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1. Introduction

Throughout we deal with fuzzymatrices that is, matrices over a fuzzy algebraFwith support
[0, 1] under max-min operations. For a, b ∈ F, a + b = max{a, b}, a · b = min{a, b}, let Fmn

be the set of all m × n matrices over F, in short Fnn is denoted as Fn. For A ∈ Fn, let AT ,
A+, R(A), C(A), N(A), and ρ(A) denote the transpose, Moore-Penrose inverse, Row space,
Column space, Null space, and rank of A, respectively. A is said to be regular if AXA = A
has a solution. We denote a solution X of the equation AXA = A by A− and is called a
generalized inverse, in short, g-inverse of A. However A{1} denotes the set of all g-inverses
of a regular fuzzy matrix A. For a fuzzy matrix A, if A+ exists, then it coincides with AT [1,
Theorem 3.16]. A fuzzy matrix A is range symmetric if R(A) = R(AT ) and Kernel symmetric
if N(A) = N(AT ) = {x : xA = 0}. It is well known that for complex matrices, the concept
of range symmetric and kernel symmetric is identical. For fuzzy matrix A ∈ Fn, A is range
symmetric, that is, R(A) = R(AT ) implies N(A) = N(AT ) but converse needs not be true [2,
page 217]. Throughout, let k-be a fixed product of disjoint transpositions in Sn = 1, 2, . . . , n
and, K be the associated permutation matrix. A matrix A = (aij) ∈ Fn is k-Symmetric if
aij = ak(j)k(i) for i, j = 1 to n. A theory for k-hermitian matrices over the complex field is
developed in [3] and the concept of k-EP matrices as a generalization of k-hermitian and
EP (or) equivalently kernel symmetric matrices over the complex field is studied in [4–6].
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Further, many of the basic results on k-hermitian and EP matrices are obtained for the k-
EP matrices. In this paper we extend the concept of k-Kernel symmetric matrices for fuzzy
matrices and characterizations of a k-Kernel symmetric matrix is obtained which includes the
result found in [2] as a particular case analogous to that of the results on complex matrices
found in [5].

2. Preliminaries

For x = (x1, x2, . . . , xn) ∈ F1×n, let us define the function κ(x) = (xk(1), xk(2), . . . , xk(n))
T ∈ Fn×1.

Since K is involutory, it can be verified that the associated permutation matrix satisfy the
following properties.

Since K is a permutation matrix, KKT = KTK = In and K is an involution, that is,
K2 = I, we have KT = K.

(P.1) K = KT , K2 = I, and κ(x) = Kx for A ∈ Fn,

(P.2) N(A) = N(AK),

(P.3) if A+ exists, then (KA)+ = A+K and (AK)+ = KA+

(P.4) A+ exist if and only if AT is a g-inverse of A.

Definition 2.1 (see [2, page 119]). For A ∈ Fn is kernel symmetric if N(A) = N(AT ), where
N(A) = {x/xA = 0 and x ∈ F1×n}, we will make use of the following results.

Lemma 2.2 (see [2, page 125]). For A,B ∈ Fn and P being a permutation matrix, N(A) =
N(B) ⇔ N(PAPT ) = N(PBPT)

Theorem 2.3 (see [2, page 127]). For A ∈ Fn, the following statements are equivalent:

(1) A is Kernel symmetric,

(2) PAPT is Kernel symmetric for some permutation matrix P ,

(3) there exists a permutation matrix P such that PAPT =
[
D 0
0 0

]
with det D > 0.

3. k-Kernel Symmetric Matrices

Definition 3.1. A matrix A ∈ Fn is said to be k-Kernel symmetric ifN(A) = N(KATK)

Remark 3.2. In particular, when κ(i) = i for each i = 1 to n, the associated permutation matrix
K reduces to the identity matrix and Definition 3.1 reduces to N(A) = N(AT ), that is, A is
Kernel symmetric. If A is symmetric, then A is k-Kernel symmetric for all transpositions k in
Sn.

Further, A is k-Symmetric implies it is k-kernel symmetric, for A = KATK
automatically implies N(A) = N(KATK). However, converse needs not be true. This is,
illustrated in the following example.



International Journal of Mathematics and Mathematical Sciences 3

Example 3.3. Let

A =

⎡

⎢⎢
⎣

0 0 0.6

0.5 1 0

0.5 0.3 0

⎤

⎥⎥
⎦, K =

⎡

⎢⎢
⎣

0 0 1

0 1 0

1 0 0

⎤

⎥⎥
⎦

KATK =

⎡

⎢⎢
⎣

0 0 0.6

0.3 1 0

0.5 0.5 0

⎤

⎥⎥
⎦.

(3.1)

Therefore, A is not k-symmetric.
For this A,N(A) = {0}, since A has no zero rows and no zero columns.
N(KATK) = {0}. Hence A is k-Kernel symmetric, but A is not k-symmetric.

Lemma 3.4. For A ∈ Fn, A+ exists if and only if (KA)+ exists.

Proof. By [1, Theorem3.16], For A ∈ Fmn if A+ exists then A+ = AT which implies AT is a
g-inverse of A. Conversely if AT is a g-inverse of A, then AATA = A ⇒ ATAAT = AT . Hence
AT is a 2 inverse of A. Both AAT and ATA are symmetric. Hence AT = A+:

A+exists ⇐⇒ AATA = A

⇐⇒ KAATA = KA

⇐⇒ (KA)(KA)T (KA) = KA

⇐⇒ (KA)T ∈ (KA){1}
⇐⇒ (KA)+, exists

(
By, P.4

)
.

(3.2)

For sake of completeness we will state the characterization of k-kernel symmetric
fuzzy matrices in the following. The proof directly follows from Definition 3.1 and by (P.2).

Theorem 3.5. For A ∈ Fn, the following statements are equivalent:

(1) A is k-Kernel symmetric,

(2) KA is Kernel symmetric,

(3) AK is Kernel symmetric,

(4) N(AT) = N(KA),

(5) N(A) = N((AK)T ),

Lemma 3.6. Let A ∈ Fn, then any two of the following conditions imply the other one,

(1) A is Kernel symmetric,

(2) A is k-Kernel symmetric,

(3) N(AT) = N((AK)T ).
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Proof. However, (1) and (2) ⇒ (3):

A is k-Kernel symmetric =⇒ N(A) = N
(
KATK

)

=⇒ N(A) = N
(
KAT

) (
By, P.2

)

Hence, (1) and (2) =⇒ N
(
AT

)
= N(A) = N

(
(AK)T

)
.

(3.3)

Thus (3) holds.
Also (1) and (3) ⇒ (2):

A is Kernel symmetric =⇒ N(A) = N
(
AT

)

Hence, (1) and (3) =⇒ N(A) = N
(
(AK)T

)

=⇒ N(AK) = N
(
(AK)T

) (
By, P.2

)

=⇒ AK is Kernel symmetric

=⇒ A is k-Kernel symmetric
(
by Theorem (3.5)

)
.

(3.4)

Thus (2) holds.
However, (2) and (3)⇒ (1):

A is k-Kernel symmetric =⇒ N(A) = N
(
KATK

)

=⇒ N(A) = N
(
(AK)T

) (
by, P.2

)

Hence (2) and (3) =⇒ N(A) = N
(
AT

)
.

(3.5)

Thus, (1) holds.
Hence, Theorem.

Toward characterizing amatrix being k-Kernel symmetric, we first prove the following
lemma.

Lemma 3.7. Let B =
[
D 0
0 0

]
, where D is r × r fuzzy matrix with no zero rows and no zero columns,

then the following equivalent conditions hold:

(1) B is k-Kernel symmetric,

(2) N(BT ) = N((BK)T ),

(3) K =
[
K1 0
0 K2

]
where K1 and K2 are permutation matrices of order r and n-r, respectively,

(4) k = k1k2 where k1 is the product of disjoint transpositions on Sn = {1, 2, . . . , n} leaving
(r + 1, r + 2, . . . , n) fixed and k2 is the product of disjoint transposition leaving (1, 2, . . . , r)
fixed.
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Proof. Since D has no zero rows and no zero columns N(D) = N(DT ) = {0}. Therefore
N(B) = N(BT )/= {0} and B is Kernel symmetric.

Now we will prove the equivalence of (1),(2), and (3). B is k-Kernel symmetric ⇔
N(BT ) = N((BK)T ) follows from By Lemma (3.6).

Choose z = [0 y]with each component of y /= 0 and partitioned in conformity with that

of B =
[
D 0
0 0

]
. Clearly, z ∈ N(B) = N((BT )) = N((BK)T ). Let us partition K as K =

[
K1 K3

KT
3 K2

]
,

Then

KBT =

[
K1 K3

KT
3 K2

][
DT 0

0 0

]

=

[
K1D

T 0

KT
3D

T 0

]

. (3.6)

Now

z =
[
0 y

] ∈ N(B) = N
(
KBT

)

=⇒ [
0 y

]
[
K1D

T 0

KT
3D

T 0

]

= 0

=⇒ yKT
3D

T = 0

(3.7)

Since N(DT) = 0, it follows that yKT
3 = 0.

Since each component of y /= 0 under max-min composition yKT
3 = 0, this impliesKT

3 =
0 ⇒ K3 = 0.

Therefore

K =

[
K1 0

0 K2

]

. (3.8)

Thus, (3) holds, Conversely, if (3) holds, then

KBT =

[
K1D

T 0

0 0

]

, N
(
KBT

)
= N(B). (3.9)

Thus (1)⇔(2)⇔(3) holds.
However, (3)⇔(4): the equivalence of (3) and (4) is clear from the definition of k.

Definition 3.8. For A,B ∈ Fn, A is k-similar to B if there exists a permutation matrix P such
that A = (KPTK)BP .

Theorem 3.9. For A ∈ Fn and k = k1k2 (where k1k2 as defined in Lemma 3.7). Then the following
are equivalent:

(1) A is k-Kernel symmetric of rank r,

(2) A is k-similar to a diagonal block matrix
[
D 0
0 0

]
with detD > 0,

(3) A = KGLGT and L ∈ Fr with detL > 0 and GTG = Ir .
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Proof. (1)⇔(2).
By using Theorem 2.3 and Lemma 3.7 the proof runs as follows.

A is k-Kernel symmetric ⇐⇒ KA is Kernel symmetric :

⇐⇒ PKAPT =

[
E 0

0 0

]

with det E > 0

for some permutation matrix P
(
By Theorem (2.3)

)

⇐⇒ A = KPT

[
E 0

0 0

]

P

⇐⇒ A =
(
KPTK

)
K

[
E 0

0 0

]

P
(
By P.1

)

⇐⇒ A = KPTK

[
K1 0

0 K2

][
E 0

0 0

]

P

⇐⇒ A = KPTK

[
K1E 0

0 0

]

P

⇐⇒ A = KPTK

[
D 0

0 0

]

P.

(3.10)

Thus A is k-similar to a diagonal block matrix
[
D 0
0 0

]
, where D = K1E and det D > 0 .

However, (2)⇔(3):

A = KPTK

[
K1E 0

0 0

]

P

= K

[
PT
1 PT

3

PT
2 PT

4

][
K1 0

0 K2

][
D 0

0 0

][
P1 P2

P3 P4

]

= K

[
PT
1

PT
2

]

K1D
[
P1 P2

]

= KGLGT, where G =

[
PT
1

PT
2

]

, GT =
[
P1 P2

]
, L = K1D ∈ Fr

GTG =
[
P1 P2

]
[
PT
1

PT
2

]

= P1P
T
1 + P2P

T
2 = Ir , L ∈ Fr .

(3.11)

Hence the Proof.
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Let x, y ∈ F1×nȦ scalar product of x and y is defined by xyT = 〈x, y〉. For any subset
S ∈ F1×n, S⊥ = {y : 〈x, y〉 = 0, for all x ∈ S}.

Remark 3.10. In particular, when κ(i) = i, K reduces to the identity matrix, then Theorem 3.9
reduces to Theorem 2.3. For a complex matrixA, it is well known thatN(A)⊥ = R(A∗), where
N(A)⊥ is the orthogonal complement of N(A). However, this fails for a fuzzy matrix hence
Cn = N(A) ⊕ R(A) this decomposition fails for Kernel fuzzy matrix. Here we shall prove the
partial inclusion relation in the following.

Theorem 3.11. For A ∈ Fn, ifN(A)/= {0}, then R(AT ) ⊆ N(A)⊥ and R(AT )/=F1×n.

Proof. Let x /= 0 ∈ N(A), since x /= 0, xio /= 0 for atleast one io. Suppose xi /= 0 (say) then under
the max-min composition xA = 0 implies, the ith row of A = 0, therefore, the ith column
of AT = 0. If x ∈ R(AT ), then there exists y ∈ F1×n such that yAT = x. Since ith column of
AT = 0, it follows that, ith component of x = 0, that is, xi = 0 which is a contradiction. Hence
x /∈R(AT ) and R(AT )/=F1×n.

For any z ∈ R(AT ), z = yAT for some y ∈ F1×n. For any x ∈ N(A), xA = 0 and

〈x, z〉 = xzT

= x
(
yAT

)T

= xAyT

= 0.

(3.12)

Therefore, z ∈ N(A)⊥, R(AT ) ⊆ N(A)⊥.

Remark 3.12. We observe that the converse of Theorem 3.11 needs not be true. That is , if
R(AT )/=F1×n, then N(A)/= {0} and N(A)⊥ ⊆ R(AT ) need not be true. These are illustrated in
the following Examples.

Example 3.13. Let

A =

⎡

⎢⎢
⎣

0 0 0.6

0.5 1 0

0.5 0.3 0

⎤

⎥⎥
⎦ (3.13)

since A has no zero columns, N(A) = {0}.
For this A,R(AT ) = {(x, y, z) : 0 ≤ x ≤ 0.6, 0 ≤ y ≤ 1, 0 ≤ z ≤ 0.5}.
Therefore, R(AT )/=F1×3.

Example 3.14. Let

A =

⎡

⎢⎢
⎣

1 1 0

0 1 0

0 0 0

⎤

⎥⎥
⎦. (3.14)
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For this A,

N(A) = {(0, 0, z) : z ∈ F},

N(A)⊥ =
{(

x, y, 0
)
: x, y ∈ F},

(3.15)

Here, R(AT ) = {(x, y, 0) : 0 ≤ y ≤ x ≤ 1}/=F1×3.
Therefore, for x > y ∈ F, (x, y, 0) ∈ N(A)⊥ but (x, y, 0)/∈R(AT ).
Therefore, N(A)⊥ is not contained in R(AT ).
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