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1. Introduction

The concepts of preideals and generalized ideals were introduced by Ramadan et al. [1],
as a consistent approach to the ideas of fuzzy mathematics. The authors investigated the
interrelations between these two concepts. This paper is devoted to finding fuzzifying
topologies derived from preideals, and vise versa, by means of fuzzy preorders and residual
implications. The contents of this paper are arranged as follows. In Section 2, we recall some
basic notions of ideals, preideals, and generalized ideals. The notion of saturation of preideals
is introduced, hence, a one-to-one correspondence between the set of saturated preideals and
the set of generalized ideals on the same set is obtained. In fact, some studies were done on
the correspondence of such two sets, see [2, 3], for example, based on the duality between
fuzzy filters and fuzzy ideals. In our paper, we prove such correspondence independent of
the duality principle. Also, given X a Boolean lattice, we construct a generalized ideal, in
terms of fuzzy preorders. Section 3 is concerned with the relationship between the fuzzy
preorders and each of I-topologies [4], fuzzifying topologies [5], and I-fuzzy topologies
[6], respectively. Thus, an interesting relation between a special type of I-topological spaces,
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called fuzzy neighborhood spaces, introduced by Lowen [7], and fuzzifying topological
spaces is established. In Section 4, we introduce the notion of σ-generalized ideal, therefore,
a characterization of this special kind of ideals is shown to be a fuzzifying topology
generated by some fuzzy preorder. Also, we study the relations between preideals and
generalized topological structures, for example, I-topologies, fuzzifying topologies, and I-
fuzzy topologies. Also, I-topologies are constructed from preideals via given I-topologies.

2. Generalized Ideal Structures

We recall some basic definitions. We should let X, I denote a nonempty set and the closed
unit interval [0, 1], respectively, and we let I0 = (0, 1], I1 = [0, 1).

We denote the characteristic function of a subset A ⊆ X also by A. If μ ∈ 1X , we define
μα = {x ∈ X : μ(x) > α}. Let 2X be the collection of all subsets of X. The fuzzy set which
assigns to each element in X the value α, 0 ≤ α ≤ 1, is also denoted by α. In this paper, the
concepts of triangular norm and residual implication are applied.

A triangular norm, a t-norm in short, on the unit interval I is a binary operator ∗ :
I × I → I which is symmetric, associative, order-preserving on each place and has 1 as the
unit element.

A fuzzy relation on a nonempty set is a map R : X×X → I. A fuzzy relation R is called

(1) reflexive if R(x, x) = 1 for each x ∈ X;

(2) ∗-transitive if R(x, y) ∗ R(y, z) ≤ R(x, z) for all x, y, z ∈ X.

A reflexive and ∗-transitive fuzzy relation is called ∗-fuzzy preorder. If ∗ is assumed to be the
t-norm min = ∧, we will drop the ∗-.

This section presents a review of some fundamental notions of ideals, preideals, and
generalized ideals. We refer to Ramadan et al. [1] for details.

Definition 2.1. A nonempty subset D of 2X is an ideal of subsets of X, simply, an ideal on X, if
it satisfies the following conditions:

(D1) X/∈D;

(D2) A,B ∈ D ⇒ A ∪ B ∈ D;

(D3) A ∈ D, B ⊂ A ⇒ B ∈ D.

Definition 2.2. A nonempty subset D of IX is a preideal of subsets of X, simply, a preideal on
X, if it satisfies the following conditions:

(P1) 1/∈D;

(P2) μ, ν ∈ D ⇒ μ ∨ ν ∈ D;

(P3) ν ∈ D, μ ≤ ν ⇒ μ ∈ D.

A preidael D is called prime if it satisfies the condition;

∀μ, λ ∈ IX such that μ ∧ ν ∈ D, then μ ∈ D or ν ∈ D. (2.1)

A preideal D is called a σ-preideal if the following hold.
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If {μn : n = 1, 2, 3, . . .} is a countable subcollection of D, then supn μn ∈ D.
If D is a preideal on X, we define the characteristic, denoted by c(D), of D by

c(D) = sup
μ∈D

inf
x∈X

μ(x). (2.2)

If D is a preideal and c(D) < 1, we say that D is saturated if for every (με) ∈ DI1 ,
infε∈I1(με + ε) ∈ D, equivalently, D is saturated if it satisfies

∀ε < 1, μ ∈ IX : μ − ε ∈ D =⇒ μ ∈ D. (2.3)

We provide a useful characterization of a saturated preidealD in the following lemma.

Lemma 2.3. Let D be a saturated preideal on X, μ ∈ IX . Then

μ ∈ D ⇐⇒ μα ∧ γ ∈ D, ∀c < γ < α in I1. (2.4)

Proof. Let μ ∈ D. Since μα ∧ γ ≤ μ for all γ < α ∈ I1, then, by (P3), μα ∧ γ ∈ D for all γ < α ∈ I1.
Conversely, let μ ∈ IX such that μα ∧ γ ∈ D for all c < γ < α in I1. For every α ∈ (0, 1/2)

and 0 < n (integer) < 1/α, we consider the fuzzy subsets μ2α = supn(μ
nα ∧ (nα − α)). Since n

is finite, then, by (P2), μ2α ∈ D. Also, it is easy to see that, for all x ∈ X, 0 ≤ μ(x)−μ2α(x) ≤ 2α,
hence μ + 2α ≥ μ2α + 2α ≥ μ. Consequently, μ = ∩0<α<1/2(μ2α + 2α) ∈ D, since D is saturated, so
we are done.

It should be noticed that the required condition of Lemma 2.3 holds, trivially, for all
μ ∈ D and γ ≤ c, therefore, we provide γ > c, so that the above condition is significant.

Also, the characteristic of a preidealD, on a subsetA ofX may be defined and denoted
by cA(D) = supλ∈D infx∈A λ(x). The following result is useful for our study.

Lemma 2.4. Let D on X. Then, for every A ∈ 2X ,

cA(D) = sup{t ∈ I : A ∧ t ∈ D}, (2.5)

hence, c = cX(D) = sup{t ∈ I : t ∈ D}.

Proof. The statement holds when A = φ. Suppose A/=φ, and denote c = cA(D) and b =
sup{t ∈ I : A ∧ t ∈ D}. Let t ∈ I satisfy A ∧ t ∈ D. Then c ≥ infx∈A(A ∧ t)(x) = t, that is, c ≥ b.
Conversely, given λ ∈ D, let γ = infx∈A λ(x), henceA∧ γ ≤ λ. This implies, by (P3),A∧ γ ∈ D,
so b ≥ γ . Thus, by definition of c, we get b ≥ c, this shows that the equality holds.
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Definition 2.5. A nonzero function d : 2X → I is called a generalized ideal of fuzzy subsets of
X, simply, a generalized ideal on X, if it satisfies the following conditions:

(G1) d(X) = 0;
(G2) d(A) ∧ d(B) ≤ d(A ∪ B), for each A,B ∈ 2X ;
(G3) if A ⊂ B, then d(A) ≥ d(B), for each A,B ∈ 2X ;
The conditions (G2) and (G3) are equivalent to:
(G∗) d(A)∧d(B) = d(A∪B), for eachA,B ∈ 2X . Moreover, Since d a nonzero function,

then by (G3), d(φ) > 0.

A generalized ideal d, is called σ-generalized ideal if

d

(
∪
i∈J

Ai

)
≥ ∧

i∈J
d(Ai), for each (Ai)i∈J ⊆ IX, (2.6)

and d is called prime if

d(A ∩ B) ≤ d(A) ∨ d(B), for each A,B ∈ 2X. (2.7)

A generalized ideal on a set X can be derived by fuzzy relations in different ways, as
we see in the following.

Proposition 2.6. Let R be a reflexive fuzzy relation on a Boolean lattice X with 0. Define d1, d2 :
IX → I, for all A ⊆ X as follows:

d1(A) = ∧
x,y∈A

(
1 − R

(
x, 1 − y

))
; where 1 − y is the complement y, (2.8)

d2(A) = ∧
x∈A

(1 − R(x, 0)). (2.9)

Then d1, d2 are generalized ideal on X.

Proof. Straightforward.

Now, we will construct different types of preideals derived from a generalized ideals.

Proposition 2.7. Let d be a generalized ideal on X. Define D1,D2 ⊂ IX by

D1 =

{
μ ∈ IX : ∀A ∈ 2X, d(A) ≤ 1 − sup

x /∈A

μ(x)

}
; (2.10)

D2 =
{
μ ∈ IX : ∀α ∈ I1, d

(
μα) ≥ α

}
. (2.11)

Then both D1,D2 are saturated preideals on X.
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Proof. First, we show that D1 a preideal on X:
(P1) 1/∈D1, otherwise for all A ∈ 2X, d(A) ≤ 1 − supx /∈A1(x) = 0, that is, d(A) = 0,

which is a contradiction, since d is a nonzero function;
(P2) let μ, λ ∈ D1. Then for all A ∈ 2X :

1 − sup
x /∈A

(
μ ∨ λ

)
(x) =

(
1 − sup

x /∈A

μ(x)

)
∧
(
1 − sup

x /∈A

λ(x)

)
≥ d(A) ∧ d(A) = d(A), (2.12)

hence μ ∨ λ ∈ D1.
(P3) Let μ, λ ∈ IX such that μ ∈ D1 and λ ≤ μ. Then for all A ∈ 2X ,

1 − sup
x /∈A

λ(x) ≥ 1 − sup
x /∈A

μ(x) ≥ d(A), hence λ ∈ D1. (2.13)

Let (μθ)θ∈I0 be a family of fuzzy sets in D1. Then for all A ∈ 2X ,

1 − sup
x /∈A

(
inf
(
μθ + θ

))
(x) = 1 − sup

x /∈A

(
inf
θ∈I0

(
μθ(x) + θ

))

≥ 1 − inf
θ∈I0

sup
x /∈A

(
μθ(x) + θ

)

= sup
θ∈I0

(
1 − sup

x /∈A

(
μθ(x) + θ

))

= sup
θ∈I0

(
1 −
(
sup
x /∈A

μθ(x) + θ

))

= sup
θ∈I0

((
1 − sup

x /∈A

μθ(x)

)
− θ

)

≥ sup
θ∈I0

(d(A) − θ) = d(A),

(2.14)

therefore, infθ∈I0(μθ + θ) ∈ D1, hence D1 is saturated.
Second, we prove that D2 is saturated preideal on X:
(P1) 1/∈D2, otherwise d(1α) = d(X) = 0/≥α, for all α ∈ I1;
(P2), (P3) direct.
Let (μθ)θ∈I0 be a family of fuzzy sets in D2. Then

d

((
inf
θ∈I0

(
μθ + θ

))α)
≥ d

(⋂
θ∈I0

(
μθ + θ

)α)

≥ sup
θ∈I0

d
(
μθ

α−θ
)
,
(
by (G3)

)
≥ sup

θ∈I0
(α − θ) = α.

(2.15)

Hence D2 is saturated preideal.
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Proposition 2.8. Let d be a prime generalized ideal on X. Define D3,D4 ⊂ IX by

D3 =
{
μ ∈ IX : ∀α ∈ I1, d

((
1 − μ

)α) ≤ α
}
;

D4 =

{
μ ∈ IX : ∀A ∈ 2X, d(A) ≤ sup

x /∈A

(
1 − μ

)
(x)

}
.

(2.16)

Then D3,D4 are prime saturated preideals on X. Moreover D3 = D4.

Proof. First, we show that D3 = D4. Let μ ∈ IX such that d((1 − μ)α) ≤ α, for all α ∈ I1. If
A ∈ 2X , we assume that supx /∈A(1 − μ)(x) = γ ∈ I1, hence (1 − μ)γ ⊆ A.

Then, by (G3), d(A) ≤ d((1 − μ)γ) ≤ γ = supx /∈A(1 − μ)(x), that implies D3 ⊆ D4.

Conversely, let μ ∈ IX such that d(A) ≤ supx /∈A(1 − μ)(x), for all A ∈ 2X . Then
d((1 − μ)α) ≤ supx /∈ (1−μ)α(1 − μ)(x) ≤ α, for all α ∈ I1 this implies D4 ⊆ D3, thus D3 = D4.

Second, we show that D3 is a saturated prime preideal.
(P1) Suppose that 1 ∈ D3. Let d(φ) = γ > 0. Then, for all α < γ, d(0α) = d(φ) = γ > α,

which is a contradiction, so 1/∈D3.
(P2) Let μ, λ ∈ D3. Then for all α ∈ I1, d(1 − (μ ∨ λ)α) = d((1 − μ)α ∩ (1 − λ)α) ≤

d((1 − μ)α) ∨ d((1 − λ)α) ≤ α, since d is prime. This implies μ ∨ λ ∈ D3.
(P3) Let μ, λ ∈ IX such that μ ∈ D3 and λ ≤ μ. Then d((1 − λ)α) ≤ d((1 − μ)α) ≤ α, by

(G3), hence λ ∈ D3.
Now, we will show that D4 is saturated. Suppose for all ε > 0, μ − ε ∈ D3. Then for all

A ∈ 2X , d(A) ≤ supx /∈A(1− (μ−ε))(x) = supx /∈A(1−μ)(x)+ε, hence d(A) ≤ supx /∈A(1−μ)(x),
that is, D4 is saturated.

Finally, we show that D3 is prime. Let μ, λ ∈ IX such that μ ∧ λ ∈ D3. Then for all
α ∈ I1, d(1 − μα) ∧ d(1 − λα) ≤ d((1 − μα) ∪ (1 − λα)) = d(1 − (μα ∧ λα)) = d(1 − (μ ∧ λ)α) ≤ α,
hence, d(1 − μα) ≤ α or d(1 − λα) ≤ α, that implies μ ∈ D3 or λ ∈ D3.

Proposition 2.9. Let D be a preideal on X. Define d : 2X → I by

∀A ∈ 2X, d(A) = sup{t ∈ I : t > c, A ∧ t ∈ D}. (2.17)

Then d is a generalized ideal on X.

Proof. (G1) d(X) = 0, since t ∈ D implies t ≤ c.
(G2) Let A,B ∈ 2X and α, β ∈ I, α > c, β > c such that A ∧ α ∈ D, B ∧ β ∈ D.
Then, by (P2), (A∧α)∨(B∧β) ∈ D. Let γ = min(α, β). Then, by (P3), we get (A∪B)∧γ =

(A ∧ γ) ∨ (B ∧ γ) ∈ D, and γ = α ∧ β > c. Thus sup{t : t > c, (A ∪ B) ∧ t ∈ D} ≥ γ = α ∧ β,
hence sup{t : t > c, (A ∪ B) ∧ t ∈ D} ≥ sup{t : t > c, A ∧ t ∈ D} ∧ sup{t : t > c, B ∧ t ∈ D}, so
d(A ∪ B) ≥ d(A) ∧ d(B).

Now we come to the main result of this section.

Theorem 2.10. There is a one-to-one correspondence between the set saturated preideals on a
nonempty set X and the set of generalized ideals on X.
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Proof. Let d be a generalized ideal on X. Denote the preideal D2 generated by d, defined
as in Proposition 2.7, by Dd, and denote the generalized ideal, generated by Dd, as in
Proposition 2.9, by dDd , hence for all A ∈ 2X

dDd(A) = sup{t ∈ I1 : t > c, A ∧ t ∈ Dd}, Proposition 2.9

= sup
{
t ∈ I1 : t > c, d

(
(A ∧ t)α

)
≥ α, ∀α ∈ I1

}
, (2.11) in Proposition 2.7

= sup{t ∈ I1 : t > c, d(A) ≥ α, ∀α < t}, since d
(
φ
)
≥ d(A), ∀A ⊆ X

= sup{t ∈ I1 : t > c, d(A) ≥ t}

= d(A).

(2.18)

Conversely, let D be a saturated preideal on X. Denote the generalized ideal generated by
D, as in Proposition 2.9, by dD, and denote the preideal generated by dD, as in (2.11) in
Proposition 2.7 by DdD . Then,

DdD =
{
λ ∈ IX : dD(λα) ≥ α, ∀α ∈ I1

}

=
{
λ ∈ IX : sup{t ∈ I1, t > c, λα ∧ t ∈ D} ≥ α, ∀α ∈ I1

}

=
{
λ ∈ IX : λα ∧ t ∈ D, ∀c < t < α

}

=
{
λ ∈ IX : λ ∈ D

}
, by Lemma 2.3

= D.

(2.19)

This completes the proof.

Definition 2.11. A nonzero function d : IX → I is called a fuzzy I-ideal on X if it satisfies the
following conditions:

(d1) d(1) = 0;
(d2) d(λ ∨ μ) ≥ d(λ) ∧ d(μ), for λ, μ ∈ IX ;
(d3) if λ ≥ μ, then d(μ) ≥ d(λ).
Clearly, a generalized ideal d on a set X can be regarded as a fuzzy I-ideal whose

domain is 2X . Precisely, d(A) = d(A) for each A ⊆ X; otherwise d(A) = 0.

Remark 2.12 (Fang and Chen [8]). Defined a generalized fuzzy preorder Rφ, corresponding
to a map φ : IX → I as follows:

∀
(
x, y
)
∈ X ×X, Rφ

(
x, y
)
= ∧

μ∈IX
φ
(
μ
)
−→
(
μ(x) → μ

(
y
))
, (2.20)

hence, for a fuzzy I-ideal d on X, there corresponds a fuzzy preorder Rd defined by

∀
(
x, y
)
∈ X ×X, Rd

(
x, y
)
= ∧

μ∈IX
d
(
μ
)
−→
(
μ(x) → μ

(
y
))
. (2.21)
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Especially, for a generalized ideal d on X, the corresponding fuzzy preorder of d is given by
the following: For every (x, y) ∈ X ×X,

Rd

(
x, y
)
= ∧

A⊆X
(x,y)∈A′×A

(d(A) → 0). (2.22)

3. Connecting Fuzzy Preorders and I-fuzzy Topologies

In this section, we recall some basic results about the connection between fuzzy preorders
and each of I-topologies, fuzzifying topologies, and I-fuzzy topologies. Also, the relations
among these different types of topologies are investigated.

An I-topology on a set X is a crisp subset T of IX which is closed with respect to finite
meets and arbitrary joins and which contains all the constant functions from X to I. If the
constants are 0, 1 only, we will call it a Chang I-topology.

Another more consistent approach to the fuzziness has been developed. According to
Shostak [6], an I-fuzzy topology on a set X is a map I : IX → I, satisfying the following
conditions:

(1) I(α) = 1 for all constant functions α : X → I;

(2) I(μ ∧ λ) ≥ I(μ) ∧ I(λ), for all μ, λ ∈ IX ;

(3) I(∨j∈Jμi) ≥ ∧j∈JI(μj), j ∈ J, μj ∈ IX .

By the conditions (1) and (2), we get for μ ∈ IX and α ∈ I0, I(μ∧α) ≥ I(μ). An I-fuzzy
topology on a set X is called trivial, if I(λ) = 1, for all λ ∈ IX , and is called homogeneous if the
following condition holds: for μ ∈ IX and α ∈ I, I(μ ∧ α) = I(μ).

If a map τ : 2X → I satisfies the similar conditions of I-fuzzy topology on a set X, then
τ is called a fuzzifying topology Ying [9]. Furthermore, if a fuzzifying topology τ satisfies the
following condition:

(4) for all {Aj}j∈J ⊆ 2X, τ(∩j∈J Aj) ≥ ∧j∈J τ(Aj), then τ is called a saturated fuzzifying
topology.

For a given left-continuous t-norm ∗ : I × I → I, the corresponding residual
implication → : I × I → I is given by x → y = sup{z ∈ I : x ∗ z ≤ y}.

Many properties of residual implications are found in litrature, but we will recall some
of them, which will be used in this paper:

(I1) x → y = 1 if and only if x → y;

(I2) 1 → x = x;

(I3) (x → y) ∗ (y → z) ≤ x → z;

(I4) x → ∧j∈J yj = ∧j∈J(x → yj), hence, x → y ≤ x → z if y ≤ z;

(I5) (∨j∈J yj) → y = ∧j∈J(yj → y), hence x → z ≥ y → z if x ≤ y;

(I6) x ∗ ∨j∈J yj = ∨j∈J(x ∗ yj);

(I7) x → (y → z) = y → (x → z);

(I8) (x → y) ∗ (u → v) ≤ x ∗ u → y ∗ v;
(I9) x ≤ (x → y) → y;

(I10) x → y = ∧λ∈I((λ → x) → (λ → y));
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(I11) x → y = ∧λ∈I((y → λ) → (x → λ));

(I12) (x ∧ y) → (z ∧w) ≥ (x → z) ∧ (y → w).

Clearly, by (I1) and (I3), the residual implication → with respect to a t-norm ∗ is a
fuzzy preorder on I and called the canonical fuzzy preorder on I.

The relationships between fuzzy preorders and I-topologies, fuzzifying topologies,
and I-fuzzy topologies, respectively, have been investigated by many authors. For example,
we recall the main results of Lai and Zhang [10], Fang and Chen [8], and Fang [11].

Theorem 3.1 (Lai and Zhang [10]). For a fuzzy preorder R on a set X, the family TR = {μ ∈
IX : R(x, y) ∗ μ(x) ≤ μ(y), for all x, y ∈ X}, is an I-Alexandrov topology induced by R, that is, TR

satisfies the folowing properties: for all F ⊆ TR, μ ∈ TR, and α ∈ I,
(a) every constant fuzzy set X → I belongs to TR;
(b)∨F ∈ TR;
(c)∧F ∈ TR;
(d)α ∗ μ ∈ TR;
(e)α → μ ∈ TR.
Moreover, R satisfies the equality

R
(
x, y
)
= ∧

μ∈TR

μ(x) −→
(
y
)
. (3.1)

Conversely, for a given I-Alexandrov topology T a set X, there is a unique ∗-fuzzy preorder RT, given
by RT(x, y) = ∧μ∈T μ(x) → μ(y), such that T = TRT .

Thus, there is a one-to-one correspondence between the set of I-Alexandrov topologies on a set
X and ∗-fuzzy preorders.

Theorem 3.2 (Fang and Chen [8]). Every fuzzy preorder R on a set X corresponds a saturated
fuzzifying topology τR on X, given by for all A ⊆ X,

τR(A) = ∧
(x,y)∈A×A′

(
1 − R

(
x, y
))
, (3.2)

conversely, every fuzzifying topology τ on a set X corresponds a fuzzy preorder Rτ , given by: for all
x, y ∈ X,

Rτ

(
x, y
)
= ∧
(x,y)∈A×A′

(1 − τ(A)). (3.3)

Thus, there is a one-to-one correspondence between the set of saturated fuzzifying topologies on a set
X and the set of fuzzy preorders on X.

By the above two theorems, one can dedeuce, at once, the following corollary.

Corollary 3.3. The set of saturated fuzzifying toplogies on a set X and the set of I-Alexandrov
topologies on X are in one-to-one correspondence.
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A special type of I-topological spaces, called fuzzy neighborhood spaces, was introduced
by Lowen [7]. The interrelations between these spaces and the fuzzifying toplogical spaces
are interesting to study. Although a study of fuzzifying topological spaces and their relation
with fuzzy neighborhood spaces has been investigated, sestematically, see, for example, [12],
we give, in this section, alternative methods. We recall the folowing definition.

Definition 3.4 (Wuyts et al. [13]). An I-topological space (X, τ) is called a fuzzy neighborhood
space if whenever μ ∈ T, for any α ∈ I1 also α ∧ μα ∈ T.

Equivalently, if whenever μ ∈ T, for any α, t ∈ I1, t < α also μα ∧ t ∈ T.

Proposition 3.5. Let τ be a fuzzifying topology on a set X. Then τ corresponds an I-topology Tτ on
X, defined by Tτ = {μ ∈ IX : τ(μα) ≥ α, for all α ∈ I1}, and (X,Tτ) is a fuzzy neighborhood space.

Conversely, let T be an I-topology on X. Then τ corresponds a fuzzifying topology τT, on X,
defined by: for all A ⊆ X, τT(A) = sup{α ∈ I : A ∧ α ∈ T}. Moreover,

(1) τTτ = τ ,
(2) TτT ≤ T and if (X,T) is a fuzzy neighborhood space, then TτT = T.

Proof. That is, Tτ and τT are I-topology and fuzzifying topology on X, respectively, and are
easy to be verified. To prove that (X,Tτ) is a fuzzy neighborhood space, we suppose α, t ∈ I
and μ ∈ Tτ , then

τ
((

μt ∧ t
)α) =

⎧⎨
⎩
τ
(
φ
)
= 1, if α ≥ t,

τ
(
μt
)
≥ t, if t > α.

(3.4)

Therefore, τ((μt ∧ t)α) ≥ α, for all α ∈ I1, that is, μt ∧ t ∈ Tτ , for all t ∈ I1, so we are done.
To prove (1), let τ be a fuzzifying topology on X then for all ∧ ⊆ X,

τTτ (A) = sup{α ∈ I : A ∧ α ∈ Tτ}

= sup
{
α ∈ I : τ

(
(A ∧ α)t

)
≥ t, ∀t ∈ I1

}

= sup{α ∈ I : τ(A) ≥ t, ∀t < α}, since τ
(
φ
)
= 1

= τ(A).

(3.5)

To prove (2), suppose that (X,T) is a fuzzy neighborhood space. Then

TτT =
{
μ ∈ IX : τT

(
μα) ≥ α, ∀α ∈ I1

}

=
{
μ ∈ IX : sup

{
t ∈ I : μα ∧ t ∈ T

}
≥ α, ∀α ∈ I1

}

=
{
μ ∈ IX : μα ∧ t ∈ T, ∀t < α, α ∈ I1

}
≤ T,

=
{
μ ∈ IX : μ ∈ T

}
= T, if T is a fuzzy neighborhood structure.

(3.6)
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Therefore, as a direct result of Proposition 3.5, we have the following.

Theorem 3.6. There is a one-to-one correspondence between the set of fuzzifying topologies and the
set of fuzzy neighborhood structures on the same set.

Definition 3.7. Given (X, I), an I-fuzzy topological space, and α ∈ I0, then Iα := {μ ∈ IX :
I(μ) ≥ α} is an I-topology on X, called the α-level I-topology of I.

Consequently, TI := I1 = {μ ∈ IX : I(μ) = 1}, by which we will give an interrelation
between I-topologies and I-fuzzy topologies.

Proposition 3.8. LetT be an I-topology onX. Then for all μ ∈ IX , IT(μ) := sup{α ∈ I1 : μ∧α ∈ T}
is a homogeneous I-fuzzy topology on X.

Proof. That is, IT an I-fuzzy topology is easy to be verified. Now, let μ ∈ IX, α ∈ I, then we
get

IT
(
μ ∧ α

)
:= sup

{
t ∈ I1 : μ ∧ α ∧ t ∈ T

}
≤ sup

{
t ∈ I1 : t ≤ α, μ ∧ α ∧ t ∈ T

}
= sup

{
t ∈ I1 : μ ∧ t ∈ T

}
= IT

(
μ
)
.

(3.7)

Since IT is an I-fuzzy topology, then IT(μ ∧ α) ≥ I(μ), so the equality holds.

Theorem 3.9. There is a one-to-one correspondence between the set of I-topologies on a set X and the
set of homogeneous I-fuzzy topologies on X.

Proof. Let T be an I-topology on X, then IT is a homogeneous I-fuzzy topology on X, by
Proposition 3.8, and

TIT

(
μ
)
=
{
μ ∈ IX : Iτ

(
μ
)
= 1
}

=
{
μ ∈ IX : sup

{
t ∈ I1 : μ ∧ t ∈ T

}
= 1
}

=
{
μ ∈ IX : μ ∧ t ∈ T, t < 1

}

= T.

(3.8)

Conversely, if I is a homogeneous I-fuzzy topologies on X, then TI is an I-topology
and

ITI

(
μ
)
= sup

{
t ∈ I1 : μ ∧ t ∈ TI

}
= sup

{
t ∈ I1 : I

(
μ ∧ t

)
= 1
}

= 1, since I
(
μ
)
= I
(
μ ∧ t

)
.

(3.9)

So, we are done.
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4. Connecting I-fuzzy Topologies and Preideals

In this section, we associate for each a fuzzifying topology, a generalized ideal. Also, we
construct a preideal corresponding to an I-topology, by means of the residuated implication.
Conversely, an I-topology, a fuzzifying topology, and I-fuzzy topology are derived by old
ones via preideals. Wemade use of the results of Section 2, beside the useful following lemma.

Lemma 4.1. Let Ω ⊆ IX . Define RΩ, R
′
Ω : X ×X → I by for all (x, y) ∈ X ×X,

RΩ
(
x, y
)
= inf

{
μ(x) → μ

(
y
)
: μ ∈ IX, μ ∈ Ω

}
,

R′
Ω

(
x, y
)
= inf

{
μ
(
y
)
→ μ(x) : μ ∈ IX, 1 − μ ∈ Ω

}
.

(4.1)

Then RΩ, R
′
Ω are fuzzy preorders on X, especially, if ∗ = min = ∧, then for all (x, y) ∈ X ×X,

RΩ
(
x, y
)
= inf

{
μ
(
y
)
: μ ∈ Ω, μ(x) > μ

(
y
)}

,

R′
Ω

(
x, y
)
= inf

{
μ(x) : 1 − μ ∈ Ω, μ(x) < μ

(
y
)}

.
(4.2)

Proposition 4.2. Let T be an I-topology on a set X, and D be a preideal on X. Define T∗(D) ⊆ IX ,
by μ ∈ T∗(D) if and only if μ ≤ sup{λ ∈ T : λ ∧ (1 − μ) ∈ D}. Then T∗(D) is Chang I-topology
on X.

Proof. Direct.

However T∗(D)will be called the I-fuzzy preideal topology. As a special case.

Example 4.3. If ∗ = min = ∧, and T = {α ∈ I : α constans}, then T∗(D) = {μ ∈ IX : μ ≤ sup{α ∈
I : α ∧ (1 − μ) ∈ D}}. Consequently, T∗(D) has the following property: for all μ ∈ IX such that
1 − μ ∈ D, then μ ∈ T∗(D).

Proposition 4.4. Let D be a preideal on a set X. Define I : IX → I by for all μ ∈ IX , I(μ) =
∧x∈X(μ(x) → sup{α ∈ I : α ∧ (1 − μ(x)) ∈ D}). Then I is a Chang I-fuzzy topology on X.

Proof. Clearly, I(1) = I(0) = 1, by (I1). Let μ, λ ∈ IX . Then I(μ ∧ λ) ≥ I(μ) ∧ I(λ), by (P2) and
(I12). Let {μi}i∈J ⊆ IX . Then I(∨i∈J μi) ≥ ∧i∈J I(μi), by (I5) and (P3), so we are done.

The I-fuzzy topology I, given in the above proposition, is called the I-fuzzy topology
associated with a preideal and denoted by ID. It is easy to see that ID satisfy the following
simple properties:

(1) for all A ⊆ X, ID(A) = 1;

(2) for all μ ∈ IX and x ∈ X such that (1 − μ(x)) ∈ D, then ID(μ) = 1;

(3) restricting the range of I on {0, 1}, a Chang I-topology, associated with a preideal
D, is obtained, namely,

ID =
{
μ ∈ IX : μ(x) ≤ sup

{
α ∈ I : α ∧

(
1 − μ(x)

)
∈ D
}
, ∀x ∈ X

}
. (4.3)
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Proposition 4.5. Let T be an I-topology on a Boolean lattice X with 0. Let D ⊆ IX , defined as
D = {μ ∈ IX : supx∈μα infλ∈T(λ(x) → λ(0)) ≤ 1 − α, for all α ∈ I1}. Then D is a saturated
preideal on X and D = {μ ∈ IX : dRT(μ

α) ≥ α, for all α ∈ I1}, where dRT is the generalized ideal
corresponding to RT.

Proof. LetT be an I-topology onX. Then RT is a fuzzy preorder, by Theorem 3.1, hence dRT is
a generalized ideal, by (2.9) in Proposition 2.6. Thus,D = {μ ∈ IX : dRT (μ

α) ≥ α} is a saturated
preideal by (2.11) in Proposition 2.7. Secondly, we prove the equality of the two forms of D
as follows:

D =
{
μ ∈ IX : dRT

(
μα) ≥ α

}

=
{
μ ∈ IX : ∧

x∈μα
(1 − RT(x, 0)) ≥ α, ∀α ∈ I1

}
, by (2.9) in Proposition 2.6

=
{
μ ∈ IX : ∨

x∈μα
RT(x, 0) ≤ 1 − α, ∀α ∈ I1

}

=
{
μ ∈ IX : ∨

x /∈μα
∧

λ∈T
(λ(x) → λ(0)) ≤ 1 − α, ∀α ∈ I1

}
, by Theorem 3.1,

(4.4)

which completes the proof.

As a direct consequence of Lemma 4.1 and Theorem 3.1, we may construct an I-
topology from a preideal, as follows.

Proposition 4.6. Let D ⊆ IX be a preideal. Define TD by

TD =
{
λ ∈ IX :

(
∧

μ∈D
μ(x) → μ

(
y
))

≤ λ(x) → λ
(
y
)}

. (4.5)

Then TD is an I-Alexandrov topology on X, containing D.

Proposition 4.7. Let I be a nontrivial I-fuzzy topology on a set X. Define D := {μ ∈ IX : I(λ) =
1, for all λ ≤ μ}, then D is a preideal on X.

Proof. Straightforward.

Proposition 4.8. Let D be a preideal on a set X. Define T ⊆ IX by T = {λ ∈ IX : λ = μ ∨ α, μ ∈
D, α ∈ I}. Then T is an I-topology if D is σ-preideal.

Proof. Since 0 ∈ D, thenT contains all the constants fuzzy subsets onX. Secondly, if λ1, λ2 ∈ T,
then there exist μ1, μ2 ∈ D and α1, α2 ∈ I such that λ1 = μ1 ∨ α1 and λ2 = μ2 ∨ α2, then λ1 ∧ λ2 =
(μ1∧μ2)∨(μ1∧α2)∨(μ2∧α1)∨(α1∧α2). By (P3) and (P2), we get (μ1∧μ2)∨(μ1∧α2)∨(μ2∧α1) ∈ D,
hence λ1 ∧ λ2 ∈ T.

Let {λi}i∈J ⊆ T, then for all i ∈ J, there exists μi ∈ D, αi ∈ I such that λi = μi ∨ αi.
Therefore, we get ∨i∈J λi = (∨i∈J μi) ∨ (∨i∈J αi) ∈ T, since D is a σ-preideal.
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Proposition 4.9. Let τ be a fuzzifying topology on a Boolean lattice. Define d : 2X → I by for all
A ⊆ X, d(A) = ∧x,y∈A ∨B⊆X, x,y′∈B τ(B). Then d is a generalized ideal on X.

Conversely, let d be a generalized ideal on X, then τd : 2X → I, defined by for all A ⊆ X,

τ(A) = ∧
(x,y)∈A×A′

∨
B⊆X

(x,y)∈B×B′

d(B) (4.6)

is a fuzzifying topology on X.

Proof. It is a direct composition of the two maps defined by Proposition 2.6 and Theorem 3.2.
Conversely, follows from Remark 2.12 and Theorem 3.2.

Proposition 4.10. Let d be a σ-generalized ideal on a set X. Define Rd : X × X → I by for all
(x, y) ∈ X ×X, Rd(x, y) = ∧(x,y)∈B×B′(1 − d(B)).

Then, Rd is a fuzzy preorder and for all A ⊂ X, τRd(A) = d(A).

Proof. That Rd is a fuzzy preorder follows from Remark 2.12, hence according to Theorem 3.2,
for all A ⊆ X,

τRd(A) = ∧
(x,y)∈A×A′

(
1 − Rd

(
x, y
))

= ∧
(x,y)∈A×A′

(
1 − ∧

(x,y)∈B×B′
(d(B) → 0)

)
, by Remark 2.12

= ∧
(x,y)∈A×A′

(
∨

(x,y)∈B×B′
(1 − (d(B) → 0)

)

≥ 1 − (d(A) → 0)

≥ 1 − (1 − d(A)) = d(A)).

(4.7)

Secondly, we have to show that for any A ⊆ X, τRd(A) ≤ d(A).
Let t ∈ I1 such that τRd(A) > t. Then for any x ∈ A, y ∈ A′, there existsNy(x) ⊆ X such

that x ∈ Ny(x), y /∈Ny(x), and d(Ny(x)) > t. Let Ny = ∪x∈A Ny(x), then y /∈Ny, A ⊆ Ny,

and d(Ny) = d(∪x∈A Ny(x)) ≥ ∧x∈A d(Ny(x)) ≥ t, since d is σ-generelized ideal. Obviously,
A = ∩y /∈A Ny. So we would get d(A) = d(∩y /∈A Ny) ≥ ∨y /∈A d(Ny) ≥ t, by (G3). Thus d(A) ≥
τRd , which completes the proof.

Example 4.11. (1) Let D = {μ ∈ IX : μ ≤ 1/2}, and ∗ = min, then

x −→ y =

⎧⎨
⎩
1, x ≤ y,

y, x > y.
(4.8)



International Journal of Mathematics and Mathematical Sciences 15

Then D is a preideal on X, and

RD
(
x, y
)
= ∧

μ∈D
μ(x) −→ μ

(
y
)
, ∀x, y ∈ X

=

⎧⎨
⎩
1, x = y,

0, x /=y

(4.9)

is a fuzzy preorder, hence

τRD =
{
μ ∈ IX : RD

(
x, y
)
∧ μ(x) ≤ μ

(
y
)
, ∀x, y ∈ X

}
= II . (4.10)

Also, another fuzzy preorder RD may be dedeuced by D, Lemma 4.1:

RD
(
x, y
)
= inf

{
μ(x) : 1 − μ ∈ D, μ(x) < μ

(
y
)
, ∀x, y ∈ X

}

= inf
{
μ(x) : μ ∈ II , μ ≥ 1

2
, μ(x) < μ

(
y
)
, ∀x, y ∈ X

}

=

⎧⎪⎨
⎪⎩
1, x = y,

1
2
, x /=y.

(4.11)

Then

τRD =
{
λ ∈ II : RD

(
x, y
)
∧ λ(x) ≤ λ

(
y
)
, ∀x, y ∈ I

}

=
{
λ ∈ II : λ ≥ 1

2

}⋃
{α ∈ I : α constant}.

(4.12)

(2) Let τ = {μ ∈ IX : μ ≥ 1/2} ∪ {α ∈ I constants}, and ∗ = min, then Dτ = {μ ∈ II : μ ≤
1/2}, by applying Proposition 4.5.
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