{2}\right)^{\beta-(m+1) / 2}}{B_{m}\left(\alpha_{1}, \alpha_{2}, \beta\right)} \tag{6.1}\\
U_{1}>0, U_{2}>0, U_{1}+U_{2}<I_{m}
\end{gather*}
$$

where $\alpha_{1}>(m-1) / 2, \alpha_{2}>(m-1) / 2, \beta>(m-1) / 2$, and

$$
\begin{equation*}
B_{m}\left(\alpha_{1}, \alpha_{2}, \beta\right)=\frac{\Gamma_{m}\left(\alpha_{1}\right) \Gamma_{m}\left(\alpha_{2}\right) \Gamma_{m}(\beta)}{\Gamma_{m}\left(\alpha_{1}+\alpha_{2}+\beta\right)} \tag{6.2}
\end{equation*}
$$

This distribution, denoted by $\left(U_{1}, U_{2}\right) \sim D 1\left(m, \alpha_{1}, \alpha_{2} ; \beta\right)$, is a special case of the matrix variate Dirichlet type 1 distribution. The $m \times m$ random symmetric positive definite matrices V_{1} and V_{2} are said to have a bimatrix variate generalization of the beta type 2 distribution, denoted as $\left(V_{1}, V_{2}\right) \sim D 2\left(m, \alpha_{1}, \alpha_{2} ; \beta\right)$, if their joint p.d.f. is given by

$$
\begin{equation*}
\frac{\operatorname{det}\left(V_{1}\right)^{\alpha_{1}-(m+1) / 2} \operatorname{det}\left(V_{2}\right)^{\alpha_{2}-(m+1) / 2}}{B_{m}\left(\alpha_{1}, \alpha_{2}, \beta\right) \operatorname{det}\left(I_{m}+V_{1}+V_{2}\right)^{\alpha_{1}+\alpha_{2}+\beta}}, \quad V_{1}>0, V_{2}>0 \tag{6.3}
\end{equation*}
$$

where $\alpha_{1}>(m-1) / 2, \alpha_{2}>(m-1) / 2$, and $\beta>(m-1) / 2$.
A natural bimatrix generalization of the beta type 3 distribution can be given as follows.

Definition 6.1. The $m \times m$ symmetric positive definite random matrices W_{1} and W_{2} are said to have a bimatrix beta type 3 distribution, denoted as $\left(W_{1}, W_{2}\right) \sim D 3\left(m, \alpha_{1}, \alpha_{2} ; \beta\right)$, if their joint p.d.f. is given by

$$
\begin{gather*}
\frac{\operatorname{det}\left(W_{1}\right)^{\alpha_{1}-(m+1) / 2} \operatorname{det}\left(W_{2}\right)^{\alpha_{2}-(m+1) / 2} \operatorname{det}\left(I_{m}-W_{1}-W_{2}\right)^{\beta-(m+1) / 2}}{2^{-m\left(\alpha_{1}+\alpha_{2}\right)} B_{m}\left(\alpha_{1}, \alpha_{2}, \beta\right) \operatorname{det}\left(I_{m}+W_{1}+W_{2}\right)^{\alpha_{1}+\alpha_{2}+\beta}} \tag{6.4}\\
W_{1}>0, W_{2}>0, W_{1}+W_{2}<I_{m}
\end{gather*}
$$

where $\alpha_{1}>(m-1) / 2, \alpha_{2}>(m-1) / 2$, and $\beta>(m-1) / 2$.
The bimatrix beta type 3 distribution belongs to the Liouville family of distributions and can be obtained using independent gamma matrices as shown in the following theorem.

Theorem 6.2. Let Y_{1}, Y_{2}, and Y_{3} be independent, $Y_{i} \sim G a\left(m, \kappa_{i}, I_{m}\right), i=1,2,3$. Define $W_{i}=$ $\left(Y_{1}+\Upsilon_{2}+2 Y_{3}\right)^{-1 / 2} Y_{i}\left(Y_{1}+Y_{2}+2 \Upsilon_{3}\right)^{-1 / 2}, i=1,2$. Then, $\left(W_{1}, W_{2}\right) \sim D 3\left(m, \kappa_{1}, \kappa_{2} ; \kappa_{3}\right)$.

Proof. Similar to the proof of Theorem 4.1.
The next two theorems derive the bimatrix beta type 3 distribution from the bimatrix beta type 1 and type 2 distributions.

Theorem 6.3. Let $\left(U_{1}, U_{2}\right) \sim D 1\left(m, \alpha_{1}, \alpha_{2} ; \beta\right)$ and define

$$
\begin{equation*}
W_{i}=\left(2 I_{m}-U_{1}-U_{2}\right)^{-1 / 2} U_{i}\left(2 I_{m}-U_{1}-U_{2}\right)^{-1 / 2}, \quad i=1,2 \tag{6.5}
\end{equation*}
$$

Then, $\left(W_{1}, W_{2}\right) \sim D 3\left(m, \alpha_{1}, \alpha_{2} ; \beta\right)$.
Proof. Let $Z=2 I_{m}-U_{1}-U_{2}$ and $W_{1}=Z^{-1 / 2} U_{1} Z^{-1 / 2}$. Then, $W_{2}=2 Z^{-1}-\left(I_{m}+W_{1}\right)$. The Jacobian of the transformation (6.5) is given by

$$
\begin{align*}
J\left(U_{1}, U_{2} \longrightarrow W_{1}, W_{2}\right) & =J\left(U_{1}, U_{2} \longrightarrow W_{1}, Z\right) J\left(W_{1}, Z \longrightarrow W_{1}, W_{2}\right) \\
& =\operatorname{det}(Z)^{(m+1) / 2} 2^{-m(m+1) / 2} \operatorname{det}(Z)^{m+1} \tag{6.6}\\
& =2^{m(m+1)} \operatorname{det}\left(I_{m}+W_{1}+W_{2}\right)^{-3(m+1) / 2}
\end{align*}
$$

Now, substituting $U_{i}=2\left(I_{m}+W_{1}+W_{2}\right)^{-1 / 2} W_{i}\left(I_{m}+W_{1}+W_{2}\right)^{-1 / 2}, i=1,2$ and the Jacobian in the joint density of U_{1} and U_{2} given in (6.1), we get the desired result.

Theorem 6.4. Let $\left(V_{1}, V_{2}\right) \sim D 2\left(m, \alpha_{1}, \alpha_{2} ; \beta\right)$ and define

$$
\begin{equation*}
W_{i}=\left(2 I_{m}+V_{1}+V_{2}\right)^{-1 / 2} V_{i}\left(2 I_{m}+V_{1}+V_{2}\right)^{-1 / 2}, \quad i=1,2 . \tag{6.7}
\end{equation*}
$$

Then, $\left(W_{1}, W_{2}\right) \sim D 3\left(m, \alpha_{1}, \alpha_{2} ; \beta\right)$.
Proof. Let $Z=2 I_{m}+V_{1}+V_{2}$ and $W_{1}=Z^{-1 / 2} V_{1} Z^{-1 / 2}$. Then, $W_{2}=I_{m}-W_{1}-2 Z^{-1}$. The Jacobian of the transformation (6.7) is given by

$$
\begin{align*}
J\left(V_{1}, V_{2} \longrightarrow W_{1}, W_{2}\right) & =J\left(V_{1}, V_{2} \longrightarrow W_{1}, Z\right) J\left(W_{1}, Z \longrightarrow W_{1}, W_{2}\right) \\
& =\operatorname{det}(Z)^{(m+1) / 2} 2^{-m(m+1) / 2} \operatorname{det}(Z)^{m+1} \tag{6.8}\\
& =2^{m(m+1)} \operatorname{det}\left(I_{m}-W_{1}-W_{2}\right)^{-3(m+1) / 2}
\end{align*}
$$

Now, substitution of $V_{i}=2\left(I_{m}-W_{1}-W_{2}\right)^{-1 / 2} W_{i}\left(I_{m}-W_{1}-W_{2}\right)^{-1 / 2}, i=1,2$, along with the Jacobian in the joint density of V_{1} and V_{2} given in (6.3) yields the desired result.

The marginal distribution of W_{1}, when the random matrices W_{1} and W_{2} follow a bimatrix beta type 3 distribution, is given next.

Theorem 6.5. Let $\left(W_{1}, W_{2}\right) \sim D 3\left(m, \alpha_{1}, \alpha_{2} ; \beta\right)$. Then, the marginal p.d.f. of W_{1} is given by

$$
\begin{align*}
& \frac{\operatorname{det}\left(W_{1}\right)^{\alpha_{1}-(m+1) / 2} \operatorname{det}\left(I_{m}-W_{1}\right)^{\alpha_{2}+\beta-(m+1) / 2}}{2^{-m\left(\alpha_{1}+\alpha_{2}\right)} B_{m}\left(\alpha_{1}, \alpha_{2}+\beta\right) \operatorname{det}\left(I_{m}+W_{1}\right)^{\alpha_{1}+\alpha_{2}+\beta}} \tag{6.9}\\
& \quad \times{ }_{2} F_{1}\left(\alpha_{2}, \alpha_{1}+\alpha_{2}+\beta ; \alpha_{2}+\beta ;-\left(I_{m}+W_{1}\right)^{-1}\left(I_{m}-W_{1}\right)\right)
\end{align*}
$$

where $0<W_{1}<I_{m}$. Further, $\left(I_{m}-W_{1}\right)^{-1 / 2} W_{2}\left(I_{m}-W_{1}\right)^{-1 / 2} \sim B 3\left(m, \alpha_{2}, \beta\right)$.

Proof. Substituting $X_{2}=\left(I_{m}-W_{1}\right)^{-1 / 2} W_{2}\left(I_{m}-W_{1}\right)^{-1 / 2}$ with the Jacobian $J\left(W_{2} \rightarrow X_{2}\right)=$ $\operatorname{det}\left(I_{m}-W_{1}\right)^{(m+1) / 2}$ in (6.4), the joint density of W_{1} and X_{2} is derived as

$$
\begin{align*}
& \frac{2^{m\left(\alpha_{1}+\alpha_{2}\right)} \operatorname{det}\left(W_{1}\right)^{\alpha_{1}-(m+1) / 2} \operatorname{det}\left(I_{m}-W_{1}\right)^{\alpha_{2}+\beta-(m+1) / 2}}{B_{m}\left(\alpha_{1}, \alpha_{2}, \beta\right) \operatorname{det}\left(I_{m}+W_{1}\right)^{\alpha_{1}+\alpha_{2}+\beta}} \tag{6.10}\\
& \quad \times \frac{\operatorname{det}\left(X_{2}\right)^{\alpha_{2}-(m+1) / 2} \operatorname{det}\left(I_{m}-X_{2}\right)^{\beta-(m+1) / 2}}{\operatorname{det}\left(I_{m}+\left(I_{m}+W_{1}\right)^{-1}\left(I_{m}-W_{1}\right) X_{2}\right)^{\alpha_{1}+\alpha_{2}+\beta}}, \quad 0<W_{1}<I_{m}, 0<X_{2}<I_{m}
\end{align*}
$$

Now, integration of the above expression with respect to X_{2} yields the marginal density of W_{1}. Further, by integrating (6.10) with respect to W_{1} we find the marginal density of X_{2} as

$$
\begin{align*}
& \frac{2^{m\left(\alpha_{1}+\alpha_{2}\right)} \operatorname{det}\left(X_{2}\right)^{\alpha_{2}-(m+1) / 2} \operatorname{det}\left(I_{m}-X_{2}\right)^{\beta-(m+1) / 2}}{B_{m}\left(\alpha_{1}, \alpha_{2}, \beta\right) \operatorname{det}\left(I_{m}+X_{2}\right)^{\alpha_{1}+\alpha_{2}+\beta}} \\
& \quad \times \int_{0}^{I_{m}} \frac{\operatorname{det}\left(W_{1}\right)^{\alpha_{1}-(m+1) / 2} \operatorname{det}\left(I_{m}-W_{1}\right)^{\alpha_{2}+\beta-(m+1) / 2} \mathrm{~d} W_{1}}{\operatorname{det}\left(I_{m}+\left(I_{m}+X_{2}\right)^{-1}\left(I_{m}-X_{2}\right) W_{1}\right)^{\alpha_{1}+\alpha_{2}+\beta}}, \quad 0<X_{2}<I_{m} . \tag{6.11}
\end{align*}
$$

Now, by evaluating the above integral using results on Gauss hypergeometric function, we obtain

$$
\begin{align*}
& \int_{0}^{I_{m}} \frac{\operatorname{det}\left(W_{1}\right)^{\alpha_{1}-(m+1) / 2} \operatorname{det}\left(I_{m}-W_{1}\right)^{\alpha_{2}+\beta-(m+1) / 2} d W_{1}}{\operatorname{det}\left(I_{m}+\left(I_{m}+X_{2}\right)^{-1}\left(I_{m}-X_{2}\right) W_{1}\right)^{\alpha_{1}+\alpha_{2}+\beta}} \\
& \quad=\frac{\Gamma_{m}\left(\alpha_{1}\right) \Gamma_{m}\left(\alpha_{2}+\beta\right)}{\Gamma_{m}\left(\alpha_{1}+\alpha_{2}+\beta\right)}{ }_{2} F_{1}\left(\alpha_{1}, \alpha_{1}+\alpha_{2}+\beta ; \alpha_{1}+\alpha_{2}+\beta ;-\left(I_{m}+X_{2}\right)^{-1}\left(I_{m}-X_{1}\right)\right) \tag{6.12}\\
& \quad=\frac{\Gamma_{m}\left(\alpha_{1}\right) \Gamma_{m}\left(\alpha_{2}+\beta\right)}{\Gamma_{m}\left(\alpha_{1}+\alpha_{2}+\beta\right)}{ }_{1} F_{0}\left(\alpha_{1} ;-\left(I_{m}+X_{2}\right)^{-1}\left(I_{m}-X_{1}\right)\right) \\
& \quad=\frac{\Gamma_{m}\left(\alpha_{1}\right) \Gamma_{m}\left(\alpha_{2}+\beta\right)}{\Gamma_{m}\left(\alpha_{1}+\alpha_{2}+\beta\right)} 2^{-m \alpha_{1}} \operatorname{det}\left(I_{m}+X_{2}\right)^{\alpha_{1}}
\end{align*}
$$

Finally, substituting (6.12) in (6.11) and simplifying the resulting expression we obtain the desired result.

Using the result

$$
\begin{equation*}
{ }_{2} F_{1}(a, b ; c ; X)=\operatorname{det}\left(I_{m}-X\right)^{-b}{ }_{2} F_{1}\left(c-a, b ; c ;-X\left(I_{m}-X\right)^{-1}\right) \tag{6.13}
\end{equation*}
$$

the Gauss hypergeometric function given in (6.9) can be rewritten as

$$
\begin{align*}
& { }_{2} F_{1}\left(\alpha_{2}, \alpha_{1}+\alpha_{2}+\beta ; \alpha_{2}+\beta ;-\left(I_{m}+W_{1}\right)^{-1}\left(I_{m}-W_{1}\right)\right) \\
& \quad=\frac{\operatorname{det}\left(I_{m}+W_{1}\right)^{\alpha_{1}+\alpha_{2}+\beta}}{2^{m\left(\alpha_{1}+\alpha_{2}+\beta\right)}}{ }_{2} F_{1}\left(\beta, \alpha_{1}+\alpha_{2}+\beta ; \alpha_{2}+\beta ; \frac{I_{m}-W_{1}}{2}\right) \tag{6.14}
\end{align*}
$$

Hence, the density of W_{1} can also be written as

$$
\begin{align*}
& \frac{\operatorname{det}\left(W_{1}\right)^{\alpha_{1}-(m+1) / 2} \operatorname{det}\left(I_{m}-W_{1}\right)^{\alpha_{2}+\beta-(m+1) / 2}}{2^{m \beta} B_{m}\left(\alpha_{1}, \alpha_{2}+\beta\right)} \tag{6.15}\\
& \quad \times{ }_{2} F_{1}\left(\beta, \alpha_{1}+\alpha_{2}+\beta ; \alpha_{2}+\beta ; \frac{I_{m}-W_{1}}{2}\right), \quad 0<W_{1}<I_{m}
\end{align*}
$$

It can clearly be observed that the p.d.f. in (6.9) is not a beta type 3 density and differs by a factor involving ${ }_{2} F_{1}$. In the next theorem we give distribution of sum of random matrices distributed jointly as bimatrix beta type 3 .

Theorem 6.6. Let $\left(W_{1}, W_{2}\right) \sim D 3\left(m, \alpha_{1}, \alpha_{2} ; \beta\right)$. Define $U=W^{-1 / 2} W_{1} W^{-1 / 2}$ and $W=W_{1}+W_{2}$. Then, (i) U and W are independently distributed, (ii) $U \sim B 1\left(m, \alpha_{1}, \alpha_{2}\right)$, and (iii) $W \sim B 3\left(m, \alpha_{1}+\right.$ α_{2}, β.

Proof. Making the transformation $U=W^{-1 / 2} W_{1} W^{-1 / 2}$ and $W=W_{1}+W_{2}$ with the Jacobian $J\left(W_{1}, W_{2} \rightarrow U, W\right)=\operatorname{det}(W)^{(m+1) / 2}$ in the joint density of $\left(W_{1}, W_{2}\right)$ given by (6.4), we get the joint density of U and W as

$$
\begin{align*}
& \frac{\operatorname{det}(U)^{\alpha_{1}-(m+1) / 2} \operatorname{det}\left(I_{m}-U\right)^{\alpha_{2}-(m+1) / 2}}{B_{m}\left(\alpha_{1}, \alpha_{2}\right)} \\
& \quad \times \frac{\operatorname{det}(W)^{\alpha_{1}+\alpha_{2}-(m+1) / 2} \operatorname{det}\left(I_{m}-W\right)^{\beta-(m+1) / 2}}{2^{-m\left(\alpha_{1}+\alpha_{2}\right)} B_{m}\left(\alpha_{1}+\alpha_{2}, \beta\right) \operatorname{det}\left(I_{m}+W\right)^{\alpha_{1}+\alpha_{2}+\beta}}, \tag{6.16}
\end{align*}
$$

where $0<U<I_{m}$ and $0<W<I_{m}$. From the above factorization, it is easy to see that U and W are independently distributed. Further, $U \sim B 1\left(m, \alpha_{1}, \alpha_{2}\right)$ and $W \sim B 3\left(m, \alpha_{1}+\alpha_{2}, \beta\right)$.

Using Theorem 6.6, the joint moments of $\operatorname{det}\left(W_{1}\right)$ and $\operatorname{det}\left(W_{2}\right)$ are given by

$$
\begin{equation*}
E\left[\operatorname{det}\left(W_{1}\right)^{r_{1}} \operatorname{det}\left(W_{2}\right)^{r_{2}}\right]=E\left[\operatorname{det}(U)^{r_{1}} \operatorname{det}\left(I_{m}-U\right)^{r_{2}}\right] E\left[\operatorname{det}(W)^{r_{1}+r_{2}}\right] \tag{6.17}
\end{equation*}
$$

where $U \sim B 1\left(m, \alpha_{1}, \alpha_{2}\right)$ and $W \sim B 3\left(m, \alpha_{1}+\alpha_{2}, \beta\right)$. Now, computing $E\left[\operatorname{det}(W)^{r_{1}+r_{2}}\right]$ and $E\left[\operatorname{det}(U)^{r_{1}} \operatorname{det}\left(I_{m}-U\right)^{r_{2}}\right]$ using Corollary 4.3 and (2.20) and simplifying the resulting
expression, we obtain

$$
\begin{align*}
E\left[\operatorname{det}\left(W_{1}\right)^{r_{1}} \operatorname{det}\left(W_{2}\right)^{r_{2}}\right]= & \frac{\Gamma_{m}\left(\alpha_{1}+r_{1}\right) \Gamma_{m}\left(\alpha_{2}+r_{2}\right) \Gamma_{m}\left(\alpha_{1}+\alpha_{2}+\beta\right)}{2^{m \beta} \Gamma_{m}\left(\alpha_{1}\right) \Gamma_{m}\left(\alpha_{2}\right) \Gamma_{m}\left(\alpha_{1}+\alpha_{2}+\beta+r_{1}+r_{2}\right)} \tag{6.18}\\
& \times{ }_{2} F_{1}\left(\beta, \alpha_{1}+\alpha_{2}+\beta ; \alpha_{1}+\alpha_{2}+\beta+r_{1}+r_{2} ; \frac{I_{m}}{2}\right)
\end{align*}
$$

Acknowledgment

The research work of D. K. Nagar was supported by the Comité para el Desarrollo de la Investigacion, Universidad de Antioquia research Grant no. IN550CE.

References

[1] N. L. Johnson, S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions. Vol. 2, Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics, John Wiley \& Sons, New York, NY, USA, 2nd edition, 1995.
[2] L. Cardeño, D. K. Nagar, and L. E. Sánchez, "Beta type 3 distribution and its multivariate generalization," Tamsui Oxford Journal of Mathematical Sciences, vol. 21, no. 2, pp. 225-241, 2005.
[3] A. K. Gupta and D. K. Nagar, Matrix Variate Distributions, vol. 104 of Chapman \& Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, Chapman \& Hall/CRC, Boca Raton, Fla, USA, 2000.
[4] A. K. Gupta and D. K. Nagar, "Matrix-variate beta distribution," International Journal of Mathematics and Mathematical Sciences, vol. 24, no. 7, pp. 449-459, 2000.
[5] A. G. Constantine, "Some non-central distribution problems in multivariate analysis," Annals of Mathematical Statistics, vol. 34, pp. 1270-1285, 1963.
[6] A. W. Davis, "Invariant polynomials with two matrix arguments extending the zonal polynomials: applications to multivariate distribution theory," Annals of the Institute of Statistical Mathematics, vol. 31, no. 3, pp. 465-485, 1979.
[7] A. W. Davis, "Invariant polynomials with two matrix arguments, extending the zonal polynomials," in Multivariate Analysis, V (Proc. Fifth Internat. Sympos., Univ. Pittsburgh, Pittsburgh, Pa., 1978), P. R. Krishnaiah, Ed., pp. 287-299, North-Holland, Amsterdam, The Netherlands, 1980.
[8] Y. Chikuse, "Distributions of some matrix variates and latent roots in multivariate Behrens-Fisher discriminant analysis," The Annals of Statistics, vol. 9, no. 2, pp. 401-407, 1981.
[9] D. K. Nagar and A. K. Gupta, "Matrix-variate Kummer-beta distribution," Journal of the Australian Mathematical Society, vol. 73, no. 1, pp. 11-25, 2002.
[10] A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series. Vol. 3. More Special Functions, Gordon and Breach Science, New York, NY, USA, 1990, translated from the Russian by G. G. Gould.

