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1. Introduction

Let H be a real Hilbert space; a mapping B : D(B) — H is said to be monotone if for all
x,y € D(B)

(Bx-By,x-y) >0. (1.1)
For some A > 0, the mapping B is said to be A-inverse strongly monotone if
(Bx - By, x —y) > \||Bx - By|*. (1.2)

A Minverse strongly monotone map is some time called \-cocoercive. A map B is said to be
relaxed A-cocoercive if there exists a constant A > 0 such that

(Bx-By,x-y) >-1||Bx - By|* Vx,y€K. (1.3)
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B is said to be relaxed (A, y)-cocoercive, if there exist A, y > 0 such that
(Bx - By, x - y) > -A||Bx - By|* + yllx - y|I*. (1.4)
A map B: H — H is said to be A-Lipschitzian if there exists a real number A > 0 such that

|Bx~ Byl < Mx -yl Vx,yeH. (15)

Bis a contraction map, if in the above inequality A € [0, 1) and nonexpansive if A = 1.
Let K be a nonempty, closed, and convex subset of a real Hilbert space H. A variational
inequality problem is searched for x* € K such that

(Bx*,y-x*)>0 Vyek, (1.6)

where B is some nonlinear mapping of K into H. Inequality (1.6) is called the variational
inequality.

Recall that for each x € H there exists a unique nearest point in K to x denoted by
Pxx. Thatis, ||x — Pxx|| < ||x — y|| for all y € K. Pk is called a metric projection of H onto K.
The mapping Pk is nonexpansive in this setting, that is, || Pxkx—Pxy|| < ||[x—y/|| forall x,y € H.
It is also known that Pk satisfies the following inequality ||Pxx — Pxy|* < (x -y, Pxx — Pxy).

The solution set of the problem (1.6) is denoted by VI(K, B). It is well known (see [1])
that x* € VI(K, B) if and only if

x* = Pg(x* —ABx*), Vi>0. (1.7)

A monotone map B is said to be maximal if the graph I'(B) of B is not properly contained
in the graph of any other monotone map, where I'(B) = {(x,y) € Hx H : y € Bx} fora
multivalued map B. It is also known that B is maximal monotone if and only if for (x, f) €
HxH,(x-y, f-g) >0forevery (y,g) € I'(B) implies f € Bx. Let B be a monotone mapping
defined from K into H and let Nxgq be a normal cone to K at g € K, thatis, Nxg= {p € H :
(q—u,p) 2, for all u € K}. Define a map M by

Bg+Niq, qeK,
qu{ 4+ K4 (1.8)

0, q¢ kK.

Then, M is maximal monotone and x* € M~(0) & x* € VI(K, B), see, for example, [2].
Let G : K x K — R be a bifunction on a closed convex nonempty subset K of a real
Hilbert space H. An equilibrium problem is searched for x* € K such that

G(x*,y)>0 VyeKk. (1.9)

The set of solutions of the equilibrium problem above is denoted by EP(G).
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Several physical problems (such as the theories of lubrications, filterations and flows,
moving boundary problems, see, e.g., [1, 3]) can be reduced to variational inequality or
equilibrium problems. Consequently, these problems have solutions as the solutions of these
resultant variational inequality or equilibrium problems.

Maingé [4] introduced a Halpern-type scheme and proved a strong convergence
theorem for family of nonexpansive mappings in Hilbert space.

Recently, S. Takahashi and W. Takahashi [5] introduced an iterative scheme which they
used to study the problem of approximating a common element of the set of solutions of an
equilibrium problem and the set of fixed points of a nonexpansive mapping.

More recently, Kumam and Katchang [6], W. Kumam and P. Kumam [7], Li and Su [8]
and many others (see, e.g. [9-12] and the references contained in them) studied the problem
of fixed point approximations and solutions of some equilibrium and, or solutions of some
variational inequalities problems.

In this paper we introduce a new iterative scheme for approximation of a common
element in the intersection of the set of fixed points of some countable family of nonexpansive
mappings, the set of solutions of some equilibrium problem, and the set of solutions of
some variational inequality problem and prove a new theorem. Our theorem generalizes and
improves some recent results.

2. Preliminaries

For a sequence {x,} the notation x, — x* and x, — x* means that the sequence {x,}
converges strongly and weakly to x*, repectively. A Banach space E is said to satisfy an
Opial’s condition (or in other words is an Opial’s space) if for a sequence {x,} in E with
x, — x*, then

lim inf||x, — x*|| < liminf||x, - y|| forany y € E y#x". (2.1)

It is well known that Hilbert spaces are Opial’s spaces (see [13]).
In the sequel we shall make use of the following results.

Lemma 2.1 (see [14]). Let K be a nonempty closed convex subset of H and let G be a bifunction of
K x K into R satisfying

(A1) G(x,x) =0 forall x € K;
(A2) G is monotone, i.e. G(x,y) + G(y,x) <0 forall x,y € K;
(A3) forall x,y,z € K, limsup, _,,G(t, + (1 +t)x,y) < G(x,y);

(A4) forall x € K, G(x,.) is convex and lower semicontinuous.

Let r > 0 and x € H. Then there exists z € K such that

G(z,y)+%<y—z,z—x>20, Yy € K. (2.2)
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Lemma 2.2 (see [15]). Let K be a nonempty closed convex subset of H and let G be a bifunction of
K x K into R satisfying (A1)—(A4). For r > 0and x € H defineamap T, : H — K by

T,x={zeK:G(z,y)+%(y—z,z—x)20, VyeK}. (2.3)

Then, the following holds:

(1) T, is single-valued;

(2) T, is firmly nonexpansive, that is, for any x,y € H

IT7x - Try”z < <Trx -Try,x - y); (2.4)

(3) Fix(T;) = EP(G);
(4) EP(G) is closed and convex.

Lemma 2.3 (see [16]). Let H be a real inner product space. Then, the following inequality holds:

||x+y||2 < ||x||2+2(y,x+y) Vx,y € H. (2.5)

Lemma 2.4 (see [17]). Let {x,} and {y,} be bounded sequences in a Banach space E and let {p,,}
be a sequence in [0,1] with 0 < liminf B, < limsup B, < 1. Suppose xp1 = Puyn + (1 = Br) Xy for
all integers n > 0 and Um sup(||yn+1 — Yall = [1Xne1 — xull) < 0. Then, lim ||y, — x,|| = 0.

Lemma 2.5 (see [18]). Let {a,} be a sequence of nonnegative real numbers satisfying the following
relation:

aps1 < (1 - an)an +a,0n +Yn, N2 0, (26)

Where (i) {a,} C [0,1], X a, = oo; (ii) limsup o, < 0; (iii) y, > 0;(n > 0), X y» < oo. Then,
a, — 0asn — oo.

3. Main Results
In the sequel we assume that the sequences {a,}, {0i.}; C (0,1) satisfy 3, 0in =1 - .

Theorem 3.1. Let K be a nonempty, closed, and convex subset of a real Hilbert space H. Let G be a
bifunction from K x K to R which satisfies conditions (Al)—(A4). Let {T;, i = 1,2,3,...} be family
of nonexpansive mappings of K into H and let B be a p-Lipschitzian, relaxed (A, y)-cocoercive map of
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K into H such that F := (2, Fix(T;) N EP(G) N VI(K, B) #@. For an arbitrary but fixed 6 € (0,1),
let {x,} and {y,} be sequences generated by

x1,u € H,

1
Gy ) + — (=Y Yn = %a) 20, V€K, 3.1)

Xp1 =auu+ (1-06)1 —a,)x, + 6Zol~nTiPK(I -syB)y,, n>1,

i>1

where {a,} and {0} are sequences in [0,1] and {r,} and {s,} are sequences in [0, co) satisfying

(C1) lim,, oozt = 0,

(C2) 352 an = o,

(C3) {sn} C [a,b] for some a, b satisfying 0 < a < b < 2(y — \u?) /2,

(C4) limy, . o|Spi1 = Sl = 0, limy, - o [741 — 7] = 0, limy, o0 D51 [Oine1 — Cin| = 0,

(C5) liminf,, , 1, > 0.
Then, both {x,} and {y,} converge strongly to Pru.

Proof. First, we show that (I —s,B) is nonexpansive, actually, using the property of B we have
forx,y € H,

I(I = $2B)x = (I = suB)ylI* = llx =y = su(Bx ~ By) |
=|lx - y||2 -2sy(x-y,Bx - By) + s%||Bx - By||2
< llx = yIP = 25, [-AllBx = By|P* + yllx - yI?| + 5311 Bx - By
< e = ylI? + 25, Mix = ylI* = 28yl = yI* + p2sqllx — yII?
= (1 + 25n/42)u - 25,y + yzsﬁ> [Jx = y||2

<llx-yl?
(3.2)

and thus (I - s, B) is nonexpansive.
Let x* € F; since y, = T;,x,, n € N and the fact that T;, is firmly nonexpansive (and
hence nonexpansive) we have the following;:

yn = X" = 1Ty, 20 = T, x*|| < [lon — x7]. (3.3)
We claim that {x,} satisfies

oy, = x*|| < max{|lu—x*||, [|[x1 —x*||} Vn>1. (3.4)
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We prove this by induction. Cearly the result is true for n = 1. Assume that the result holds
for n = k for some k € N. Then, for n = k + 1 we have

lxks1 = x*|| = |lax(u—x*) + (1 = 6)(1 — ag) (xx — x¥)

+ 5ZGikTiPK(I - s5kB) (yx — x")||

i>1

S agellu— x| + (1= 6)(1 — o) |k — 7|
(3.5)
+6> 0| T:Px (I = skB)yk = T;Pxc (I - sk B)x”|

i1
Sapflu— x| + (1 - ag) [l — x|

< max{|lu - x*||, ||xx — x|}

Hence the result, and so {x,} is bounded. Furthermore, {y,}, {T;Px (y» — s»By,)} and {By,}
are each bounded.

We now show that lim,, , o, ||x,1 — x| = 0. Note that y, = T, X, Yne1 = T, Xns1, SO
that

1
G(Yn 1)+ — (M= Yn Yn—Xn) 20 V7 €K,

(3.6)
G(Yne1, 1) + rnl+1 (M= Yn+1, Yns1 —Xns1) 20 V€ K.
Using (3.6) and (A2), we have

<yn+1 ~ Yu, y"r_nx" Y "*;;lx”” > >0, (3.7)

which implies that
<yn+1 = YnsYn = Yl + Y1 = Xn = r:: (Y1 = xn+1)> > 0. (3.8)

from which we get
1901 = 9 < Wt =l Bt =5l + | 1= 2y = ]|+ 39)
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If, without loss of generality M, m are real numbers such that r, > m > 0 for all n and
M := supnli{ lyn = xnll, ITiPx (I = 5, B)yall, | Byx|l} we then have

1-
.

n+1

lYns1 = Yall < Nl = xall + lYni1 = xnal

(3.10)

M
< ”xm—l - xn” + _|rn+1 - Tn|-
m

Now, define two sequences {f,} and {z,} by B, := (1-8)a,+6 and z,, := (Xy+1 —Xn+PuXn)/ Pn-
Then,

MU+ 6 351 CinTiPx (I = 5, B)yn

z 3.11
n B (3.11)
Observe that {z,} is bounded and that
a a
1201 = Zall = 1 2ne1 = xall < ﬁ:j -7 |l
6(l-a
SOyl st — Tl
ﬁn+1
6
+ Z|O'i,n+1 = OinlITiPx (I = sun1 B)yul| (3.12)
ﬁl’H—l i>1
o)
+ |ﬂn - pn+1 |Zo'i,n+1||TiPK(I - Sn+1B)yn”
ﬁn+1ﬂn i>1
6(1-a,)||B
L B0 an Byl
P
Using (3.10) we have that
a a
121 = Zall = 1261 = xall < ﬂ:: - Il
6(l-a 6(1-ay1)M
L |20 ) 1‘||xn+1 - Xl + Alml — Tl
,Bn+1 ﬁn+lm
oM oM 6(l-a,)M
+ Oin+l — Oin| + =——|Bn — + —————18, — Sp+1]-
ﬂn+1 ,Zzll in+l 1,n| ﬁn+1pn |ﬁn ﬁn+1| ﬂn | n n+1|
(3.13)
This implies
limsup(||zn+1 = znll = |l = xall) <0, (3.14)

n—oo
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and by Lemma 2.4, lim,, _, .»||z, — x|l = 0. Hence,
st = %all = fullzn - Xl — 0 as 1 — . (3.15)
Using (3.10) we have
Y1 =yull — 0 as n— oo. (3.16)

We now have

Iy = x*11? = 1T, % = T, x|

< <Tr,,xn - Trnx*r Xn — x*>

. . 3.17
=<yn_x1xn_x> ( )
1 * *
= 5 (Il = 12+ Dt = 112 = I = yll?),
so that
Y = 2117 < 120w = 2*[17 = 1200 =yl (3.18)
But,
l2tns1 = x*[17 = {{an(u = x*) + (1= 6) (1 - ) (200 — X¥)
2
+6 I:ZoinTiPK(I ~8,B)y, — TiPx (I - snB)x*]
=t (3.19)
< ttyflu = x|P + (1= 6) (1 = an) 12, — x*||?
+6 0l TiPx (I = $4B)yn — TiPx (I - 5, B)x*|]*
i>1
< atyllu = x|+ (1= 6) (1= @) l|xn = x*|1* + 6(1 = @) lyn — x"|I%.
Putting (3.18) in (3.19), we have
6(1 = an)lxn = Yll* < anllte = x| + 1205 = x*|* = |31 = 2"
= apllu = x*|P + (|10 = x| = 1xner = ) (0 = x*[| + 12001 — x*]])

< apllu = x*|1* + (1xn = xner ) (|20 = x*[| + [[xne1 — x*]1),
(3.20)



International Journal of Mathematics and Mathematical Sciences

and hence,

nli_lzr;o”xn - yall =0.

Observe also that if w, := Px(I - s,B)y,, then

[y = x*|[* = | P (I = $4B)yn — Pic(I = 5,B)x"||?
< lyn = x* = 54(Byn — Bx*) |
= |lyn — x*|I* = 284y — x*, By, — Bx*) + 2| By, — Bx"||*
<y = x*|1> - 25, [—lllByn - Bx*|I* + yllyn - x*||2] +52||By,, — Bx*||?
= lyn = x*|I? + 28, Ml|Byn = Bx*|I> = 25,y llyn — x*|I* + 53||Byn — Bx*|?

25,y
12

< llyn -2+ [anusi - ]nByn _BxP.
Also,

(B X*HZ = [lan(u—x") + (1= 6) (1 — a) (x — X¥)

2
+6 I:ZoinTiPK(I ~5,B)y, - TiPx (I - snB)x*]

i>1

< anllu = x"|P + (1= 6)(1 - ay)llxn — x|

+ 62 0inl| TiPx (I = 5,B)yn — TP (I - 5,B)x"||*

i>1
= anllu = x"|? + (1= 6)(1 - an)llxn = x*|* + 6 3 0inl| Tizon — x|
i>1

< apllu— x|+ (1= 8) (1 = atn) ot = x| + 6(1 — ) [ewy — x|
< anllu = x"|P + (1= 86)(1 - ay)llxn — x|

25,y

+6(1-ay) P2

2
25, A + s, —

2
lyn — 7|17 +

] 1By, - Bx*||2]

2

< anllit= X1 + (1 = @)l = X2 + 61 = ) [zsn“si -

(3.21)

(3.22)

Sy .
ﬂf] |Byx - Bx'II%,

(3.23)
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which implies

~6(1 - ay) [25,4 + 53 - ZZZY 1By — Bx'IP < atgllu = x| + [ = x| = s = x°|
(3.24)
so that
lim [|By, - Bx"|| = 0. (3.25)
We go further to prove that for each i € N,
Hm [[TiPic(I = $2) Byn = yall = 0. (3.26)

Consider the following estimates:

I(TiPx(I = $2B))Yu = Yull? = |(TiPc (I = $4B)) Yy — X* + x* = Y|
= llx* = yull* + 2((T;Px (I = 5,B))Yw — X", X" = )
+ (T;Px (I = 54B))yn — x*|I?
<2||x* = yull? + 2((TPx (I = $uB))Yn = Yo + Y — X*, X" =y
= 2|lyn — x*|I* + 2((T;:Px (I = $uB))Yn = Y, X* = Yu) = 2|y — x*|I?

=2((TiPx (I = $nB))Yn = Yn, X" = Yn)-
(3.27)

Using (3.1), we have

(Xpe1 = X" Y —x") = (U =x", Yy = X*) + (L — ) (1 = 6)(xp — X", yp — X*)

+ 6ZO'i,n<(TiPK(I - SnB))yn ~YntlYn-— x*, Yn — x*)

i>1
=a(Uu—x"yn—x" )+ (L—a,) (1 =) (X —Yn+ Yn — X", Yn — x*)
+6 01 ((TiPk (I = 82B)) Y ~ Y, Yn = x") + 6(1 = a) |y — x*|I?

i>1
= oy (U—x" Yy =X )+ (1 —an)(1 = 8)(Xy = Yn, Y — X*)
+ 5ZOi,n< (TiPx(I = $uB))Yn — Yn, Yn — x*) + (1 = ) (1 = 8)[lyn — x*||?

i>1

+6(1- an)“]/n - x*”Z/
(3.28)
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which implies

6Zoi,n((T,~PK(I = 5uB))Yn — Yn, X" —yu) = ap(u—x*, y, — x*)
i>1

+ (1 =an)(1=06)(xn = Yn, Yn — x*)
+ (1_an)<yn_x*/yn_X*>

_ <xn+1 _ x*’ yn _ x*> (329)
= an(” — Xn+1,Yn — x*>
+(1-a,)(1-6)(xn—Yn Yn—x")
+ (1 - ‘xn)<yn —Xn+1,Yn — x*>-
Using this and (3.27), we get
0 3 0l (TuPic (1 = $,B) i = Yl < (1t = 11,y = )
P - Oin il'K Sn Yn—VYn =~ Upn n+l, Yn
) . (3.30)
+ (1= an)(1=06)(xXn = Yn, Yn — x*)
+ (1 - an)(]/n —Xn+1,Yn — .‘Xf*>.
Since {x,}, {y,} are each bounded and using (3.21), we have that
I [[(TiPx (I = 8,B))yn —yull =0 VieN. (3.31)
Using this and (3.21), we also have
JEI;O”(EPK(I —snB))yn —xn|| =0 VieN. (3.32)

Next we show that limsup, _, (4 —w,x, —w) < 0, where w = Pnz, Fix(1)nEP(G)nVI(K,B)U- Let
{xn, } be a subsequence of {x,} such that limsup, ,_(u-w,x,~w) =lim;_, o, (u-w, x,, —w).

Since {y,} is bounded, there exists a subsequence {y,,} of {y,} such that y,, — z.
Then, z € NZ; Fix(TiPx (I - s,B)),otherwise, for i € N, we have

liminfllyy, — 2| <lim infl|y, — TiP (1 - sn].B>z||

< liminf

j— oo

Y, ~TiPi (1 = 50, B) o ||+ || TiPic (T=5, B )y, ~TiPic (1 - 5, B) 2|

<liminfl|ly,, - z|,
jooo

(3.33)

which is a contradiction, so z € (Z; Fix(T;Px (I — s,,B)).
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Next we show that z € EP(G). Since y,, = T;, x,, we have
1
G(Yn 1) + — (N =Y Yn—xn) 20, YneK. (3.34)

It follows from (A2) that

n— Xn
<11 ~ynZ p >2 G(1, Yn), (3.35)
n

and so

ni — Xn;
<11 ~ Yo > > G, Yn)- (3.36)

i

Since (Yn, — Xn,)/1n; — 0, yn, — z and using (A4), we have G(77,z) < 0 for all 7 € K. For a
real number t,0 <t <1land 5 € K, let #; = trj+ (1 —t)z. Clearly 7; € K, so that using (A1) and
(A4), we have

0=G(ne,me) <tG(me,m) + (1= 1)G(1r, z) <Gt 7). (3.37)

This implies G(7;,17) > 0, and using this and (A3) we have that G(z,7) > 0 for all 7 € K and
hence z € EP(G).
Next we show that z € VI(K, B).
Let x* € F then, we have the following:
llwn = x*|I* = |Px (I = 5,B)yn — P (I - 5,B)x"||>
<AYn = $nByn — (x* = 5,Bx"), wy, — x*)

3.38
=(Yn —x", wy — X*) — 5, ( By, — Bx*, wy, — x*) (338)

1 * * * *
< 5 [IRkon = %71+ llyn = 1 = lewn = yall?] = s (By - Bx",w, = x°),

so that

llwn - x*”2 < lyn - X*HZ = lwn - ynllz = 28,(Byy — Bx*,wy, — x*). (3.39)
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We then have

%51 = X1 = llan (1 = %) + (1 = @) (1 = 6) (o = x*) + 6 Y, Oin [ Titon = x7] |2

i>1

< ayllu = x| + (1= ) (1= 8) [t = x| + (1 = ) 6|y — x|

< apllu = x| + (1= ) (1 = 6) [l = x*|?

+(1- an)6[||yn - x*||2 = ||w, - y,,||2 -25,(By, — Bx*, w, - x*)]

< etullu = x* | + (1= @) (1 = 8) |3 — x*||

+(1-a,)o [”xn - X*HZ = ||w, - ]/n“2 - 25n<B]/n - Bx*, w, - x*>]

= ayllu = x|+ (1= ) [0 = %717 = 6(1 = ay)[wn = yall®

-25,6(1-a,)(By, — Bx*,w, —x"),

so that

6(1 - ay)llwn - ]/n”2 < apllu - x*”2 + %0 — X*HZ = llxne1 = x’k”2

—265,(1 - an)(Byn — Bx*, wy, — x*),

andasa, — 0, ||x, — x441]| — Oand ||By, — Bx*|| — Oasn — oo, we get

nlgr;o”yn —wy| = 0.

Using this and (3.21) we also have

lim ||x, — w,|| = 0.
n—oo

As B is arelaxed (4, y)-cocoercive and using condition (C3) we have for x,y € H

(Bx—By,x—y) > (-0)|Bx = Byl +ylx - yI* > (y - 4) Ix = yI* 2 0,

13

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)
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and so B is monotone. If

Bg+Nkq, qek,
qu{ TNk g (3.45)

0, q¢K,

then M is maximal monotone. Let I'(M) denote the graph of M.

Let (g,p) € I'(M). Since p — Bq € Nkxq and w, € K, we have (p — Bg,q — w,) > 0 by
definition of Ngg. Also, as w, = Px(y, — syBy,) (using property of the projection Px), we
have

(wn = (Yn = $nBYn), g —wn) 20, (3.46)
and hence

<@ + By, q - wn> > 0. (3.47)

Using this, we obtain the following estimates:

(p,q—wn) > (Bq,q—wy,)

Wn; — Yn;

n;

2<quq_wni>‘< +Byni/q_wni>

_ Wn; = Yn
= <Bq T Byn;,q - wni> (3.48)

n

= (Bq - me,q— wn,'> + <BZUni - Byn,-rq_ Wni> - <@/q - ZUni>

> (Bwy, — Byn,, g — wy,) - <@/q _wni>r

which implies (p,q — z) > 0 (letting i — o0).
Since M is maximal monotone, we obtained that z € M~!(0) and hence z € VI(K, B).
We mention here that since we proved that z € Nz, Fix(TiPx (I - s,B)) and z €
VI(K, B), then z € "%, Fix(T;). So, clearly z € NZ; Fix(T;) N EP(G) N VI(K, B).
Since w = P, Fix(T)nEP(G)nVI(K,B) U, We have

limsup(u-w,x, —w) = lim(u-w,x,, —w) =(u-w,z-w) <0. (3.49)
n—oo t—oo

Hence, limsup, , (u-w,x, —w) <0.
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From the recursion formula (3.1) and Lemma 2.3, we have

%041 = wll? = || an(u = @) + (1 = an) (1 = ) (xn — w)
2
+6201-,n [T;Px(I - s,B)y, — w]
i>1
2
<1 = an) (1= 8) (xtn —w) + 603 [T;Px (I = 5,B)yw — w]

i>1

(3.50)

+ 20, (U — W, Xpp1 — W)

2
< [(1 - an)(l - 6)||xn - w” + 6ZGi,n||TiPK(I - SnB)yn - wll]
i>1
+ 20, (U — W, Xy — W)
< (1=ay)|x, - w||2 + 20, (U — W, Xps1 — W).
Using Lemma 2.5, we have that {x,} and consequently {y,} converge to w and the proof is
complete. O

The following corollaries follow from Theorem 3.1.

Corollary 3.2. Let K, G and B be as in Theorem 3.1 and let {T;, i =1,2,3,..., N} be finite family of
nonexpansive mappings of K into H. Let F := nfﬁl Fix(T;) NEP(G) N VI(K, B) #@. For an arbitrary
but fixed 6 € (0,1), let {x,} and {y,} be sequences generated by

x1,u € H,

1
G ns + — “YnrYn T An 20/ v EK/
(Y1) + 1= Y Y = ) U (351)

N
Xpp1 =+ (1-6)(1—a,)x, +6 Z OinTiPk(I-5,B)y,, n>1,
i=1

where {a,} and {0} are sequences in [0,1] and {r,} and {s,} are sequences in [0, oo) satisfying
(C1) limyy— ooty = 0, S0, 0in = (1 — @),
(C2) 255 an = o,
(C3) {sn} C [a,b] for some a,b satisfying 0 < a < b < 2(y — \u?) /2,
(C4) limy— oo |Sps1 = Sul = 0, imy s co|Fns1 — 7| = 0, limyy s o0 311 [0t a1 — Gin| =0,
(C5) liminf,,_, 1, > 0.

Then, both {x,} and {y,} converge strongly to Pru.
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Corollary 3.3. Let K and G be as in Theorem 3.1. Let T be a nonexpansive map of K into H. Let
F := Fix(T) N EP(G) #0. For an arbitrary but fixed 6 € (0,1), let {x,} and {y,} be sequences
generated by

x1,u € H,

1
G(Yn 1) + — (N =YnYn=Xn) 20, V€K, (3.52)

Xpe1=0pu+ (1-0)1 -ay)x, +6(1 —ay)Ty,, n>1,

where {a,} is a sequence in [0,1] and {r,} is a sequences in [0, o) satisfying
(C1) limy, _, ax,, =0
(C2) 37 an =0,
(C3) limy,— o |71 — 70| =0,
(C4) liminf,,_, 1, > 0.
Then, both {x,} and {y.} converge strongly to Pru.

Remark 3.4. Prototypes of the sequences {a,} and {0;,} in our theorem are the following:

1
= T i = 2in+1)

VieN. (3.53)
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