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For birth and death processes with finite state space, we consider stochastic processes induced by
conditioning on hitting the right boundary point before hitting the left boundary point. We call the
induced stochastic processes the conditional processes. We show that the conditional processes are
again birth and death processes when the right boundary point is absorbing. On the other hand, it
is shown that the conditional processes do not have Markov property and they are not birth and
death processes when the right boundary point is reflecting.

1. Introduction

For one-dimensional diffusion processes on [0, 1] related to diffusion models in population
genetics, Ewens [1] considered stochastic processes induced by conditioning on hitting the
boundary point 1 before hitting the other boundary point 0. The boundary points 0 and
1 are accessible and absorbing boundaries for the diffusion processes that he considered
and the induced stochastic processes are again diffusion processes. Then the induced
stochastic processes are referred to as the conditional diffusion processes by Ewens [1] (see
also [2]). Motivated by this work, Iizuka et al. [3] were concerned with one-dimensional
generalized diffusion processes (ODGDPs for brief) on (l1, l2) whose speed measures are
right-continuous and strictly increasing functions. They considered stochastic processes
induced by conditioning on hitting the right boundary point l2 before hitting the left
boundary point l1. The induced stochastic processes are called the conditional processes.
They showed as Theorem 2.1 that the conditional processes are again ODGDPs when the
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boundary point l2 is accessible with the absorbing boundary condition (Assertion 1). If the
original process x(t) is a one-dimensional diffusion process with the generator

L =
a(x)
2

d2

dx2
+ b(x)

d

dx
, (1.1)

then the conditional process x∗(t) induced by conditioning on hitting l2 before hitting l1 is
again a one-dimensional diffusion process and its generator can be expressed as

L∗ =
a(x)
2

d2

dx2
+
{
b(x) + a(x)

s0(x)
s(x) − s(l1)

}
d

dx
. (1.2)

Here we put

s0(x) = exp

{
−2

∫x

c

b
(
y
)

a
(
y
)dy

}
,

s(x) =
∫x

c

s0
(
y
)
dy,

(1.3)

where c is a point with l1 < c < l2 (see [4, 5]). On the other hand, Iizuka et al. [3] showed as
Theorem 2.2 that the probability distributions of the conditional processes do not satisfy the
Chapman-Kolmogorov equation when the boundary point l2 is accessible with the reflecting
boundary condition. Hence the conditional processes cannot be Markov processes when the
boundary point l2 is accessible with the reflecting boundary condition (Assertion 2).

An important class of ODGDPs which is used as stochastic models in various fields
is that of birth and death processes. For example, Moran [6] introduced a birth and death
process as one of fundamental stochastic models in population genetics called Moran model
(we will consider this model in Section 5). However, the speed measure of any birth and
death process is not a strictly increasing function (see [7]) and we cannot apply the results of
[3] to birth and death processes.

In this paper we prove that Assertions 1 and 2 hold for the case that the speed
measure is a nondecreasing step function. The motivation of this paper is to investigate the
properties of the conditional processes induced by conditioning on hitting the right boundary
point before hitting the left boundary point when the original processes are birth and death
processes. The proof of Theorem 2.2 in [3] is analytical (nonprobabilistic) and it is not easy to
see that the conditional processes do not satisfy Markov property when the right boundary
point is accessible with the reflecting boundary condition. The proof presented in this paper
for Assertion 2 is based on the fact that the state space is discrete. The proof is probabilistic
and we can see intuitively that the conditional processes do not satisfy Markov property
when the right boundary point is reflecting. It is our extra purpose to see this by considering
birth and death processes.

In Section 2 we state our results more precisely. Section 3 is devoted to their proofs.
In Section 4 we introduce a very simple birth and death process and present concrete
expressions of its conditional processes considering all the boundary conditions. Finally we
discuss some stochastic models in population genetics and their conditional processes in
Section 5.
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2. Main Results

Let e be an exponentially distributed random variable with the mean 1 and let {e1, e2, e3, . . .}
be a sequence of independent copies of e. We put τ0 = 0 and τk =

∑k
i=1 ei (k = 1, 2, . . .). For

{e1, e2, e3, . . .}, an integer N (N ≥ 2), and points ai (i = 0, 1, . . . ,N) such that a0 < a1 <
a2 < · · · < aN , we consider a birth and death process D = [X(t), Px] with the state space
Σ = {a0, a1, a2, . . . , aN} satisfying the following conditions. For ai ∈ Σ and τk < t < τk+1,
conditional probabilities conditional on X(τk) = ai satisfy

Px(X(t) = ai | X(τk) = ai) = 1,

Px(X(τk+1) = ai+1 | X(τk) = ai) = pi,

Px(X(τk+1) = ai−1 | X(τk) = ai) = qi,

Px(X(τk+1) = ai | X(τk) = ai) = 1 − pi − qi = ri,

(2.1)

where 0 ≤ p0 ≤ 1, pN = 0, q0 = 0, 0 ≤ qN ≤ 1, and pi > 0, qi > 0, ri ≥ 0 for i = 1, 2, . . . ,
N − 1. Here Px denotes the probability measure concentrated at the event {X(0) = x}, that
is, Px(X(0) = x) = 1. The end (boundary) point a0 [resp., aN] is called to be absorbing or
reflecting according to p0 = 0 [resp., qN = 0] or p0 > 0 [resp., qN > 0].

The generator L of D is given by

Lu(ai) = pi{u(ai+1) − u(ai)} − qi{u(ai) − u(ai−1)}, i = 1, 2, . . . ,N − 1, (2.2)

for u ∈ D(L), where D(L) is the set of all functions u on Σ such that

u(a0) = 0 if a0 is absorbing,

Lu(a0) = p0{u(a1) − u(a0)} if a0 is reflecting,

u(aN) = 0 if aN is absorbing,

Lu(aN) = −qN{u(aN) − u(aN−1)} if aN is reflecting.

(2.3)

Here is a proof of (2.2). By means of (2.1), we find that

Eai[u(X(t))] = Eai[u(X(t)); t < τ1] + Eai[u(X(t)); τ1 ≤ t < τ2] + Eai[u(X(t)); τ2 ≤ t],
Eai[u(X(t)); t < τ1] = u(ai)Pai(t < τ1) = u(ai)e

−t,

Eai[u(X(t)); τ1 ≤ t < τ2] =
{
u(ai+1)pi + u(ai−1)qi + u(ai)ri

}(
1 − e−t)e−t,

Eai[u(X(t)); τ2 ≤ t] = o(t) as t ↓ 0.

(2.4)
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Therefore we obtain the following:

Lu(ai) = lim
t↓0

Eai[u(X(t))] − u(ai)
t

= −u(ai) + u(ai+1)pi + u(ai−1)qi + u(ai)ri
= pi{u(ai+1) − u(ai)} − qi{u(ai) − u(ai−1)}

(2.5)

(see also [7]).
We show that the birth and death process D can be described as an ODGDP. We set

l1 =

{
a0 if p0 = 0,
−∞ if p0 > 0,

l2 =

{
aN if qN = 0,
∞ if qN > 0,

(2.6)

s(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ0(x), l1 < x ≤ a0,
x − a0
a1 − a0 , a0 ≤ x ≤ a1,

s(ai) +
q1q2 · · · qi
p1p2 · · · pi ·

x − ai
ai+1 − ai , ai ≤ x ≤ ai+1, i = 1, . . . ,N − 1,

s(aN) + ρN(x), aN ≤ x < l2,

(2.7)

where ρ0 [resp., ρN] is an increasing continuous function on (l1, a0] [resp., [aN, l2)] such that
ρ0(a0) = 0 and ρ0(l1) = −∞ [resp., ρN(aN) = 0 and ρN(l2) = ∞]. Further we set

m(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∞, x < l1,

−1/p0, l1 ≤ x < a0,
0, a0 ≤ x < a1,
1/q1, a1 ≤ x < a2,

m(ai−) +
p1p2 · · · pi−1
q1q2 · · · qi , ai ≤ x < ai+1, i = 2, . . . ,N − 1,

m(aN−) + p1p2 · · · pN−1
q1q2 · · · qN , aN ≤ x < l2,

∞, l2 ≤ x.

(2.8)

Note that {l1 ≤ x < a0} = ∅ [resp., {aN ≤ x < l2} = ∅] if p0 = 0 [resp., qN = 0]. Here s
is a real-valued continuous increasing function on S = (l1, l2), and m is a right-continuous
nondecreasing function on R. They are called the scale function and the speed measure,
respectively. We set m({x}) = m(x) − m(x−), mi = m({ai}), and si = s(ai), i = 0, 1, . . . ,N.
We note thatm0 = ∞ [resp.,mN = ∞] if a0 [resp. aN] is absorbing.

For a function f on S, we simply write f(l1) [resp., f(l2)] in place of f(l1+) [resp.,
f(l2−)] provided f(l1+) [resp., f(l2−)] exists. Further, f+ [resp., f−] stands for the right [resp.,
left] derivative of f with respect to s if it exists, that is, f+(x) = limε↓0{f(x+ ε)−f(x)}/{s(x+
ε) − s(x)} [resp., f−(x) = limε↓0{f(x − ε) − f(x)}/{s(x − ε) − s(x)}].
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We set Σ∗ = Σ ∩ S. Let D(G) be the space of all bounded continuous functions u on S
satisfying the following conditions.

(G.1) There exist a function f on Σ∗ and two constants A1, A2 such that

u(x) = A1 +A2{s(x) − s(c)} +
∫
(c,x]

{
s(x) − s(y)}f(y)dm(

y
)
, x ∈ S. (2.9)

(G.2) For each i = 1, 2, u(li) = 0 if |li| <∞.

Throughout this paper we denote by c an arbitrarily fixed point of Σ∗. The operator G is
defined by themapping from u ∈ D(G) to f that appeared in (2.9). The operatorG is called the
one-dimensional generalized diffusion operator (ODGDO for brief) with (s,m). It is known
that there exists a strong Markov process D

∗ with the generator G, which is called an ODGDP
on S (see [8, 9]). It is also known that D can be identified with D

∗ (see [7–9]). Indeed, it is
easy to see that u ∈ D(G) satisfies the following:

u+(ai) = u−(ai+1) =
u(ai+1) − u(ai)

si+1 − si , i = 0, 1, . . . ,N − 1,

Gu(ai) = u+(ai) − u−(ai)
mi

= pi{u(ai+1) − u(ai)} − qi{u(ai) − u(ai−1)}, i = 1, 2, . . . ,N − 1,

u(a0) = 0 if p0 = 0,

Gu(a0) = u+(a0)
m0

= p0{u(a1) − u(a0)} if p0 > 0,

u(aN) = 0 if qN = 0,

Gu(aN) = −u
−(aN)
mN

= −qN{u(aN) − u(aN−1)} if qN > 0.

(2.10)

In order to make the boundary conditions at a0 and aN clear, we use D
IJ and P

IJ
x in

place of D and Px, respectively. Here I, J ∈ {A,R}, and I = A [resp., J = A] means that a0
[resp., aN] is absorbing (i.e., p0 = 0 [resp., qN = 0]) and I = R [resp., J = R] means that a0
[resp., aN] is reflecting (i.e., p0 > 0 [resp., qN > 0]). It is known that there is the transition
probability density pIJ(t, x, y) of D

IJ with respect tom, that is,

P
IJ
x

(
X(t) = y

)
= pIJ

(
t, x, y

)
m
({
y
})
, t > 0, x, y ∈ Σ∗ (2.11)

(see [8, 10]).
Let Σo = {a1, . . . , aN} and let σa be the first hitting time at a, that is, σa = inf{t > 0 :

X(t) = a}. In this paperwe consider stochastic processes induced by the following conditional
probability:

Q
IJ
x ( · ) = PIJx ( · | σaN < σa0), x ∈ Σo. (2.12)
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We set

h(x) = PIJx (σaN < σa0), x ∈ Σ. (2.13)

It is known that

h(x) =
s(x) − s(a0)
s(aN) − s(a0) =

s(x)
sN

, x ∈ Σ (2.14)

(see [8]). We note that h is independent of boundary conditions I, J ∈ {A,R}.
First we show that QIA induces a birth and death process for I ∈ {A,R}.

Theorem 2.1. Assume that aN is absorbing. ThenQIA
x (X(t) = y) is independent of I ∈ {A,R}, and

it is represented as

QIA
x

(
X(t) = y

)
=
h
(
y
)

h(x)
PAAx

(
X(t) = y

)
=

1
s(x)

pAA
(
t, x, y

)
s
(
y
)
m
({
y
})
, (2.15)

for t > 0 and x, y ∈ Σo \ {aN}. FurtherQIA
x induces a birth and death process Do on Σo for which the

end point a1 is reflecting, the end point aN is absorbing, and the generator Lo is given by

Lou(ai) = pi{u(ai+1) − u(ai)} − qi{u(ai) − u(ai−1)}

+
q1 · · · qi
p1 · · · pi ·

pi
si
{u(ai+1) − u(ai−1)}, i = 2, . . . ,N − 1,

(2.16)

for u ∈ D(Lo), where D(Lo) is the set of all functions u on Σo such that

Lou(a1) =
(
p1 + q1

){u(a2) − u(a1)}, (2.17)

u(aN) = 0. (2.18)

Theorem 2.1 shows that the relation between (1.1) and (1.2) for diffusion processes
corresponds to the relation between (2.2) and (2.16) for birth and death processes. We note
that the generator is given by (2.17) and the boundary condition (2.18)whenN = 2.

Remark 2.2. By means of (2.7),

pisi+1
si

= pi +
q1 . . . qi
p1 . . . pi

· pi
si
,

qisi−1
si

= qi −
q1 . . . qi−1
p1 . . . pi−1

· qi
si
,

pi
si+1
si

+ qi
si−1
si

= pi + qi ≤ 1, 1 − pi si+1
si

− qi si−1
si

= ri.
(2.19)
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Combining these with (2.16), we find that QIA
x satisfies the following. For x ∈ Σo \ {aN},

τk (k = 1, 2, . . .), and τk < t < τk+1,

QIA
x (X(t) = ai | X(τk) = ai) = 1,

QIA
x (X(τk+1) = ai+1 | X(τk) = ai) = pi

si+1
si

,

QIA
x (X(τk+1) = ai−1 | X(τk) = ai) = qi

si−1
si

,

QIA
x (X(τk+1) = ai | X(τk) = ai) = ri.

(2.20)

We turn to the case that aN is reflecting. When m(x) is strictly increasing, a
representation of QIR

x is given by (2.11) of [3]. We note that this representation is available
even if m(x) is not strictly increasing. Therefore we obtain the following representation for
birth and death processes:

QIR
x

(
X(t) = y

)
=
s
(
y
)

s(x)
PAAx

(
X(t) = y

)
+

sN
s(x)

M(
t, x, y

)

+
sN
s(x)

∫ t

0
μx(u)NI(t − u, aN, y)du,

(2.21)

for I ∈ {A,R}, t > 0, and x, y ∈ Σo \ {aN}. Here μx(u), M(t, x, y) and NI(t, x, y) are given as
follows. For t > 0 and x ∈ Σo \ {aN}, let

μx(t) = − lim
y↑aN

pAA(t, x, aN) − pAA(t, x, y)
s(aN) − s(y) . (2.22)

For t > 0 and x ∈ Σo, let

νx(t) = lim
y↓a0

pAR
(
t, x, y

) − pAR(t, x, a0)
s
(
y
) − s(a0) . (2.23)

It is known that μx and νx are nonnegative density functions such as

P
IJ
x (σaN < t, σaN < σa0) =

∫ t

0
μx(u)du, (2.24)

PIRx (σa0 < t) =
∫ t

0
νx(u)du (2.25)

(see [8]). Note that μx is independent of I, J ∈ {A,R} and νx is independent of I ∈ {A,R}. By
virtue of [11], we see that

μx(t) =
pAA(t, x, aN−1)
sN − sN−1

, νx(t) =
pAR(t, x, a1)

s1
. (2.26)
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Then we set

M(
t, x, y

)
=
∫ t

0
μx(u)PARaN

(
X(t − u) = y)du,

NI(t, x, y) =
∫ t

0
νx(u)PIRa0

(
X(t − u) = y)du.

(2.27)

We note that NA(·, ·, ·) = 0.
The second and the third terms of the right-hand side of (2.21) come from sample

path’s behavior after hitting the boundary aN . This representation suggests thatQIR does not
satisfy Markov property. Indeed we obtain the following theorem.

Theorem 2.3. Let I ∈ {A,R} and 0 < t1 < t2. Then

QIR
x

(
X(t2) = y | X(t1) = z

)
= QIR

z

(
X(t2 − t1) = y

)
(2.28)

does not hold for some x, y, z ∈ Σo. This implies that QIR
x does not satisfy Markov property.

This theorem is proved by applying the following simple proposition for sample path’s
behavior after hitting the boundary aN .

Proposition 2.4. Let I, J ∈ {A,R} and t > 0. Then

P
IJ
x

(
X(t) = y, σaN < σa0

)
= PIJx

(
X(t) = y

)
P
IJ
x (σaN < σa0) (2.29)

does not hold for some x ∈ Σo \ {aN} and y ∈ Σo.

We prove this proposition in the following section.

3. Proofs of Theorems

We use the same notations as those in Section 2.

3.1. Proof of Theorem 2.1

First we prepare the following lemma. The proof of this lemma is easy and we omit it.
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Lemma 3.1. Let I, J ∈ {A,R}, t > 0, and x, y ∈ Σo \ {aN}. Then it holds true that

P
IJ
x

(
X(t) = y, t < σa0 ∧ σaN

)
= PAAx

(
X(t) = y

)
, (3.1)

P
IJ
x

(
X(t) = y

)
= PAAx

(
X(t) = y

)
+ PIJx

(
X(t) = y, t > σa0 ∧ σaN

)
, (3.2)

P
IJ
x

(
X(t) = y, t < σa0 ∧ σaN , σaN < σa0

)

= PIJx
(
X(t) = y, t < σa0 ∧ σaN

)
P
IJ
y (σaN < σa0)

= PAAx

(
X(t) = y

)
h
(
y
)
.

(3.3)

Proof of Theorem 2.1. We assume that aN is absorbing. Let I ∈ {A,R} and t > 0. Then

QIA
aN

(
X(t) = y

)
= PIAaN

(
X(t) = y

)
=

⎧⎨
⎩
1 if y = aN,

0 otherwise.
(3.4)

Let x ∈ Σo \ {aN}. Then by means of (2.13), and (2.24),

QIA
x (X(t) = aN) =

PIAx (X(t) = aN, σaN ≤ t < σa0)
PIAx (σaN < σa0)

=
1

h(x)
PIAx (σaN ≤ t < σa0) =

1
h(x)

∫ t

0
μx(u)du.

(3.5)

Let x, y ∈ Σo \ {aN}. Then by using Markov property of D
IA, (2.13) and (3.1), we see that

QIA
x

(
X(t) = y

)
=

1
h(x)

PIAx
(
X(t) = y, t < σaN ∧ σa0 , σaN < σa0

)

=
1

h(x)
PIAx

(
X(t) = y, t < σaN ∧ σa0

)
PIAy (σaN < σa0)

=
h
(
y
)

h(x)
PAA

(
X(t) = y

)
.

(3.6)

The formulas (3.4), (3.5), and (3.6) show that QIA
x (X(t) = y) is independent of I ∈ {A,R}.

The formula (2.15) follows from (2.11), (2.14), and (3.6).
It follows from Theorem 2.2 and Propositions 3.1 and 3.4 of [12] that QIA

x induces an
ODGDP Do on (a0, aN), the boundary a0 is entrance in the sense of Feller (see [8, 13]), the
boundary aN is absorbing, and the generator is the ODGDO Go with (so,mo), where

so(x) =
∫x

c

s
(
y
)−2

ds
(
y
)
=

1
s(c)

− 1
s(x)

, (3.7)

mo(x) =
∫
(c,x]

s
(
y
)2
dm

(
y
)
. (3.8)
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Therefore,

Gou(ai) =
{
u(ai+1) − u(ai)
so(ai+1) − so(ai) −

u(ai) − u(ai−1)
so(ai) − so(ai−1)

}
{mo(ai) −mo(ai−)}−1, (3.9)

for a function u on Σo \ {aN} and i = 2, 3, . . . ,N − 1. By means of (2.7), (2.8), and (3.7), we see
that

{so(ai+1) − so(ai)}{mo(ai) −mo(ai−)} =
(
1
si

− 1
si+1

)
s2i mi = (si+1 − si)simi

si+1
=

si
si+1pi

. (3.10)

In the same way, we have

{so(ai) − so(ai−1)}{mo(ai) −mo(ai−)} =
si

si−1qi
. (3.11)

Therefore we get

Gou(ai) =
si+1
si

pi{u(ai+1) − u(ai)} − si−1
si

qi{u(ai) − u(ai−1)}

= pi{u(ai+1) − u(ai)} − qi{u(ai) − u(ai−1)} +
q1 . . . qi
p1 . . . pi

· pi
si
{u(ai+1) − u(ai−1)},

(3.12)

for i = 2, 3, . . . ,N − 1. Since a0 is entrance, we see that

Gou(a1) =
u(a2) − u(a1)
so(a2) − so(a1){mo(ai) −mo(ai−)}−1

=
s2
s1
p1{u(a2) − u(a1)} =

(
p1 + q1

){u(a2) − u(a1)},
(3.13)

by virtue of general theory on ODGDOs. Thus we find that Do is a birth and death process
on Σo, the generator is given by (2.16), the end point a1 is reflecting with (2.17), and the end
point aN is absorbing. The proof is completed.
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3.2. Proof of Theorem 2.3

We introduce the Green function corresponding to D
IJ . For I, J ∈ {A,R}, k = 1, 2, and α > 0,

let gIJ
k
(·, α) be a continuous function on S satisfying the following properties:

g
IJ
k (·, α) > 0 on S, (3.14)

g
IJ
1 (·, α) is nondecreasing and gIJ2 (·, α) is nonincreasing on S, (3.15)

g
AJ
1 (a0, α) = 0, (3.16)

g
RJ,+
1 (a0, α) = g

RJ
1 (a1, α) − gRJ1 (a0, α) = αg

RJ
1 (a0, α)m0, (3.17)

gIA2 (aN, α) = 0, (3.18)

gIR,−2 (aN, α) =
gIR2 (aN, α) − gIR2 (aN−1, α)

sN − sN−1
= −αgIR2 (aN, α)mN, (3.19)

g
IJ
k (x, α) = gIJk (c, α) + gIJ,+k (c, α){s(x) − s(c)}

+ α
∫
(c,x]

{
s(x) − s(y)}gIJk (

y, α
)
dm

(
y
)
, x ∈ S. (3.20)

Here gIJ,±
k

(x, α) = limε↓0{gIJk (x ± ε, α) − gIJ
k
(x, α)}/{s(x ± ε) − s(x)}. It is known that there

exist such functions g
IJ
k (·, α), k = 1, 2 (see [8]). We set WIJ(α) = g

IJ,+
1 (x, α)gIJ2 (x, α) −

g
IJ
1 (x, α)gIJ,+2 (x, α). Note thatWIJ(α) is a positive number independent of x ∈ S. We put

GIJ(α, x, y) = GIJ(α, y, x) =WIJ(α)−1gIJ1 (x, α)gIJ2
(
y, α

)
, (3.21)

for α > 0 and l1 < x ≤ y < l2, which is the Green function corresponding to D
IJ . It is also

known that

GIJ(α, x, y) =
∫∞

0
e−αtpIJ

(
t, x, y

)
dt, (3.22)

for α > 0 and x, y ∈ Σ (see [8, 14]).
First we prove Proposition 2.4.

Proof of Proposition 2.4. We divide the proof into four cases.

Case 1. I = J = A. Since aN is absorbing, we find that

PAAx

(
X(t) = y, σaN < σa0

)
= PAAx

(
X(t) = y, t < σa0 ∧ σaN , σaN < σa0

)

= PAAx

(
X(t) = y

)
h
(
y
)
,

(3.23)

by means of (3.3). Since there are x, y ∈ Σo \ {aN} such that x /=y forN ≥ 3, (3.23) shows that
(2.29) does not hold true for x /=y forN ≥ 3.
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LetN = 2. Then

PAAa1 (X(t) = a2, σa2 < σa0) = P
AA
a1 (σa2 < σa0 , σa2 < t),

PAAa1 (X(t) = a2)PAAa1 (σa2 < σa0) = P
AA
a1 (σa2 < σa0 , σa2 < t)P

AA
a1 (σa2 < σa0),

(3.24)

which imply that (2.29) is not valid for x = a1 and y = a2. Thus (2.29) does not hold for some
x, y ∈ Σo.

Case 2. I = R and J = A. By means of (3.2), we also see that

PRAx
(
X(t) = y, σaN < σa0

) − PRAx (
X(t) = y

)
h(x)

= PAAx

(
X(t) = y

){
h
(
y
) − h(x)} − PRAx (

X(t) = y, t > σa0 ∧ σaN
)
h(x).

(3.25)

The right-hand side of this formula is negative if x ≥ y. This implies that (2.29) does not hold
true for x ≥ y.

Case 3. I = A and J = R. By means of (3.3),

PARx

(
X(t) = y, σaN < σa0

)
= PAAx

(
X(t) = y

)
h
(
y
)
+ PARx

(
X(t) = y, t > σa0 ∧ σaN , σaN < σa0

)
.

(3.26)

Since a0 is absorbing, we get

PARx

(
X(t) = y, t > σa0 ∧ σaN , σaN < σa0

)

= PARx

(
X(t) = y, σaN < t < σa0

)

= PARx

(
X(t) = y, t > σa0 ∧ σaN

)
.

(3.27)

Combining these equalities with (3.2) and (3.3), we see that

PARx

(
X(t) = y, σaN < σa0

) − PARx

(
X(t) = y

)
h(x)

= PAAx

(
X(t) = y

){
h
(
y
) − h(x)} + PARx

(
X(t) = y, σaN < t < σa0

){1 − h(x)}. (3.28)

The right-hand side of this formula is positive if x ≤ y. This implies that (2.29) does not hold
true for x ≤ y.

Case 4. I = J = R. Suppose that (2.29) holds true for t > 0, x ∈ Σo \ {aN}, and y ∈ Σo. Then

∫∞

0
e−αtH

(
t, x, y

)
dt = 0, (3.29)
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for α > 0, x ∈ Σo \ {aN}, and y ∈ Σo, where

H
(
t, x, y

)
=

1
m
({
y
}){PRRx (

X(t) = y, σaN < σa0
) − PRRx (

X(t) = y
)
h(x)

}
. (3.30)

By means of (3.3),

PRRx
(
X(t) = y, σaN < σa0

)

= PAAx

(
X(t) = y

)
h
(
y
)
+ PRRx

(
X(t) = y, t > σa0 ∧ σaN , σaN < σa0

)

= PAAx

(
X(t) = y

)
h
(
y
)
+
∫ t

0
PRRx (σaN ∈ du, u < σa0)PRRaN

(
X(t − u) = y),

(3.31)

for α > 0 and x, y ∈ Σo \ {aN}.

Combining this with (3.22), we see that

0 =
∫∞

0
e−αtH

(
t, x, y

)
dt

= GAA(α, x, y)h(y) + ERRx [
e−ασaN , σaN < σa0

]
GRR(α, aN, y)

−GRR(α, x, y)h(x),
(3.32)

for α > 0 and x, y ∈ Σo \ {aN}, where EIJx stands for the expectation with respect to PIJx . Here
we note that (3.32) is valid for y = aN . Indeed,

PRRx (X(t) = aN, σaN < σa0) = P
RR
x (X(t) = aN, σaN ≤ t, σaN < σa0)

=
∫ t

0
PRRx (σaN ∈ du, u < σa0)PRRaN (X(t − u) = aN).

(3.33)

Combining this with (3.22), we see that

0 =
∫∞

0
e−αtH(t, x, aN)dt

= ERRx
[
e−ασaN , σaN < σa0

]
GRR(α, aN, aN) −GRR(α, x, aN)h(x),

(3.34)

which implies (3.32) with y = aN .
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Since (3.32) holds true for x ∈ Σo \ {aN} and y ∈ Σo, we have

0 = −GAA(α, x, aN−1)h(aN−1)

+ ERRx
[
e−ασaN , σaN < σa0

]{
GRR(α, aN, aN) −GRR(α, aN, aN−1)

}

−
{
GRR(α, x, aN) −GRR(α, x, aN−1)

}
h(x),

(3.35)

for x ∈ Σo \ {aN}. By virtue of (3.17), (3.20), and (3.21), we see that

GRR(α, aN, aN) −GRR(α, aN, aN−1)

=WRR(α)−1
{
gRR1 (aN, α) − gRR1 (aN−1, α)

}
gRR2 (aN, α)

= αWRR(α)−1(sN − sN−1)gRR2 (aN, α)
∫
[a0,aN−1]

gRR1 (z, α)dm(z).

(3.36)

We take a point x ∈ Σo \ {aN} such that x ≤ aN−1. Then by virtue of (3.19), (3.20), and (3.21),

GRR(α, x, aN) −GRR(α, x, aN−1)

=WRR(α)−1gRR1 (x, α)
{
gRR2 (aN, α) − gRR2 (aN−1, α)

}

= −αWRR(α)−1(sN − sN−1)gRR1 (x, α)
∫
(aN−1,aN]

gRR2 (z, α)dm(z).

(3.37)

Thus we obtain that

0 = −GAA(α, x, aN−1)h(aN−1) + ERRx
[
e−ασaN , σaN < σa0

]

× αWRR(α)−1(sN − sN−1)
N−1∑
l=0

gRR1 (al, α)gRR2 (aN, α)ml

+ h(x)αWRR(α)−1(sN − sN−1)gRR1 (x, α)gRR2 (aN, α)mN.

(3.38)

It is known that

lim
α↓0

GAA(α, ξ, η) =
{s(ξ) − s(a0)}

{
s(aN) − s(η)}

s(aN) − s(a0) , a0 ≤ ξ ≤ η ≤ aN,

lim
α↓0

αGRR(α, ξ, η) =
1

m(l2) −m(l1)
, ξ, η ∈ S

(3.39)
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(see [8, 9, 14, 15]). Therefore letting α ↓ 0 in (3.38) leads us to

0 =
s(x)
sN

{−(sN − sN−1)h(aN−1)} + h(x)(sN − sN−1)
m(l2) −m(l1)

N∑
l=0

ml

=
s(x)
s2N

(sN − sN−1)2.

(3.40)

This contradicts the fact that the last term is positive. Thus (2.29) does not hold true for t > 0,
x ∈ Σo \ {aN}, and y ∈ Σo.

Remark 3.2. LetN = 2, I = J ∈ {A,R}, q0 = 0, p2 = 0, and p1 = q1 = 1/2. Then we see that

PIIa1 (σa2 < σa0) =
1
2
,

P IIa1 (X(t) = a1, σa2 < σa0) = P
II
a1 (X(t) = a1, σa0 < σa2),

(3.41)

where I ∈ {A,R}. Therefore

PIIa1 (X(t) = a1, σa2 < σa0) =
1
2
PIIa1 (X(t) = a1) = PIIa1 (X(t) = a1)PIIa1 (σa2 < σa0), (3.42)

that is, (2.29) is valid for x = y = a1. Proposition 2.4 implies, however, that (2.29) does not
hold for x = a1 and y = a2.

Proof of Theorem 2.3. Let I ∈ {A,R}, 0 < t1 < t2, x, z ∈ Σo \ {aN}, and y ∈ Σo. Then, by using
Markov property of D

IR, we obtain that

QIR
x

(
X(t2) = y | X(t1) = z

)
=
QIR
x

(
X(t1) = z,X(t2) = y

)
QIR
x (X(t1) = z)

=
PIRx

(
X(t1) = z,X(t2) = y, σaN < σa0

)
PIRx (X(t1) = z, σaN < σa0)

=
{
PAAx (X(t1) = z)PIRz

(
X(t2 − t1) = y | σaN < σa0

)
h(z)

+PIRx (X(t1) = z, σaN < t1, σaN < σa0)P
IR
z

(
X(t2 − t1) = y

)}

×
{
PAAx (X(t1) = z)h(z) + PIRx (X(t1) = z, σaN < t1, σaN < σa0)

}−1
.

(3.43)
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Therefore (2.28) is equivalent to the following:

PAAx (X(t1) = z)PIRz
(
X(t2 − t1) = y | σaN < σa0

)
h(z)

+ PIRx (X(t1) = z, σaN < t1, σaN < σa0)P
IR
z

(
X(t2 − t1) = y

)

=
{
PAAx (X(t1) = z)h(z) + PIRx (X(t1) = z, σaN < t1, σaN < σa0)

}

× PIRz
(
X(t2 − t1) = y | σaN < σa0

)
.

(3.44)

Again (3.44) is equivalent to the following:

PIRx (X(t1) = z, σaN < t1, σaN < σa0)P
IR
z

(
X(t2 − t1) = y

)

= PIRx (X(t1) = z, σaN < t1, σaN < σa0)P
IR
z

(
X(t2 − t1) = y | σaN < σa0

)
.

(3.45)

Since PIRx (X(t1) = z, σaN < t1, σaN < σa0) > 0, (3.45) is equivalent to

PIRz
(
X(t2 − t1) = y

)
= PIRz

(
X(t2 − t1) = y | σaN < σa0

)
. (3.46)

However (3.46) does not hold true for some y ∈ Σo and z ∈ Σo \ {aN} by virtue of
Proposition 2.4. Thus (2.28) does not hold true for some x, z ∈ Σo and y ∈ Σo.

4. Examples

In this section, we consider a simple birth and death process. LetN = 3, ai = i (i = 0, 1, 2, 3),
q0 = 0, p3 = 0, and pi = qi = 1/K (i = 1, 2), where K ≥ 2. For τk (k = 1, 2, . . .) given in
Section 2, the transition law of this birth and death process D satisfies that

Px(X(τk+1) = 0 | X(τk) = 1) = Px(X(τk+1) = 2 | X(τk) = 1) =
1
K
,

Px(X(τk+1) = 1 | X(τk) = 2) = Px(X(τk+1) = 3 | X(τk) = 2) =
1
K
.

(4.1)

4.1. Case That the End Point 1 Is Absorbing

We first consider D
AA, that is,

Px(X(τk+1) = 0 | X(τk) = 0) = 1,

Px(X(τk+1) = 3 | X(τk) = 3) = 1.
(4.2)
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Then l1 = 0 and l2 = 3. Further (2.7) and (2.8) are reduced to

s(x) = x, m(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∞, x < 0,

0, 0 ≤ x < 1,

K, 1 ≤ x < 2,

2K, 2 ≤ x < 3,

∞, 3 ≤ x.

(4.3)

By virtue of [11], we obtain that

PAAx

(
X(t) = y

)
= pAA

(
t, x, y

)
m
({
y
})
,

pAA
(
t, x, y

)
=

1
2K

χ{1,2}(x)χ{1,2}
(
y
){
e−t/K + (−1)x+ye−3t/K

}
,

(4.4)

where χΛ(ξ) = 1 [resp., χΛ(ξ) = 0] if ξ ∈ Λ [resp., ξ /∈Λ]. Further by virtue of Theorem 2.1,

QIA
x

(
X(t) = y

)
=
Ky

x
pAA

(
t, x, y

)
, (4.5)

for x, y ∈ {1, 2}, where I ∈ {A,R}. Note thatQRA
x (X(t) = y) is expressed by using pAA(t, x, y).

As in Remark 2.2, this induces a birth and death process Do on {1, 2, 3}with the transition law

QIA
x (X(τk+1) = 2 | X(τk) = 1) = 1,

QIA
x (X(τk+1) = 3 | X(τk) = 2) =

3
2K

,

QIA
x (X(τk+1) = 1 | X(τk) = 2) =

1
2K

,

QIA
x (X(τk+1) = 3 | X(τk) = 3) = 1.

(4.6)

4.2. Case That the End Point 0 Is Absorbing and the End Point 3 Is Reflecting

We next consider D
AR with q3 = 1, that is,

Px(X(τk+1) = 0 | X(τk) = 0) = 1,

Px(X(τk+1) = 2 | X(τk) = 3) = 1.
(4.7)
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For simplicity, we put K = 2. Then l1 = 0 and l2 = ∞. Further (2.7) and (2.8) are reduced to

s(x) = x, m(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∞, x < 0,

0, 0 ≤ x < 1,

2, 1 ≤ x < 2,

4, 2 ≤ x < 3,

5, 3 ≤ x.

(4.8)

By virtue of [11], we obtain that

PARx

(
X(t) = y

)
= pAR

(
t, x, y

)
m
({
y
})
, x, y ∈ {1, 2, 3},

pAR
(
t, x, y

)
=

1
12
e−(2−

√
3)t/2ψAR1 (x)ψAR1

(
y
)
+
1
3
e−tψAR2 (x)ψAR2

(
y
)

+
1
12
e−(2+

√
3)t/2ψAR3 (x)ψAR3

(
y
)
,

ψAR1 (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x, x = 0, 1,
√
3, x = 2,

2, x = 3,

ψAR2 (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x, x = 0, 1,

0, x = 2,

−1, x = 3,

ψAR3 (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x, x = 0, 1,

−√3, x = 2,

2, x = 3,

m
({
y
})

=

⎧⎨
⎩
2, y = 1, 2,

1, y = 3.

(4.9)

By means of (2.21), we obtain that

QAR
x

(
X(t) = y

)
=
y

x
PAAx

(
X(t) = y

)
+
3
x
M(

t, x, y
)

=
y

x
pAA

(
t, x, y

)
m
({
y
})

+
3
x
M

(
t, x, y

)
m
({
y
})
,

(4.10)

for x, y ∈ {1, 2}, where pAA(t, x, y) is given by (4.4)with K = 2, and

M
(
t, x, y

)
=
∫ t

0
μx(u)pAR

(
t − u, 3, y)du,

μx(t) = pAA(t, x, 2) =
1
4

{
e−t/2 + (−1)xe−3t/2

}
,

pAR
(
t, 3, y

)
=

1
6

{
e−(2−

√
3)t/2ψAR1

(
y
) − 2e−tψAR2

(
y
)
+ e−(2+

√
3)t/2ψAR3

(
y
)}
.

(4.11)
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4.3. Case That the End Points 0 and 3 Are Reflecting

We finally consider D
RR with p0 = 1 and q3 = 1, that is,

Px(X(τk+1) = 1 | X(τk) = 0) = 1,

Px(X(τk+1) = 2 | X(τk) = 3) = 1.
(4.12)

For simplicity, we put K = 2. Then l1 = −∞ and l2 = ∞. Further (2.7) and (2.8) are reduced to

s(x) = x, m(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1, x < 0,

0, 0 ≤ x < 1,

2, 1 ≤ x < 2,

4, 2 ≤ x < 3,

5, 3 ≤ x.

(4.13)

By virtue of [11], we obtain that

PRRx
(
X(t) = y

)
= pRR

(
t, x, y

)
m
({
y
})
, x, y ∈ {0, 1, 2, 3},

pRR
(
t, x, y

)
=

1
6
ψRR1 (x)ψRR1

(
y
)
+
1
3
e−t/2ψRR2 (x)ψRR2

(
y
)

+
1
3
e−3t/2ψRR3 (x)ψRR3

(
y
)
+
1
6
e−2tψRR4 (x)ψRR4

(
y
)
,

ψRR1 (x) = 1, x = 0, 1, 2, 3, ψRR2 (x) =

⎧⎪⎪⎨
⎪⎪⎩
(−1)x, x = 0, 3,

(−1)x−1
2

, x = 1, 2,

ψRR3 (x) =

⎧⎪⎪⎨
⎪⎪⎩
1, x = 0, 3,

−1
2
, x = 1, 2,

ψRR4 (x) = (−1)x, x = 0, 1, 2, 3,

m
({
y
})

=

⎧⎪⎨
⎪⎩
1, y = 0, 3,

2, y = 1, 2.

(4.14)
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By means of (2.21), we obtain that

QRR
x

(
X(t) = y

)
=
y

x
PAAx

(
X(t) = y

)
+
3
x
M(

t, x, y
)
+
3
x

∫ t

0
μx(u)NR(t − u, 3, y)du

=
y

x
pAA

(
t, x, y

)
m
({
y
})

+
3
x
M

(
t, x, y

)
m
({
y
})

+
3
x

∫ t

0
μx(u)NR(t − u, 3, y)m({

y
})
du,

(4.15)

for x, y ∈ {1, 2}, where pAA(t, x, y) is given by (4.4) with K = 2, andM(t, x, y) and μx(t) are
given by (4.11). FurtherNR(t, 3, y) is given as follows:

NR(t, x, y) =
∫ t

0
ν3(u)pRR

(
t − u, 0, y)du,

ν3(t) = pAR(t, 3, 1) =
1
6

{
e−(2−

√
3)t/2 − 2e−t + e−(2+

√
3)t/2

}
,

pRR
(
t, 0, y

)
=

1
6

{
1 − (−1)ye−t/2 − e−3t/2 + (−1)ye−2t

}
.

(4.16)

5. Conditional Processes in Population Genetics

Here we consider two stochastic models in population genetics and their conditional
processes. In this section, we use notations different from those of the previous sections to
emphasize the difference between the original models and the induced models of conditional
processes. We denote the conditional process by x∗(t) [resp.,X∗(t)]when the original process
is x(t) [resp., X(t)] as we did in Section 1.

5.1. Diffusion Model

We consider the following diffusion model for a randomly mating population consisting of
N haploid individuals with two types (alleles) A1 and A2. Let x(t) be the relative frequency
of A1 at time t. Then x(t) is a one-dimensional diffusion process on [0, 1] with the generator

L =
x(1 − x)

2N
d2

dx2
+ {u2(1 − x) − u1x} d

dx
, (5.1)

where u1 [resp., u2] is mutation rate from A1 [resp., A2] to A2 [resp., A1] (see [4]).
First we consider the case that u1 = 0. The point 1 is accessible and exit boundary if

u1 = 0 (see [16]). For this diffusion process, consider a stochastic process x∗(t) induced by
conditioning on hitting the boundary point 1 before hitting the other boundary point 0. The
induced stochastic process is again a diffusion process with the generator

L∗ =
x(1 − x)

2N
d2

dx2
+
(
u2 +

1
N

)
(1 − x) d

dx
(5.2)



International Journal of Mathematics and Mathematical Sciences 21

by (1.2) and Theorem 2.1 of [3]. Note that the effect of conditioning is that it inflates the
mutation rate u2 to u2 + 1/N. Ewens [1] considered the case that u1 = u2 = 0 and the induced
diffusion process is referred to as the conditional diffusion process by Ewens [1] (see also
[2]).

Next we consider the case that 0 < 2Nu1 < 1. The point 1 is regular boundary in this
case (see [16]) and we can pose various boundary conditions there. If we pose the absorbing
boundary condition, then the induced process is again a diffusion process with the generator

L∗ =
x(1 − x)

2N
d2

dx2
+
{(

u2 +
1
N

)
(1 − x) − u1x

}
d

dx
(5.3)

by (1.2) and Theorem 2.1 of [3]. On the other hand, if we pose the reflecting boundary
condition as it is usually done in population genetics (see [17–19]), then the induced
conditional process does not satisfy the Chapman-Kolmogorov equation and this process is
not a diffusion process due to Theorem 2.2 of [3]. These results imply that we cannot use the
diffusion model whose generator is given by (5.3) as the conditional process when we pose
the reflecting boundary condition at the boundary point 1.

5.2. Moran Model

Moran [6] introduced the following birth and death process as one of the fundamental
stochastic models in population genetics called continuous-time Moran model (see [4] for
discrete time Moran model). We refer to this model as Moran model for brief. Let N be the
number of individuals in a haploid population with two types A1 and A2, where N is an
integer greater than 2. Let τ0 = 0 and τk, k = 1, 2, · · · be a sequence of random times introduced
in Section 2. At time τk an individual is chosen randomly and it reproduces a new individual
(k ≥ 1). The type of the newborn individual is A1 [resp., A2] with probability 1 − ν1 [resp.,
1 − ν2] and it is A2 [resp., A1] with probability ν1 [resp., ν2] if the parent is A1 [resp., A2],
where 0 ≤ ν1, ν2 ≤ 1. Then at this time τk an individual except newborn individual is chosen
randomly to die. There is no change at time t /= τk (k ≥ 1). Denoting by X(t) the relative
frequency ofA1 at time t,X(t) is a birth and death process on {0, 1/N, 2/N, . . . , (N−1)/N, 1}
with the transition law

P
(
X(τk+1) =

j + 1
N

| X(τk) =
j

N

)
=

(1 − ν1)j
(
N − j) + ν2(N − j)2

N2
= pj ,

P
(
X(τk+1) =

j − 1
N

| X(τk) =
j

N

)
=

(1 − ν2)
(
N − j)j + ν1j2
N2

= qj ,

P
(
X(τk+1) =

j

N
| X(τk) =

j

N

)
= rj ,

(5.4)

where pj + qj + rj = 1 (0 ≤ j ≤ N). Note that p0 = ν2, q0 = 0, r0 = 1 − ν2, pN = 0, qN = ν1, and
rN = 1 − ν1. Note also that pj > 0 unless ν1 = 1 and ν2 = 0, qj > 0 unless ν1 = 0 and ν2 = 1,
and rj > 0 for 0 < j < N. The process X(t) does not jump at time τk if the types of newborn
individual and the dead are the same even though a “birth and death” event occurs at time
τk. One of the end points 0 is absorbing [resp., reflecting] when ν2 = 0 [resp., ν2 > 0] and the
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other end point 1 is absorbing [resp., reflecting] when ν1 = 0 [resp., ν1 > 0]. Let σi be the first
hitting time to i (i = 0, 1).

First we consider the case that ν1 = ν2 = 0. This is the case without mutation and both
boundary points are absorbing with

pj = qj =
j
(
N − j)
N2

,

rj = 1 − pj − qj = 1 − 2j
(
N − j)
N2

.

(5.5)

By (2.7) and (2.8)we have

s(x) = x,

m(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∞, x < 0,

0, 0 ≤ x < 1
N
,

N2

N − 1
+

N2

2(N − 2)
+ · · · + N2

i(N − i) ,
i

N
≤ x < i + 1

N
, i = 1, . . . ,N − 1,

∞, 1 ≤ x.

(5.6)

Then Theorem 2.1 implies that the conditional processX∗(t) conditional on {σ1 < σ0} is again
a birth and death process on {1/N, 2/N, . . . , (N − 1)/N, 1}with the transition law

P
(
X∗(τk+1) =

j + 1
N

| X∗(τk) =
j

N

)
= p∗j ,

P
(
X∗(τk+1) =

j − 1
N

| X∗(τk) =
j

N

)
= q∗j ,

P
(
X∗(τk+1) =

j

N
| X∗(τk) =

j

N

)
= r∗j ,

(5.7)

where p∗N = q∗N = 0 and

p∗j =
j + 1
j

pj =

(
j + 1

)(
N − j)

N2
,

q∗j =
j − 1
j

qj =

(
j − 1

)(
N − j)

N2
,

r∗j = rj = 1 − 2j
(
N − j)
N2

,

(5.8)
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for 1 ≤ j < N. The end point 1/N is reflecting since p∗1 = 2(N − 1)/N2 > 0. Note thatm(x) of
the original Moran model X(t) reduces to

m(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∞, x < 0,

0, 0 ≤ x < 1
3
,

9
2
,

1
3
≤ x < 2

3
,

9,
2
3
≤ x < 1

∞, 1 ≤ x,

(5.9)

if N = 3 and this is essentially the same as the simple birth and death process discussed in
Section 4.1.

Next we consider the case that 0 < ν1 < 1. The boundary point 1 is reflecting. Then the
induced conditional process does not satisfy Markov property and this conditional process is
not a birth and death process by Theorem 2.3.
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