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1. Introduction

The concepts of preideals and generalized ideals were introduced by Ramadan et al. [1],
as a consistent approach to the ideas of fuzzy mathematics. The authors investigated the
interrelations between these two concepts. This paper is devoted to finding fuzzifying
topologies derived from preideals, and vise versa, by means of fuzzy preorders and residual
implications. The contents of this paper are arranged as follows. In Section 2, we recall some
basic notions of ideals, preideals, and generalized ideals. The notion of saturation of preideals
is introduced, hence, a one-to-one correspondence between the set of saturated preideals and
the set of generalized ideals on the same set is obtained. In fact, some studies were done on
the correspondence of such two sets, see [2, 3], for example, based on the duality between
fuzzy filters and fuzzy ideals. In our paper, we prove such correspondence independent of
the duality principle. Also, given X a Boolean lattice, we construct a generalized ideal, in
terms of fuzzy preorders. Section 3 is concerned with the relationship between the fuzzy
preorders and each of I-topologies [4], fuzzifying topologies [5], and I-fuzzy topologies
[6], respectively. Thus, an interesting relation between a special type of I-topological spaces,
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called fuzzy neighborhood spaces, introduced by Lowen [7], and fuzzifying topological
spaces is established. In Section 4, we introduce the notion of o-generalized ideal, therefore,
a characterization of this special kind of ideals is shown to be a fuzzifying topology
generated by some fuzzy preorder. Also, we study the relations between preideals and
generalized topological structures, for example, I-topologies, fuzzifying topologies, and I-
fuzzy topologies. Also, I-topologies are constructed from preideals via given I-topologies.

2. Generalized Ideal Structures

We recall some basic definitions. We should let X, I denote a nonempty set and the closed
unit interval [0, 1], respectively, and we let Iy = (0,1], I; = [0, 1).

We denote the characteristic function of a subset A C X also by A. If u € 1%, we define
u* = {x € X : p(x) > a}. Let 2X be the collection of all subsets of X. The fuzzy set which
assigns to each element in X the value a, 0 < a < 1, is also denoted by a. In this paper, the
concepts of triangular norm and residual implication are applied.

A triangular norm, a t-norm in short, on the unit interval I is a binary operator * :
I xI — I which is symmetric, associative, order-preserving on each place and has 1 as the
unit element.

A fuzzy relation on a nonempty setisamap R : X xX — I. A fuzzy relation Ris called

(1) reflexive if R(x,x) =1 for each x € X;

(2) *-transitive if R(x, y) * R(y,z) < R(x,z) forall x,y,z € X.
A reflexive and *-transitive fuzzy relation is called *-fuzzy preorder. If * is assumed to be the
t-norm min = A, we will drop the *-.

This section presents a review of some fundamental notions of ideals, preideals, and
generalized ideals. We refer to Ramadan et al. [1] for details.

Definition 2.1. A nonempty subset D of 2X is an ideal of subsets of X, simply, an ideal on X, if
it satisfies the following conditions:

(D1) X ¢D;
(D2) A, BED = AUBE€D;
(D3) Ae D,BC A= BeD.

Definition 2.2. A nonempty subset D of IX is a preideal of subsets of X, simply, a preideal on
X, if it satisfies the following conditions:

(P1)1¢9;
P2 pyveD=puvrved;
P veD, usv=pue.

A preidael @ is called prime if it satisfies the condition;

Yy, A € I* such that uyAv €D, then pe D or v € D. (2.1)

A preideal 9 is called a o-preideal if the following hold.
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If {u, :n=1,2,3,...} is a countable subcollection of D, then sup, u, € .
If @ is a preideal on X, we define the characteristic, denoted by c¢(9), of D by

c(D) = sup inf p(x). (2.2)
HED xeX

If D is a preideal and ¢(®) < 1, we say that D is saturated if for every (u.) € DN,
infeer, (e + €) €D, equivalently, D is saturated if it satisfies

Ve<l, pel*:p-e€cD=puec. (2.3)

We provide a useful characterization of a saturated preideal ® in the following lemma.

Lemma 2.3. Let D be a saturated preideal on X, p € IX. Then

UED = U"ANYeD, Ve<y<ainl. (2.4)

Proof. Let p € . Since p* ANy < pforall y < a € I, then, by (P3), u* Ay e Dforally <a € I;.

Conversely, let u € IX such that p* Ay € D forall c < y < ain I;. For every a € (0,1/2)
and 0 < n (integer) < 1/a, we consider the fuzzy subsets y», = sup, (u"* A (na — a)). Since n
is finite, then, by (P2), pox € D. Also, it is easy to see that, forall x € X, 0 < p(x) — proa(x) < 20,
hence p +2a > po +2a > p. Consequently, py = Noca<i /2 (f2a + 2a) € D, since D is saturated, so
we are done. O

It should be noticed that the required condition of Lemma 2.3 holds, trivially, for all
u €D and y < ¢, therefore, we provide y > ¢, so that the above condition is significant.

Also, the characteristic of a preideal ®, on a subset A of X may be defined and denoted
by cA(®) = sup,q infrea A(x). The following result is useful for our study.

Lemma 2.4. Let D on X. Then, for every A € 2%,

cA(D) =supftel: ANt e D}, (2.5)

hence, ¢ = cx (D) =supf{t €I : t € D}.

Proof. The statement holds when A = ¢. Suppose A#¢, and denote ¢ = cA(®) and b =
sup{tel: ANt €D} Lett € Isatisfy ANt € D. Then ¢ > infrea(A At)(x) =t, thatis, c > b.
Conversely, given A € D, let y = infye4 A(x), hence AAy < A. This implies, by (P3), AAy € 9D,
so b > y. Thus, by definition of ¢, we get b > ¢, this shows that the equality holds. O
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Definition 2.5. A nonzero function d : 2X — I is called a generalized ideal of fuzzy subsets of
X, simply, a generalized ideal on X, if it satisfies the following conditions:

(G1) d(X) =0;

(G2) d(A) Ad(B) < d(AU B), for each A, B € 2%;

(G3) if A C B, then d(A) > d(B), for each A, B € 2%;

The conditions (G2) and (G3) are equivalent to:

(G*) d(A) Ad(B) = d(AUB), for each A, B € 2X. Moreover, Since d a nonzero function,
then by (G3), d(¢) > 0.

A generalized ideal d, is called o-generalized ideal if

d( U Ai> > Ad(A;), for each (A;);; CT%, (2.6)
ic] ie]
and d is called prime if

d(AnB) <d(A)Vvd(B), foreach A,Be2*. (2.7)

A generalized ideal on a set X can be derived by fuzzy relations in different ways, as
we see in the following.

Proposition 2.6. Let R be a reflexive fuzzy relation on a Boolean lattice X with 0. Define di,d, :
IX — I, forall A C X as follows:

di(A) = xy/\eA(l -R(x,1-y)); where1—y is the complement y, (2.8)

d(4) = A (1-R(,0). 9)

Then dy, dy are generalized ideal on X.
Proof. Straightforward. O
Now, we will construct different types of preideals derived from a generalized ideals.

Proposition 2.7. Let d be a generalized ideal on X. Define 91,9, C I* by

D, = {‘uEIX:VAEZX, d(A) Sl—sup‘u(x)}; (2.10)
xX¢EA
@, = {per®:Vael, du) 2 al. (2.11)

Then both D1, D, are saturated preideals on X.
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Proof. First, we show that ®; a preideal on X:

(P1) 1¢ 9y, otherwise for all A € 2%, d(A) < 1 -sup,, ,1(x) = 0, that is, d(A) = 0,
which is a contradiction, since d is a nonzero function;

(P2) let u, L € D;. Then for all A € 2%:

1-sup(pVvi)(x)= <1 - sup y(x)> A <1 - sup A(x)> >d(A) Ad(A) =d(A), (2.12)

xEA xX¢gA xX¢A

hence y v A € 9.
(P3) Let p, A € IX such that y € ®; and A < p. Then for all A € 2%,

1-supA(x) >1—-suppu(x)>d(A), hence A €D;. (2.13)
x¢ A x¢ A

Let (#6)ge;, be a family of fuzzy sets in ;. Then for all A € 2%,

1—-sup(inf(pe +6))(x) =1 - sup(énlf (o (x) + 9))
x¢A xg A \UEL

o
>1 5glgigg(ue(x)+6)

= sup <1 - s;lg(‘ue (x) + 6)>

o<l

(2.14)
=sup| 1-( suppe(x)+0
eel xgA
= sup < <1 - sup,ug(x)> - 9)
961() X ¢ A
> sup(d(A) - 0) = d(A),
o<l
therefore, infgey, (Ho + 0) € D1, hence D is saturated.
Second, we prove that 9, is saturated preideal on X:
(P1) 1¢9D,, otherwise d(1%) = d(X) = 02a, forall a € Iy;
(P2), (P3) direct.
Let (po) gy, be a family of fuzzy sets in @,. Then
d((einlf(yg + 9)> > > d< () (uo + 9)a>
S
' b€l (2.15)

> supd(yga‘()), (by (G3)) > sup (¢ —0) = a.
O€l,

o€l

Hence 9; is saturated preideal. O
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Proposition 2.8. Let d be a prime generalized ideal on X. Define D3, 4 C IX by

@ = {per:Vach, d(1-p)") <al;

(2.16)
D, = {# eI*:VA€2X, d(A) <sup(l —‘u)(x)}.
x¢ A

Then D3, D, are prime saturated preideals on X. Moreover D3 = Dy.

Proof. First, we show that ©3 = 94. Let € IX such that d((1 - W) < a foralla € L. If
A € 2%, we assume that sup, ¢ o(1 - p)(x) =y € I, hence (1 - w' C A

Then, by (G3), d(A) <d((1-p)¥) <y= sup, ¢ 4 (1 — p)(x), that implies @3 C D4.

Conversely, let p € IX such that d(A) < sup,g (1 — p)(x), for all A € 2X. Then
d(1-mw") < supxg(lfﬂ)a(l —u)(x) < a, forall a € I this implies D, C B3, thus D3 = Ds.

Second, we show that 93 is a saturated prime preideal.

(P1) Suppose that 1 € 9. Let d(¢) = y > 0. Then, for all « < y, d(0*) = d(¢) =y > a,
which is a contradiction, so 1 ¢ 9s.

(P2) Let A € D5. Then forall a € I, d(1 - (uv 1)) = d(1-pw)* N (1-1)7) <
d((1-pu)*) vd((1-1)%) < a, since d is prime. This implies p V A € Ds.

(P3) Let p, A € IX such that y € 93 and A < p. Then d((1 - 1)%) < d((1 - p)%) < a, by
(G3), hence A € Ds.

Now, we will show that 9, is saturated. Suppose for all € > 0, y — € € D3. Then for all
Ae€2X,d(A) < sup, 4 4(1=(u—€))(x) =sup,, ,(1-p)(x)+e hence d(A) < sup, ., ,(1-p)(x),
that is, 94 is saturated.

Finally, we show that ®; is prime. Let y,A € IX such that y A A € ®;. Then for all
ael,dl-p)yAd1-1")<d(1-p)U (A -1%))=d(1 - (u* ALY))=d(1-(uAL)") <a,
hence, d(1 - u*) < aor d(1 - A%) < a, that implies y € D3 or A € Ds. O

Proposition 2.9. Let D be a preideal on X. Define d : 2X — 1 by

YA€2X, d(A)=sup{tel:t>c, ANtED). (2.17)

Then d is a generalized ideal on X.

Proof. (G1) d(X) =0, since t € ® implies t < c.

(G2) Let A,Be2Xand a,fel,a>c, f>csuchthat ANa€eD, BAPED.

Then, by (P2), (AAa)V (BAP) € D. Let y = min(a, §). Then, by (P3), we get (AUB) Ay =
(AANy)V(BAYy)eD,andy =a AP >c. Thussup{t:t>c, (AUB)AtED} >y =aAp,
hencesup{t:t>c, (AUB)Ate D} >supft:t>c, ANtED}Asup{t:t>c, BAteE D}, s0
d(AUB) > d(A) Ad(B).

Now we come to the main result of this section. O

Theorem 2.10. There is a one-to-one correspondence between the set saturated preideals on a
nonempty set X and the set of generalized ideals on X.
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Proof. Let d be a generalized ideal on X. Denote the preideal ®, generated by d, defined
as in Proposition 2.7, by 9,4, and denote the generalized ideal, generated by 9, as in
Proposition 2.9, by dg,, hence for all A € 2%
de,(A) =supf{tel :t>c, ANteE Dy}, Proposition 2.9
=sup{tel:t>c, d(AAH)") >a, YVael,}, (2.11) in Proposition 2.7
=supftel:t>c, d(A) >a, Ya<t}, sinced(d)>d(A), VACX (2.18)
=sup{tel:t>c, d(A) >t}
=d(A).
Conversely, let D be a saturated preideal on X. Denote the generalized ideal generated by

D, as in Proposition 2.9, by dg, and denote the preideal generated by dg, as in (2.11) in
Proposition 2.7 by 9,4, . Then,

QdQ:{AGIX:dg()L“)Za, \meh}
:{AEIX:sup{tell, t>c, M*AteD} >a, Vae]l}

={)LEIX:)La/\tE%,VC<t<a} (2.19)

{)L el*:1e %}, by Lemma 2.3

D.

This completes the proof. O

Definition 2.11. A nonzero function d : I*X — [ is called a fuzzy I-ideal on X if it satisfies the
following conditions:

(d1)o(1) = 0;

(d2) (A Vv p) > o(X) Ad(p), for A, pu € I%;

(d3) if A > p, then o(p) > 0(A).

Clearly, a generalized ideal d on a set X can be regarded as a fuzzy I-ideal whose
domain is 2%. Precisely, d(A) = d(A) for each A C X; otherwise d(A) = 0.

Remark 2.12 (Fang and Chen [8]). Defined a generalized fuzzy preorder Ry, corresponding
toamap ¢ : IX — I as follows:

Vi) €XxX, Ry(xy) = ABG0 — (ux) = k(v)), (220)

hence, for a fuzzy I-ideal ? on X, there corresponds a fuzzy preorder R, defined by

V(oY) EXx X, Ro(xy)= A2 — (kx) = p(y))- (221)
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Especially, for a generalized ideal d on X, the corresponding fuzzy preorder of d is given by
the following: For every (x,y) € X x X,

Ri(x,y) = A (d(A) — 0). (2.22)
(x,y)éA’xA

3. Connecting Fuzzy Preorders and [-fuzzy Topologies

In this section, we recall some basic results about the connection between fuzzy preorders
and each of I-topologies, fuzzifying topologies, and I-fuzzy topologies. Also, the relations
among these different types of topologies are investigated.

An I-topology on a set X is a crisp subset T of IX which is closed with respect to finite
meets and arbitrary joins and which contains all the constant functions from X to I. If the
constants are 0, 1 only, we will call it a Chang I-topology.

Another more consistent approach to the fuzziness has been developed. According to
Shostak [6], an I-fuzzy topology on a set X is a map J : IX — I, satisfying the following
conditions:

(1) 3(a) =1 for all constant functions a : X — I;

(2) I(uAX) >T(u) ATV, forall y, A € I%;

(3) I(Vjespi) = NiejI(pj), j € ], pj € IX.

By the conditions (1) and (2), we get for u € IX and a € Iy, I(u Aa) > I(pu). An I-fuzzy
topology on a set X is called trivial, if J(A) = 1, for all A € I%, and is called homogeneous if the
following condition holds: for p € I and a € I, J(u A &) = T(u).

Ifamap 7 : 2X — [ satisfies the similar conditions of I-fuzzy topology on a set X, then
7 is called a fuzzifying topology Ying [9]. Furthermore, if a fuzzifying topology 7 satisfies the
following condition:

(4) for all {Af}je] C 2%, T(Njej Aj) > Ajej T(A;), then T is called a saturated fuzzifying
topology.

For a given left-continuous t-norm * : I x I — I, the corresponding residual
implication —: I xI — lisgivenbyx — y=sup{zel:x*z<y}.

Many properties of residual implications are found in litrature, but we will recall some
of them, which will be used in this paper:

(I1) x - y=1ifand only if x — y;
I12)1 - x=x
@) (x = y)*x(y = 2)<x - z
(I4) x — Njejyj = Njej(x — yj), hence,x - y<x — zify <z
(I5) (Vieryj) = ¥ =Nej(y; = y), hencex — z2y — zifx <y;
(16) x * Viey yj = Vjes (x * yj);
7x = (y—2)=y = (x = z2);
(I8) (x » y)*(u - v)<x*xu — Y*v;
M) x<(x =y -y
I10) x = y =Mer((X = x) = (A = v));
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M) x = y=Me(ly = 1) = (x = 1)),

112) (xANy) = (zAw) 2 (x = 2) A (y — w).

Clearly, by (I1) and (I3), the residual implication — with respect to a t-norm * is a
fuzzy preorder on I and called the canonical fuzzy preorder on I.

The relationships between fuzzy preorders and I-topologies, fuzzifying topologies,
and I-fuzzy topologies, respectively, have been investigated by many authors. For example,
we recall the main results of Lai and Zhang [10], Fang and Chen [8], and Fang [11].

Theorem 3.1 (Lai and Zhang [10]). For a fuzzy preorder R on a set X, the family Tr = {p €
Ix:. R(x,y) * p(x) < u(y), for all x,y € X}, is an I-Alexandrov topology induced by R, that is, Cg
satisfies the folowing properties: for all F C Tg, p € Tr,and a € 1,

(a) every constant fuzzy set X — I belongs to Tg;

(b) VF € Tr;

(c) NF € Cg;

(d)a*peTg

(e)a —» peTpr.

Moreover, R satisfies the equality

R y) = A px) — (). (3.1)

Conversely, for a given I-Alexandrov topology T a set X, there is a unique *-fuzzy preorder Re, given
by Re(x,y) = Auec p(x) — pu(y), such that T = Tg,.

Thus, there is a one-to-one correspondence between the set of I-Alexandrov topologies on a set
X and x-fuzzy preorders.

Theorem 3.2 (Fang and Chen [8]). Every fuzzy preorder R on a set X corresponds a saturated
fuzzifying topology Tr on X, given by forall A C X,

w(A)= A (1-R(xy)), (32)
(x,y)eAxA’

conversely, every fuzzifying topology T on a set X corresponds a fuzzy preorder R,, given by: for all
x,y€X,

R:(x,y) = o y)/e\AxA’(l -7(A)). (3.3)

Thus, there is a one-to-one correspondence between the set of saturated fuzzifying topologies on a set
X and the set of fuzzy preorders on X.
By the above two theorems, one can dedeuce, at once, the following corollary.

Corollary 3.3. The set of saturated fuzzifying toplogies on a set X and the set of I-Alexandrov
topologies on X are in one-to-one correspondence.
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A special type of I-topological spaces, called fuzzy neighborhood spaces, was introduced
by Lowen [7]. The interrelations between these spaces and the fuzzifying toplogical spaces
are interesting to study. Although a study of fuzzifying topological spaces and their relation
with fuzzy neighborhood spaces has been investigated, sestematically, see, for example, [12],
we give, in this section, alternative methods. We recall the folowing definition.

Definition 3.4 (Wuyts et al. [13]). An I-topological space (X, T) is called a fuzzy neighborhood
space if whenever y € C, forany a € I; alsoa A u* € T.
Equivalently, if whenever y € T, forany a,t € I}, t <a also y* At € T.

Proposition 3.5. Let T be a fuzzifying topology on a set X. Then T corresponds an I-topology T, on
X, defined by T, = {p € IX : T(u*) > a, for all a € I}, and (X, T;) is a fuzzy neighborhood space.

Conwversely, let T be an I-topology on X. Then T corresponds a fuzzifying topology Tc, on X,
defined by: for all A C X, tc(A) =sup{a € I : AN a € T}. Moreover,

1) 7, =7,

(2) Tre < Tand if (X, T) is a fuzzy neighborhood space, then T, = T.

Proof. That is, T; and 7¢ are I-topology and fuzzifying topology on X, respectively, and are
easy to be verified. To prove that (X, C;) is a fuzzy neighborhood space, we suppose a,t € I
and p € C;, then

(¢p) =1, ifa>t,

(W at)") = { (3.4)

T(u') >t ift>a.

Therefore, 7((p' A H)") > a, for all a € I, that is, U At € T, for all t € I, so we are done.
To prove (1), let 7 be a fuzzifying topology on X then for all A C X,

T, (A) =sup{a€l: ANa e T}

:sup{aelz‘r((A/\a)t) >t, Vte]l}

(3.5)
=supfael:T(A) >t Vt<a}, since7(p)=1
=T(A).
To prove (2), suppose that (X, C) is a fuzzy neighborhood space. Then
Tro=tpel® mc(u*) >a, Yac 11}
= ‘uEIX:sup{tEI://L“/\tEZ} >a, ‘v’aeIl}
(3.6)

{
{

:{ﬂelx;/ﬂ/\tet, Vt < a, aell}st,
{

=pel*:pe C} =T, if Tis a fuzzy neighborhood structure.
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Therefore, as a direct result of Proposition 3.5, we have the following.

Theorem 3.6. There is a one-to-one correspondence between the set of fuzzifying topologies and the
set of fuzzy neighborhood structures on the same set.

Definition 3.7. Given (X, 7J), an I-fuzzy topological space, and a € I, then J, := {u € X .
J(u) > a} is an I-topology on X, called the a-level I-topology of J.

Consequently, Ty := J; = {u € IX : J(u) = 1}, by which we will give an interrelation
between I-topologies and I-fuzzy topologies.

~

Proposition 3.8. Let T be an I-topology on X. Then for all p € IX, Iz (p) == sup{a € I; : pAa € T}
is a homogeneous I-fuzzy topology on X.

Proof. That is, J¢ an I-fuzzy topology is easy to be verified. Now, let pu € IX, a € I, then we
get

Jc(una):=sup{teh:pyhanteT}

<sup{tel:t<a, phaAteT}

(3.7)
=sup{tel :unteT}
= Jc(p)-
Since Jc¢ is an I-fuzzy topology, then Jc(u A a) > J(u), so the equality holds. O

Theorem 3.9. There is a one-to-one correspondence between the set of I-topologies on a set X and the
set of homogeneous I-fuzzy topologies on X.

Proof. Let T be an I-topology on X, then J¢ is a homogeneous I-fuzzy topology on X, by
Proposition 3.8, and

Toc(w) = {e ¥ : 3. () =1}

{
{

{‘I/LEIXZ‘I/[/\tEC, t<1}

pel*:supftel: ,u/\tet}—l}
(3.8)

<.

Conversely, if J is a homogeneous I-fuzzy topologies on X, then Tj is an I-topology
and

Jz,(u) =sup{te : pnte Ty}
=sup{tel; : I(uAnt) =1} (3.9)
=1, since J(p) =T(uAt).

So, we are done. O
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4. Connecting [-fuzzy Topologies and Preideals

In this section, we associate for each a fuzzifying topology, a generalized ideal. Also, we
construct a preideal corresponding to an I-topology, by means of the residuated implication.
Conversely, an I-topology, a fuzzifying topology, and I-fuzzy topology are derived by old
ones via preideals. We made use of the results of Section 2, beside the useful following lemma.

Lemma 4.1. Let Q C I*. Define R, R, : X x X — I by forall (x,y) € X x X,

Ro(x,y) =inf{p(x) = p(y) :pel®, peal,

(4.1)
R, (x,y) = inf{‘u(y) — pu(x):pel*, 1-pe Q}
Then Rq, R, are fuzzy preorders on X, especially, if ¥ = min = A, then for all (x,y) € X x X,
Ra(x,y) =inf{u(y) : p € Q, p(x) > p(y)}, w2)

Ro(x,y) =inf{u(x) : 1-p e Q, p(x) <p(y)}.

Proposition 4.2. Let T be an I-topology on a set X, and D be a preideal on X. Define T*(®) C I%,
by y € T(D) ifand only if y < sup{A € T: LA (1 —p) € D). Then T(D) is Chang I-topology
on X.

Proof. Direct. O
However T*(®) will be called the I-fuzzy preideal topology. As a special case.

Example 4.3. If *x = min = A,and T = {a € I : a constans}, then T(D) = {p € [X : y <sup{a €
I:an(1-p) € D}}. Consequently, T*(D) has the following property: for all u € I* such that
1-p €D, then p e T(Y).

Proposition 4.4. Let D be a preideal on a set X. Define 3 : IX — 1 by forall py € 1%, 3(pu) =
Nex(u(x) — sup{a el :aN(1-pu(x)) €D}). Then Jis a Chang I-fuzzy topology on X.

Proof. Clearly, 3(1) = 3(0) = 1, by (I1). Let p, A € IX. Then J(u A X) > T(u) A T(A), by (P2) and
(112). Let {p;},., C I*. Then 3(Vies pi) > Aiej I(ui), by (I5) and (P3), so we are done. O

ie] =
The I-fuzzy topology J, given in the above proposition, is called the I-fuzzy topology
associated with a preideal and denoted by Jg. It is easy to see that Jg satisfy the following
simple properties:
(1) forall ACX,Ja(A) =1;
(2) forall u € I* and x € X such that (1 — u(x)) € D, then Jo () = 1;

(3) restricting the range of J on {0, 1}, a Chang I-topology, associated with a preideal
9, is obtained, namely,

Jg = {‘u eI*:p(x)<supfael:an(1-u(x)) €D}, Vxe X}. (4.3)
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Proposition 4.5. Let T be an I-topology on a Boolean lattice X with 0. Let ® C I%, defined as
D ={puel*: SUP e infyec(M(x) — M0O)) < 1-a,forall «a € I}. Then D is a saturated
preideal on X and D = {p € I* : dr.(u*) > a,for all a € I}, where drc is the generalized ideal
corresponding to Re.

Proof. Let Tbe an I-topology on X. Then R is a fuzzy preorder, by Theorem 3.1, hence dr, is
a generalized ideal, by (2.9) in Proposition 2.6. Thus, ® = {u € IX : dg, (u*) > a} is a saturated
preideal by (2.11) in Proposition 2.7. Secondly, we prove the equality of the two forms of @
as follows:

D= {ﬂeIX:th(y”‘) sz}

=per*: A (1-Re(x,0))>a, Vae 11}, by (2.9) in Proposition 2.6
xXEU"
(4.4)
= yeIX: é/ Re(x,0)<1-a, VaeIl}
XEU*
=per*: ;/ )l/\t (Mx) = XM0))<1-a, Yacl }, by Theorem 3.1,
xEps e
which completes the proof. O

As a direct consequence of Lemma 4.1 and Theorem 3.1, we may construct an I-
topology from a preideal, as follows.

Proposition 4.6. Let ® C IX be a preideal. Define Tg by
Ta={aer: (pue0 — uw)) 2@ - 2w | (45)
Ue

Then Ty is an I-Alexandrov topology on X, containing .

Proposition 4.7. Let J be a nontrivial I-fuzzy topology on a set X. Define ® := {p € IX : 3(A) =
1,for all A < p}, then D is a preideal on X.

Proof. Straightforward. O

Proposition 4.8. Let D be a preideal on a set X. Define TC IX by T={Le€X:A=puVa, p€
D, a € I}. Then Tis an I-topology if D is o-preideal.

Proof. Since 0 € 9, then T contains all the constants fuzzy subsets on X. Secondly, if A1, 1, € T,
then there exist p1, o € D and a3, ay € I such that Ay = g Vag and Ay = pp Vap, then Ay AN, =
(miAm)V (piAa2)V (paAar) V(e Aaz). By (P3) and (P2), we get (p1Ap2) V(i Aa)V (paAar) € D,
hence A1 A A € T.

Let {Ai};c; € C, then for all i € ], there exists yi € D, a; € I such that \; = p; V a;.
Therefore, we get Viey Ai = (Viey i) V (Viey ai) € C, since D is a o-preideal. O
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Proposition 4.9. Let 7 be a fuzzifying topology on a Boolean lattice. Define d : 2X — I by for all
A CX,d(A) = Axyea VBex, x,ye T(B). Then d is a generalized ideal on X.
Conversely, let d be a generalized ideal on X, then 74 : 2X — I, defined by for all A C X,

A) = A vV d(B 4.6
A= w wx 4B (4.6)
(xy)eB=B'

is a fuzzifying topology on X.

Proof. It is a direct composition of the two maps defined by Proposition 2.6 and Theorem 3.2.
Conversely, follows from Remark 2.12 and Theorem 3.2. O

Proposition 4.10. Let d be a o-generalized ideal on a set X. Define Ry : X x X — I by for all
(x,y) € Xx X, Ri(x,Yy) = Nxy)eBxp (1 = d(B)).
Then, Ry is a fuzzy preorder and for all A C X, Tg,(A) = d(A).

Proof. That R is a fuzzy preorder follows from Remark 2.12, hence according to Theorem 3.2,
forall ACX,

WA= A (- Ra(y)

= A 1- A (d(B) — 0) ), by Remark 2.12
(x,y)EAxA’ (x,y)eBxB’

= 1-(d(B) — 0
(x,y)/e\AxA’<(x,y)\éBxB’( ( ( ) )>

>1-(d(A) — 0)

(4.7)

>1-(1-d(A)) = d(A)).

Secondly, we have to show that for any A C X, 7r,(A) < d(A).
Lett € I such that 7g,(A) > t. Then forany x € A, y € A’, there exists N (x) C X such

that x € N, (x), y¢ Ny(x), and d(N,(x)) > t. Let N, = Uyea Ny(x), then y¢ N, A C N,
and d(N) = d(Uxea Ny(x)) > Axea d(Ny(x)) > t, since d is o-generelized ideal. Obviously,
A =nNy¢aN,. Sowewould get d(A) = d(Ny¢ga Ny) >V,¢ad(Ny) >t, by (G3). Thus d(A) >
TR,, Which completes the proof. O

Example 4.11. (1) Let ® = {u € IX : p < 1/2}, and * = min, then

1, x<y,
X—y= (4.8)
Yy, x>Y.
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Then @ is a preideal on X, and

Ro(x,y) = A p(0) —p(y), YryeX

1, x=vy, (4.9)
o xzy
is a fuzzy preorder, hence
TRy = {y € I*: Ra(x,y) Ap(x) < pu(y), Vx,y € X} =TI (4.10)

Also, another fuzzy preorder Rg may be dedeuced by ®, Lemma 4.1:
Ro (x,y) =inf{p(x) : 1-ped, pux) <u(y), ¥x,y € X}

. 1
= mf{‘u(x) cpell, u> 5 u(x) <u(y), Vx,y € X}

(4.11)
1, x=y,
=31
E/ x#y
Then
Ty = {A eI : Re(x,y) AAMX) < A(y), Vx,y € I}
(4.12)

= {)LEIIZ)LZ%}U{QEIZKCOnStaHt}.

(2) Lett = {p€I*:pu>1/2} U{a €I constants}, and * = min, then D, = {p eI’ : p <
1/2}, by applying Proposition 4.5.
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