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1. Introduction

Since Chang [1] introduced fuzzy theory into topology, many authors have discussed various
aspects of fuzzy topology. In a Chang I-topology, the open sets are fuzzy, but the topology
comprising those open sets is a crisp subset of IX . However, in a completely different
direction, Höhle [2] presented a notion of fuzzy topology being viewed as an I-fuzzy subset
of 2X . Then Kubiak [3] and Šostak [4] independently extended Höhle’s fuzzy topology to
L-subsets of LX , which is called L-fuzzy topology (see [5, 6]). From a logical point of view,
Ying [7] studied Höhle’s topology and called it fuzzifying topology.

Connectivity is one of the most important notions in general topology. It has been
generalized to L-topology in terms of many forms (see [8–17], etc.). In a fuzzifying
topological space, Ying [18] introduced a definition of connectivity and Fang [19] proved
Fan’s theorem. In a [0, 1]-fuzzy topological space (X,T), Šostak introduced a notion of
connectedness degree by means of the level [0, 1]-topological spaces (X,Tα) [20, 21], that
is, it can be viewed as connectivity in a [0, 1]-topological space. Although a definition of
connectivity was also presented by Yue and Fang [22] in [0, 1]-fuzzy topological spaces, it
was defined for whole L-fuzzy topological space not for arbitrary L-fuzzy subset.

In this paper, we first introduce the notion of separatedness degrees in L-fuzzy
topological spaces by means of L-fuzzy closure operators. Furthermore, we present the
notion of connectedness degrees of L-fuzzy subsets, which is a generalization of Yue and
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Fang’s connectedness degree. Many properties of connectedness in general topology can be
generalized to L-fuzzy topological spaces.

2. Preliminaries

Throughout this paper, (L,
∨
,
∧
,′ ) denotes a completely distributive DeMorgan algebra. The

smallest element and the largest element in L are denoted by ⊥ and �, respectively. The set of
all nonzero co-prime elements of L is denoted by J(L).

We say that a is wedge below b in L, denoted by a ≺ b, if for every subset D ⊆ L,
∨
D ≥ b implies d ≥ a for some d ∈ D. A complete lattice L is completely distributive if and

only if b =
∨
{a ∈ L : a ≺ b} for each b ∈ L. For any b ∈ L, define β(b) = {a ∈ L : a ≺ b}. Some

properties of β can be found in [23].
For a nonempty set X, the set of all nonzero coprime elements of LX is denoted by

J(LX). It is easy to see that J(LX) is exactly the set of all fuzzy points xλ (λ ∈ J(L)). The
smallest element and the largest element in LX are denoted by ⊥ and �, respectively.

For any L-fuzzy set A ∈ LX and any a ∈ L, we use the following notations:

A[a] = {x ∈ X : A(x) ≥ a},

a(x) = a, ∀x ∈ X.
(2.1)

Definition 2.1 (see [3–5]). An L-fuzzy topology on a set X is a map T : LX → L such that

(LFT1) T(�) = T(⊥) = �;

(LFT2) for all U,V ∈ LX , T(U ∧ V ) ≥ T(U) ∧ T(V );

(LFT3) for all Uj ∈ LX , j ∈ J , T(
∨

j∈JUj) ≥
∧

j∈JT(Uj).

T(U) can be interpreted as the degree to whichU is an open set.T∗(U) = T(U′)will be called
the degree of closedness of U. The pair (X,T) is called an L-fuzzy topological space.

A mapping f : (X,T1) → (Y,T2) is said to be continuous with respect to L-fuzzy
topologies T1 and T2 if T1(f←L (U)) ≥ T2(U) holds for all U ∈ LY , where f←L is defined by
f←L (U)(x) = U(f(x)) [24].

Definition 2.2 (see [25]). An L-fuzzy closure operator on X is a mapping Cl : LX → LJ(LX)

satisfying the following conditions:

(LFC1) Cl(A)(xλ) =
∧

μ≺λCl(A)(xμ), for all xλ ∈ J(LX);

(LFC2) Cl(⊥)(xλ) = ⊥ for any xλ ∈ J(LX);

(LFC3) Cl(A)(xλ) = � for any xλ ≤ A;

(LFC4) Cl(A ∨ B) = Cl(A) ∨ Cl(B);

(LFC5) for all a ∈ L \ {⊥}, (Cl(
∨
(Cl(A))[a]))[a] ⊆ (Cl(A))[a].

Cl(A)(xλ) is called the degree to which xλ belongs to the closure of A.
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Lemma 2.3 (see [25]). Let (X,T) be an L-fuzzy topological space and let Cl be theL-fuzzy closure
operator induced by T. Then for all xλ ∈ J(LX), for all A ∈ LX ,

Cl(A)(xλ) =
∧{(

T
(
D′
))′ : D ∈ LX, xλ/≤D ≥ A

}

=
∧

xλ/≤D≥A

(
T
(
D′
))′

.
(2.2)

Definition 2.4 (see [17, 23]). In an L-topological space (X, τ), two L-fuzzy sets A, B are called
separated if A− ∧ B = A ∧ B− = ⊥, where A− denotes the closure of A.

Definition 2.5 (see [17, 23]). In an L-topological space (X, τ), an L-fuzzy set D is called
connected if D can not be represented as a union of two separated non-null L-fuzzy sets.

3. Separatedness Degrees in L-Fuzzy Topological Spaces

In this section, in order to generalize Definition 2.5 to L-fuzzy topological spaces, we will
introduce the concept of separatedness degrees in L-fuzzy topological spaces by means of
L-fuzzy closure operators.

Definition 3.1. Let (X,T) be an L-fuzzy topological space and A,B ∈ LX . Define

Sep(A,B) =

(
∧{

(Cl(B)(xλ))
′ : xλ ≤ A

}
)

∧
(
∧{(

Cl(A)
(
yμ

))′ : yμ ≤ B
}
)

=

(
∧

xλ≤A
(Cl(B)(xλ))

′
)

∧

⎛

⎝
∧

yμ≤B

(
Cl(A)

(
yμ

))′

⎞

⎠.

(3.1)

Then Sep(A,B) is said to be the separatedness degree of A and B.

The following result is obvious.

Proposition 3.2. Let T : LX → {⊥,�} be an L-topology on X and A,B ∈ LX . Then Sep(A,B) = �
if and only if A and B are separated in (X,T).

Lemma 3.3. Let (X,T) be an L-fuzzy topological space and A,B ∈ LX . If A ∧ B /=⊥, then
Sep(A,B) = ⊥.

Proof. From A ∧ B /=⊥, we can take zγ ∈ J(LX) such that zγ ≤ A ∧ B. Thus we have

Sep(A,B) =

(
∧

xλ≤A
(Cl(B)(xλ))

′
)

∧
(
∧

xλ≤B
(Cl(A)(xλ))

′
)

≤
(
Cl(B)

(
zγ
))′ ∧

(
Cl(A)

(
zγ
))′ = �′ ∧ �′ = ⊥ .

(3.2)
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Lemma 3.4. Let (X,T) be an L-fuzzy topological space, and A,B,C,D ∈ LX . If C ≤ A and D ≤ B,
then Sep(A,B) ≤ Sep(C,D).

Proof. If C ≤ A and D ≤ B, then Cl(C) ≤ Cl(A) and Cl(D) ≤ Cl(B). Hence we have

Sep(A,B) =

(
∧

xλ≤A
(Cl(B)(xλ))

′
)

∧

⎛

⎝
∧

yμ≤B

(
Cl(A)

(
yμ

))′

⎞

⎠

≤
(
∧

xλ≤A
(Cl(D)(xλ))

′
)

∧

⎛

⎝
∧

yμ≤B

(
Cl(C)

(
yμ

))′

⎞

⎠

≤
(
∧

xλ≤C
(Cl(D)(xλ))

′
)

∧

⎛

⎝
∧

yμ≤D

(
Cl(C)

(
yμ

))′

⎞

⎠

= Sep(C,D).

(3.3)

Lemma 3.5. Let (X,T) be an L-fuzzy topological space, A,B ∈ LX and a ∈ J(L). Then
(Sep(A,B))′ /≥ a if and only if there exist D,E ∈ LX such that

D ≥ A, E ≥ B, D ∧ B = E ∧A = ⊥,
(
T
(
D′
))′ ∨

(
T
(
E′
))′

/≥ a. (3.4)

Proof. Suppose that (Sep(A,B))′/≥a. Then (Sep(A,B))′/≥b for some b ∈ β∗(a). This implies

∨

xλ≤A
Cl(B)(xλ) ∨

∨

yμ≤B
Cl(A)

(
yμ

)
/≥ b. (3.5)

Further more, we have

∨

xλ≤A

∧

xλ/≤E≥B

(
T
(
E′
))′ ∨

∨

yμ≤B

∧

yμ/≤D≥A

(
T
(
D′
))′

/≥ b. (3.6)

Hence for any xλ ≤ A and for any yμ ≤ B, there are Dyμ, Exλ ∈ LX such that xλ/≤Exλ ≥
B, yμ/≤Dyμ ≥ A and (T(D′yμ

))′ ∨ (T(E′xλ
))′/≥b. Let E =

∧
xλ≤AExλ and D =

∧
yμ≤BDyμ . Then,

obviously, we have that D ≥ A, E ≥ B, D ∧ B = E ∧A = ⊥ and

(
T
(
D′
))′ ∨

(
T
(
E′
))′ =

⎛

⎝T

⎛

⎝
∨

yμ≤B
D′yμ

⎞

⎠

⎞

⎠

′

∨
(

T
(
∨

xλ≤A
E′xλ

))′

≤
∨

yμ≤B

(
T
(
D′yμ

))′
∨
∨

xλ≤A

(
T
(
E′xλ

))′
/≥ a.

(3.7)
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Conversely if there exist D,E ∈ LX such that

D ≥ A, E ≥ B, D ∧ B = E ∧A = ⊥,
(
T
(
D′
))′ ∨

(
T
(
E′
))′

/≥ a. (3.8)

Then by

(
Sep(A,B)

)′ =
∨

xλ≤A
Cl(B)(xλ) ∨

∨

yμ≤B
Cl(A)

(
yμ

)

=
∨

xλ≤A

∧

xλ/≤G≥B

(
T
(
G′
))′ ∨

∨

yμ≤B

∧

yμ/≤H≥A

(
T
(
H ′))′

≤
(
T
(
D′
))′ ∨

(
T
(
E′
))′

(3.9)

we can obtain that (Sep(A,B))′/≥a.

4. Connectedness Degrees in L-Fuzzy Topological Spaces

Definition 4.1. Let (X,T) be an L-fuzzy topological space and G ∈ LX . Define

Con(G) =
∧{(

Sep(A,B)
)′ : A,B ∈ LX \

{
⊥
}
, G = A ∨ B

}

=
∧
⎧
⎨

⎩

∨

xλ≤A
Cl(B)(xλ) ∨

∨

yμ≤B
Cl(A)

(
yμ

)
: A,B ∈ LX \

{
⊥
}
, G = A ∨ B

⎫
⎬

⎭
.

(4.1)

Then Con(G) is said to be the connectedness degree of G.

The following proposition shows that Definition 4.1 is a generalization of
Definition 2.5.

Proposition 4.2. Let T : LX → {⊥,�} be an L-topology on X and G ∈ LX . Then Con(G) = � if
and only if G is connected in (X,T).

Theorem 4.3. Let (X,T) be an L-fuzzy topological space and G ∈ LX . Then

Con(G) =
∧{(

T
(
A′
))′ ∨

(
T
(
B′
))′ : G ∧A/=⊥, G ∧ B /=⊥, G ∧A ∧ B = ⊥, G ≤ A ∨ B

}
. (4.2)



6 International Journal of Mathematics and Mathematical Sciences

Proof. On one hand, we have the following inequality:

Con(G)

=
∧
⎧
⎨

⎩

∨

xλ≤A
Cl(B)(xλ) ∨

∨

yμ≤B
Cl(A)

(
yμ

)
: A,B ∈ LX \

{
⊥
}
, G = A ∨ B

⎫
⎬

⎭

=
∧
⎧
⎨

⎩

∨

xλ≤A

∧

xλ/≤D≥B

(
T
(
D′
))′ ∨

∨

yμ≤B

∧

yμ/≤E≥A

(
T
(
E′
))′ : A,B ∈ LX \

{
⊥
}
, G = A ∨ B

⎫
⎬

⎭

=
∧
⎧
⎨

⎩

∨

xλ≤G∧A

∧

xλ/≤D≥G∧B

(
T
(
D′
))′ ∨

∨

yμ≤G∧B

∧

yμ/≤E≥G∧A

(
T
(
E′
))′ : G ∧A/=⊥, G ∧ B /=⊥, G ≤A ∨ B

⎫
⎬

⎭

≤
∧
⎧
⎨

⎩

∨

xλ≤G∧A

(
T
(
B′
))′ ∨

∨

yμ≤G∧B

(
T
(
A′
))′ : G ∧A/=⊥, G ∧ B /=⊥, G ∧A ∧ B = ⊥, G ≤ A ∨ B

⎫
⎬

⎭

=
∧{(

T
(
B′
))′ ∨

(
T
(
A′
))′ : G ∧A/=⊥, G ∧ B /=⊥, G ∧A ∧ B = ⊥, G ≤ A ∨ B

}
;

(4.3)

on the other hand, in order to prove the inverse, we suppose that Con(G) /≥ a (a ∈ J(L)).
Then there exist A,B ∈ LX \ {⊥} such that G = A ∨ B and (Sep(A,B))′/≥a. By Lemma 3.5 we
know that there exists D,E ∈ LX such that

D ≥ A, E ≥ B, D ∧ B = E ∧A = ⊥,
(
T
(
D′
))′ ∨

(
T
(
E′
))
/≥a. (4.4)

Obviously G ∧D/=⊥, G ∧ E/=⊥, G ∧D ∧ E = ⊥, G ≤ D ∨ E. Hence we have

∧{(
T
(
B′
))′ ∨

(
T
(
A′
))′ : G ∧A/=⊥, G ∧ B /=⊥, G ∧A ∧ B = ⊥, G ≤ A ∨ B

}
/≥a. (4.5)

Therefore,

Con(G) ≥
∧{(

T
(
B′
))′ ∨

(
T
(
A′
))′ : G ∧A/=⊥, G ∧ B /=⊥, G ∧A ∧ B = ⊥, G ≤ A ∨ B

}
. (4.6)

The proof is completed.
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Example 4.4. Let X = {x, y} and L = [0, 1]. Define B ∈ [0, 1]X by B(x) = 0.5 and B(y) = 0, and
define C ∈ [0, 1]X by C(y) = 0.5 and C(x) = 0, respectively. LetT : [0, 1]X → [0, 1] be defined
as follows:

T(A) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, A ∈
{
�,⊥, 0.5

}
,

0.5, A ∈ {B′, C′},

0, others.

(4.7)

Then T is an L-fuzzy topology on X. It is easy to verify that Con(a) = 0.5 for any a ∈ (0, 0.5]
and Con(b) = 1 for any b ∈ (0.5, 1].

Corollary 4.5. Let (X,T) be an L-fuzzy topological space. Then

Con
(
�
)
=
∧{(

T
(
A′
))′ ∨

(
T
(
B′
))′ : A/=⊥, B /=⊥, A ∧ B = ⊥, � = A ∨ B

}

=
∧{

(T(A))′ ∨ (T(B))′ : A/=⊥, B /=⊥, A ∧ B = ⊥, � = A ∨ B
}
.

(4.8)

Remark 4.6. Yue and Fang [22] introduced a definition of connectivity in a [0, 1]-fuzzy
topological space. It is easy to see that Yue and Fang’s definition is a special case of our
definition from Corollary 4.5.

Theorem 4.7. For any e ∈ J(LX), it follows that Con(e) = �.

Proof. From Theorem 4.3 we have

Con(e) =
∧{(

T
(
A′
))′ ∨

(
T
(
B′
))′ : e ∧A/=⊥, e ∧ B /=⊥, e ∧A ∧ B = ⊥, e ≤ A ∨ B

}

=
∧
∅ = �.

(4.9)

Theorem 4.8. For any G ∈ LX , one has

∨

r∈J(L)
Con

(
∨

(Cl(G))[r]

)

≥ Con(G). (4.10)

Proof. Let a ∈ J(L) and a ≤ Con(G). Now we prove
∨

r∈J(L)Con(
∨
(Cl(G))[r]) ≥ a. Suppose

that
∨

r∈J(L)Con(
∨
(Cl(G))[r]) /≥ a. Then Con(

∨
(Cl(G))[a]) /≥ a. By Theorem 4.3 we know that

there exists A,B ∈ LX such that

(
∨

(Cl(G))[a]

)

∧A/=⊥,
(
∨

(Cl(G))[a]

)

∧ B /=⊥,
(
∨

(Cl(G))[a]

)

∧A ∧ B = ⊥,

∨
(Cl(G))[a] ≤ A ∨ B,

(
T
(
B′
))′ ∨

(
T
(
A′
))′

/≥a.

(4.11)
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By (
∨
(Cl(G))[a]) ∧ A/=⊥ we know that there exists xλ ≤ A such that Cl(G)(xλ) ≥ a.

Furthermore by (
∨
(Cl(G))[a]) ∧A ∧ B = ⊥ we obtain xλ/≤ B.

Now we prove G ∧ A/=⊥. In fact, if G ∧ A = ⊥, then by G ≤
∨
(Cl(G))[a] ≤ A ∨ B we

have G ≤ B, hence it follows that

a ≤ Cl(G)(xλ) =
∧

xλ/≤E≥G

(
T
(
E′
))′ ≤

(
T
(
B′
))′

, (4.12)

contradicting a /≤ (T(B′))′. Analogously, we can prove G ∧ B /=⊥. Thus by

G ∧A/=⊥, G ∧ B /=⊥, G ∧A ∧ B = ⊥,

G ≤ A ∨ B,
(
T
(
B′
))′ ∨

(
T
(
A′
))′

/≥ a,
(4.13)

and Theorem 4.3, we know that Con(G) /≥ a, contradicting Con(G) ≥ a. It is proved that
∨

r∈J(L)Con(
∨
(Cl(G))[r]) ≥ Con(G).

Theorem 4.9. For any G,H ∈ LX , one has

Con(G ∨H) ≥
(
Sep(G,H)

)′ ∧ Con(G) ∧ Con(H). (4.14)

Proof. Let a ∈ J(L) and a ≤ (Sep(G,H))′ ∧Con(G)∧Con(H). Nowwe prove Con(G∨H) ≥ a.
Suppose that Con(G ∨H)/≥ a. Then by Theorem 4.3 we know that there exist A,B ∈ LX such
that

(G ∨H) ∧A/=⊥, (G ∨H) ∧ B /=⊥, (G ∨H) ∧A ∧ B = ⊥,

G ∨H ≤ A ∨ B,
(
T
(
B′
))′ ∨

(
T
(
A′
))′

/≥ a.
(4.15)

By (G ∨H) ∧A/=⊥we know that one of G ∧A/=⊥ and H ∧A/=⊥must be true.
Suppose thatG∧A/=⊥ (the case ofH∧A/=⊥ is analogous). Thenwemust haveG ∧ B =

⊥, otherwise if G ∧ B /=⊥, then by

G ∧A/=⊥, G ∧ B /=⊥, G ∧A ∧ B = ⊥, G ≤ A ∨ B,
(
T
(
B′
))′ ∨

(
T
(
A′
))′

/≥ a (4.16)

we know that Con(G)/≥ a, contradicting Con(G) ≥ a. In this case by (G∨H)∧B /=⊥we know
that H ∧ B /=⊥. Analogously we can prove H ∧A = ⊥. Thus by G ∨H ≤ A ∨ B we can obtain
that G ≤ A andH ≤ B. Hence by

G ≤ A, H ≤ B, G ∧ B = H ∧A = ⊥,
(
T
(
B′
))′ ∨

(
T
(
A′
))′

/≥ a (4.17)

and Lemma 3.5 we know that (Sep(G,H))′ /≥ a, contradicting (Sep(G,H))′ ≥ a. This shows
that Con(G ∨H) ≥ a. It is proved that Con(G ∨H) ≥ (Sep(G,H))′ ∧ Con(G) ∧ Con(H).

By Lemma 3.3 we can obtain the following result.
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Corollary 4.10. Let (X,T) be an L-fuzzy topological space and G,H ∈ LX . If A ∧ B /=⊥, then
Con(G ∨H) ≥ Con(G) ∧ Con(H).

Theorem 4.11. Let (X,T) be an L-fuzzy topological space and G ∈ LX . Then

Con(G) =
∧

xλ,yμ≤G

∨{
Con

(
Dxλyμ

)
: xλ, yμ ≤ Dxλyμ ≤ G

}
. (4.18)

Proof. It is obvious that

Con(G) ≤
∧

xλ,yμ≤G

∨{
Con

(
Dxλyμ

)
: xλ, yμ ≤ Dxλyμ ≤ G

}
. (4.19)

Now we prove that

Con(G) ≥
∧

xλ,yμ≤G

∨{
Con

(
Dxλyμ

)
: xλ, yμ ≤ Dxλyμ ≤ G

}
. (4.20)

Suppose that
∧

xλ,yμ≤G
∨
{Con(Dxλyμ) : xλ, yμ ≤ Dxλyμ ≤ G} ≥ a (a ∈ J(L)). Take a

fixed xλ ≤ G. Then for any yμ ≤ G, there exists a Dxλyμ ∈ LX such that xλ, yμ ≤ Dxλyμ ≤ G
and Con(Dxλyμ) ≥ a. Let Dxλ =

∨
yμ≤GDxλyμ . Obviously Dxλ = G and

∧
yμ≤GDxλyμ /=⊥. By

Corollary 4.10 we easily obtain Con(G) = Con(Dxλ) ≥
∧

yμ≤GCon(Dxλyμ) ≥ a. This shows

Con(G) ≥
∧

xλ,yμ≤G

∨{
Con

(
Dxλyμ

)
: xλ, yμ ≤ Dxλyμ ≤ G

}
. (4.21)

Theorem 4.12. If f →L : (X,T1) → (Y,T2) is continuous, then Con(f →L (G)) ≥ Con(G).

Proof. This can be proved from Theorem 4.3 and the following inequality:

Con
(
f →L (G)

)
=
∧{ (

T2
(
A′
))′ ∨

(
T2
(
B′
))′ : f →L (G) ∧A/=⊥, f →L (G) ∧ B /=⊥,

f →L (G) ∧A ∧ B = ⊥, f →L (G) ≤ A ∨ B
}

≥
∧{(

T2
(
A′
))′ ∨

(
T2
(
B′
))′ : G ∧ f←L (A)/=⊥, G ∧ f←L (B)/=⊥,

G ∧ f←L (A) ∧ f←L (B) = ⊥, G ≤ f←L (A) ∨ f←L (B)
}

≥
∧{(

T1
(
f←L
(
A′
)))′ ∨

(
T1
(
f←L
(
B′
)))′ : G ∧ f←L (A)/=⊥, G ∧ f←L (B)/=⊥,

G ∧ f←L (A) ∧ f←L (B) = ⊥, G ≤ f←L (A) ∨ f←L (B)
}

≥ Con(G).
(4.22)
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