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The fine spectra of upper and lower triangular bandedmatrices were examined by several authors.
Here we determine the fine spectra of tridiagonal symmetric infinite matrices and also give the
explicit form of the resolvent operator for the sequence spaces c0, c, �1, and �∞.

1. Introduction

The spectrum of an operator is a generalization of the notion of eigenvalues for matrices. The
spectrum over a Banach space is partitioned into three parts, which are the point spectrum,
the continuous spectrum, and the residual spectrum. The calculation of these three parts of
the spectrum of an operator is called the fine spectrum of the operator.

The spectrum and fine spectrum of linear operators defined by some particular
limitation matrices over some sequence spaces was studied by several authors. We introduce
the knowledge in the existing literature concerning the spectrum and the fine spectrum.
Wenger [1] examined the fine spectrum of the integer power of the Cesàro operator over
c and, Rhoades [2] generalized this result to the weighted mean methods. Reade [3] worked
on the spectrum of the Cesàro operator over the sequence space c0. Gonzáles [4] studied the
fine spectrum of the Cesàro operator over the sequence space �p. Okutoyi [5] computed the
spectrum of the Cesàro operator over the sequence space bv. Recently, Rhoades and Yildirim
[6] examined the fine spectrum of factorable matrices over c0 and c. Coşkun [7] studied the
spectrum and fine spectrum for the p-Cesàro operator acting over the space c0. Akhmedov
and Başar [8, 9] have determined the fine spectrum of the Cesàro operator over the sequence
spaces c0, �∞, and �p. In a recent paper, Furkan, et al. [10] determined the fine spectrum of
B(r, s, t) over the sequence spaces c0 and c, where B(r, s, t) is a lower triangular triple-band
matrix. Later, Altun and Karakaya [11] computed the fine spectra for Lacunary matrices over
c0 and c.



2 International Journal of Mathematics and Mathematical Sciences

In this work, our purpose is to determine the fine spectra of the operator, for which
the corresponding matrix is a tridiagonal symmetric matrix, over the sequence spaces c0, c,
�1, and �∞. Also we will give the explicit form of the resolvent for this operator and compute
the norm of the resolvent operator when it exists and is continuous.

Let X and Y be Banach spaces and T : X → Y be a bounded linear operator. By R(T),
we denote the range of T , that is,

R(T) = {y ∈ Y : y = Tx; x ∈ X
}
. (1.1)

By B(X), we denote the set of all bounded linear operators onX into itself. IfX is any Banach
space, and let T ∈ B(X) then the adjoint T ∗ of T is a bounded linear operator on the dual X∗

of X defined by (T ∗φ)(x) = φ(Tx) for all φ ∈ X∗ and x ∈ X. Let X /= {θ} be a complex normed
space and T : D(T) → X be a linear operator with domain D(T) ⊂ X. With T , we associate
the operator

Tλ = T − λI, (1.2)

where λ is a complex number and I is the identity operator on D(T). If Tλ has an inverse,
which is linear, we denote it by T−1

λ , that is

T−1
λ = (T − λI)−1 (1.3)

and call it the resolvent operator of Tλ. If λ = 0, we will simply write T−1. Many properties of
Tλ and T−1

λ
depend on λ, and spectral theory is concerned with those properties. For instance,

we will be interested in the set of all λ in the complex plane such that T−1
λ exists. Boundedness

of T−1
λ

is another property that will be essential. We shall also ask for what λ′s the domain
of T−1

λ
is dense in X. For our investigation of T , Tλ, and T−1

λ
, we need some basic concepts in

spectral theory which are given as follows (see [12, pages 370-371]).
Let X /= {θ} be a complex normed space, and let T : D(T) → X be a linear operator

with domain D(T) ⊂ X. A regular value λ of T is a complex number such that

(R1) T−1
λ exists,

(R2) T−1
λ is bounded, and

(R3) T−1
λ

is defined on a set which is dense in X.

The resolvent set ρ(T) of T is the set of all regular values λ of T . Its complement σ(T) =
C\ρ(T) in the complex plane C is called the spectrum of T . Furthermore, the spectrum σ(T) is
partitioned into three disjoint sets as follows: the point spectrum σp(T) is the set such that T−1

λ
does not exist. A λ ∈ σp(T) is called an eigenvalue of T . The continuous spectrum σc(T) is the set
such that T−1

λ
exists and satisfies (R3) but not (R2). The residual spectrum σr(T) is the set such

that T−1
λ

exists but does not satisfy (R3).
A triangle is a lower triangular matrix with all of the principal diagonal elements

nonzero. We shall write �∞, c, and c0 for the spaces of all bounded, convergent, and null
sequences, respectively. And by �p, we denote the space of all p-absolutely summable
sequences, where 1 ≤ p < ∞. Let μ and γ be two sequence spaces and A = (ank) be an
infinite matrix of real or complex numbers ank, where n, k ∈ N. Then, we say that A defines a
matrix mapping from μ into γ , and we denote it by writing A : μ → γ , if for every sequence
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x = (xk) ∈ μ the sequence Ax = {(Ax)n}, the A-transform of x, is in γ , where

(Ax)n =
∑

k

ankxk (n ∈ N). (1.4)

By (μ : γ), we denote the class of all matrices A such that A : μ → γ . Thus, A ∈ (μ : γ) if and
only if the series on the right side of (1.4) converges for each n ∈ N and every x ∈ μ, and we
have Ax = {(Ax)n}n∈N

∈ γ for all x ∈ μ.
A tridiagonal symmetric infinite matrix is of the form

S = S
(
q, r
)
=

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎢
⎣

q r 0 0 0 0 · · ·
r q r 0 0 0 · · ·
0 r q r 0 0 · · ·
0 0 r q r 0 · · ·
...

...
...

...
...

...
. . .

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (1.5)

where q, r ∈ C. The spectral results are clear when r = 0, so for the sequel we will have r /= 0.

Theorem 1.1 (cf. [13]). Let T be an operator with the associated matrix A = (ank).

(i) T ∈ B(c) if and only if

‖A‖ := sup
n

∞∑

k=1

|ank| < ∞, (1.6)

ak := lim
n→∞

ank exists for each k, (1.7)

a := lim
n→∞

∞∑

k=1

ank exists. (1.8)

(ii) T ∈ B(c0) if and only if (1.6) and (1.7) with ak = 0 for each k.

(iii) T ∈ B(�∞) if and only if (1.6).

In these cases, the operator norm of T is

‖T‖(�∞:�∞) = ‖T‖(c:c) = ‖T‖(c0:c0) = ‖A‖. (1.9)

(iv) T ∈ B(�1) if and only if

∥∥At
∥∥ = sup

k

∞∑

n=1

|ank| < ∞. (1.10)

In this case, the operator norm of T is ‖T‖(�1:�1) = ‖At‖.

Corollary 1.2. Let μ∈{c0, c, �1, �∞}. S(q, r) : μ → μ is a bounded linear operator and ‖S(q, r)‖(μ:μ)
= |q| + 2|r|.
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2. The Spectra and Point Spectra

Theorem 2.1. σp(S, μ) = ∅ for μ ∈ {�1, c0, c}.

Proof. Since �1 ⊂ c0 ⊂ c, it is enough to show that σp(S, c) = ∅. Let λ be an eigenvalue of the
operator S. An eigenvector x = (x0, x1, . . .) ∈ c corresponding to this eigenvalue satisfies the
linear system of equations:

qx0 + rx1 = λx0

rx0 + qx1 + rx2 = λx1

rx1 + qx2 + rx3 = λx2

....

(2.1)

If x0 = 0, then xk = 0 for all k ∈ N. Hence x0 /= 0. Without loss of generality we can suppose
x0 = 1. Then x1 = (λ − q)/r and the system of equations turn into the linear homogeneous
recurrence relation

xn + pxn−1 + xn−2 = 0 for n ≥ 2, (2.2)

where p = (q − λ)/r. The characteristic polynomial of the recurrence relation is

x2 + px + 1 = 0. (2.3)

There are three cases here.

Case 1 (p = −2). Then characteristic polynomial has only one root: α = 1. Hence, the solution
of the recurrence relation is of the form

xn = (A + Bn)(α)n = A + Bn, (2.4)

where A and B are constants which can be determined by the first two terms x0 and x1.
1 = x0 = A + B0, so we have A = 1. And −p = x1 = A + B1, so we have B = 1. Then xn = n + 1.
This means (xn) /∈ c. So, we conclude that there is no eigenvalue in this case.

Case 2 (p = 2). Then characteristic polynomial has only one root: α = −1. The solution of the
recurrence relation, found as in Case 1, is xn = (n + 1)(−1)n. So, there is no eigenvalue in this
case.

Case 3 (p /= ±2). Then the characteristic polynomial has two distinct roots α1 /= ±1 and α2 /= ±1
with α1α2 = 1. Let |α1| ≥ 1 ≥ |α2|. The solution of the recurrence relation is of the form

xn = A(α1)n + B(α2)n. (2.5)
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Using the first two terms and the fact that p = −(α1 + α2), we get A = α1/(α1 − α2) and
B = α2/(α2 − α1). So we have

xn =
αn+1
1 − αn+1

2

α1 − α2
. (2.6)

If |α1| > 1 > |α2|, then

|xn| ≥ 1
|α1 − α2|

(
|α1|n+1 − |α2|n+1

)
. (2.7)

So limn|xn| = ∞, which means (xn) /∈ c. Now, if |α1| = |α2| = 1, then there exists θ ∈ (0, π)
such that α1 = eiθ and α2 = e−iθ. So, xn = [sin(n + 1)θ]/ sin θ. Again we have (xn) /∈ c. Hence
there is no eigenvalue also in this case.

Repeating all the steps in the proof of this theorem for �∞, we get to the following.

Theorem 2.2. σp(S, �∞) = (q − 2r, q + 2r).

Theorem 2.3. Let p = (q − λ)/r. Let α1 and α2 be the roots of the polynomial P(x) = x2 + px + 1,
with |α2| > 1 > |α1|. Then the resolvent operator over c0 is S−1

λ = (snk), where

snk =
1

r
(
α2
1 − 1

) ·

⎧
⎪⎨

⎪⎩

αn−k+1
1 − αn+k+3

1 if n ≥ k

α−n+k+1
1 − αn+k+3

1 if n < k.

(2.8)

Moreover, this operator is continuous and the domain of the operator is the whole space c0.

Proof. Let α1 and α2 be as it is stated in the theorem. From (1/r)Sλx = y we get to the system
of equations:

px0 + x1 = y0

x0 + px1 + x2 = y1

x1 + px2 + x3 = y2

....

(2.9)

This is a nonhomogenous linear recurrence relation. Using the fact that (xn), (yn) ∈ c0, for
(2.9) we can reach a solution with generating functions. This solution can be given by

xn =
1

α2
1 − 1

∞∑

k=0

tnkyk, (2.10)
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where

tnk =

⎧
⎪⎨

⎪⎩

αn+1−k
1 − αn+3+k

1 if n ≥ k

αk+1−n
1 − αk+3+n

1 if n < k.

(2.11)

Let T = (tnk). We can see that by using Theorem 1.1, T ∈ B(c0). So (1/α2
1 − 1)T is the resolvent

operator of (1/r)Sλ and is continuous.

If T : μ → μ (μ is �1 or c0) is a bounded linear operator represented by the matrix A,
then it is known that the adjoint operator T ∗ : μ∗ → μ∗ is defined by the transpose At of the
matrix A. It should be noted that the dual space c∗0 of c0 is isometrically isomorphic to the
Banach space �1 and the dual space �∗1, of �1 is isometrically isomorphic to the Banach space
�∞.

Corollary 2.4. σ(S, μ) ⊂ [q − 2r, q + 2r] for μ ∈ {�1, c0, c, �∞}.

Proof. σ(S, c0) = σ(S∗, c∗0) = σ(S, �1) = σ(S∗, �∗1) = σ(S, �∞). And by Cartlidge [14], if a matrix
operator A is bounded on c, then σ(A, c) = σ(A, �∞). Hence we have σ(S, c0) = σ(S, �1) =
σ(S, �∞) = σ(S, c). What remains is to show that σ(S, c0) ⊂ [q − 2r, q + 2r]. By Theorem 2.3,
there exists a resolvent operator of Sλ which is continuous and the whole space c0 is the
domain if the roots of the polynomial P(x) = x2 + px + 1 satisfy

|α2| > 1 > |α1|. (2.12)

So, if λ ∈ σ(S, c0) then (2.12) is not satisfied. Since α1α2 = 1, (2.12) is not satisfied means, the
roots can be only of the form

α1 =
1
α2

= eiθ (2.13)

for some θ ∈ [0, 2π). Then (q − λ)/r = p = −(α1 + α2) = −(eiθ + e−iθ) = −2 cos θ. Hence
λ = q + 2r cos θ, which means λ can be only on the line segment [q − 2r, q + 2r].

Theorem 2.5. σ(S, μ) = [q − 2r, q + 2r] for μ ∈ {�1, c0, c, �∞}.

Proof. By Theorem 2.2 and Corollary 2.4 (q − 2r, q + 2r) ⊂ σ(S, �∞) ⊂ [q − 2r, q + 2r]. Since
the spectrum of a bounded linear operator over a complex Banach space is closed, we have
σ(S, �∞) = [q − 2r, q + 2r]. And from the proof of Corollary 2.4 we have σ(S, �1) = σ(S, c0) =
σ(S, c) = σ(S, �∞).

3. The Continuous Spectra and Residual Spectra

Lemma 3.1 (see [15, page 59]). T has a dense range if and only if T ∗ is one to one.

Corollary 3.2. If T ∈ (μ : μ) then σr(T, μ) = σp(T ∗, μ∗) \ σp(T, μ).
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Theorem 3.3. σr(S, c0) = ∅.

Proof. σp(S, �1) = ∅ by Theorem 2.1. Now using Corollary 3.2, we have σr(S, c0) = σp(S∗, c∗0) \
σp(S, c0) = σp(S, �1) \ σp(S, c0) = ∅.

Theorem 3.4. σr(S, �1) = (q − 2r, q + 2r).

Proof. Similarly as in the proof of the previous theorem, we have σr(S, �1) = σp(S∗, �∗1) \
σp(S, �1) = σp(S, �∞) \ σp(S, �1) = (q − 2r, q + 2r).

If T : c → c is a bounded matrix operator represented by the matrix A, then T ∗ : c∗ →
c∗ acting on C ⊕ �1 has a matrix representation of the form

[
χ 0

b At

]

, (3.1)

where χ is the limit of the sequence of row sums of A minus the sum of the limits of the
columns of A, and b is the column vector whose kth entry is the limit of the kth column of A
for each k ∈ N. For Sλ : c → c, the matrix S∗

λ is of the form

[
2r + q − λ 0

0 Sλ

]

. (3.2)

Theorem 3.5. σr(S, c) = {q + 2r}.

Proof. Let x = (x0, x1, . . .) ∈ C ⊕ �1 be an eigenvector of S∗ corresponding to the eigenvalue
λ. Then we have (2r + q)x0 = λx0 and Sx′ = λx′ where x′ = (x1, x2, . . .). By Theorem 2.1, x′ =
(0, 0, . . .). Then x0 /= 0. And λ = 2r + q is the only value that satisfies (2r + q)x0 = λx0. Hence
σp(S∗, c∗) = {2r + q}. Then σr(S, c) = σp(S∗, c∗) \ σp(S, c) = {2r + q}.

Now, since the spectrum σ is the disjoint union of σp, σr , and σc, we can find σc over
the spaces �1, c0, and c. So we have the following.

Theorem 3.6. For the operator S, one has the following:

σc(S, �1) =
{
q − 2r, q + 2r

}
,

σc(S, c0) =
[
q − 2r, q + 2r

]
,

σc(S, c) =
[
q − 2r, q + 2r

)
.

(3.3)

4. The Resolvent Operator

The following theorem is a generalization of Theorem 2.3.
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Theorem 4.1. Let μ ∈ {c0, c, �1, �∞}. The resolvent operator S−1 over μ exists and is continuous, and
the domain of S−1 is the whole space μ if and only if 0 /∈ [q − 2r, q + 2r]. In this case, S−1 has a matrix
representation (snk) defined by

snk =
1

r
(
α2
1 − 1

) ·
⎧
⎨

⎩

αn−k+1
1 − αn+k+3

1 if n ≥ k

α−n+k+1
1 − αn+k+3

1 if n < k,
(4.1)

where α1 is the root of the polynomial P(x) = rx2 + qx + r with |α1| < 1.

Proof. Let μ be one of the sequence spaces in {c0, c, �1, �∞}. Suppose S has a continuous
resolvent operator where the domain of the resolvent operator is the whole space μ. Then
λ = 0 is not in σ(S, μ) = [q − 2r, q + 2r]. Conversely if 0 /∈ [q − 2r, q + 2r], then S has a
continuous resolvent operator, and since S is bounded by Lemma7.2-7.3 of [12] the domain
of this resolvent operator is the whole space μ.

Now, suppose 0 /∈ [q − 2r, q + 2r]. Let α1 and α2 be the roots of the polynomial P(x) =
rx2 + qx + r where |α1| ≤ |α2|. Since 0 /∈ [q − 2r, q + 2r], by the proof of Corollary 2.4 |α1|/= |α2|.
Then |α1| < 1 < |α2|. So S satisfies the conditions of Theorem 2.3. Hence the resolvent operator
of S is represented by the matrix S−1 = (snk) defined by

snk =
1

r
(
α2
1 − 1

) ·
⎧
⎨

⎩

αn−k+1
1 − αn+k+3

1 if n ≥ k

α−n+k+1
1 − αn+k+3

1 if n < k,
(4.2)

when μ = c0 by that theorem. The matrix S−1 is already a left inverse of the matrix S. Observe
that S−1 satisfies also the corresponding conditions of Theorem 1.1, which means S−1 ∈ (μ, μ)
for μ ∈ {c, �1, �∞}. So, the matrix S−1 is the representation of the resolvent operator also for
the spaces in {c, �1, �∞}.

Remark 4.2. If a matrix A is a triangle, we can see that the resolvent (when it exists) is the
unique lower triangular left hand inverse ofA. In our case, S is far away from being a triangle.
The matrix S−1 of this theorem is not the unique left inverse of the matrix S for 0 /∈ [q− 2r, q+
2r]. For example, the matrix T = (tnk) defined by

tnk =
1

r
(
α2
1 − 1

) ·
⎧
⎨

⎩

α−n+k+1
1 − αn−k+1

1 if n < k

0 if n ≥ k
(4.3)

is another left inverse of S. Then λS−1 + (1−λ)T is also a left inverse of S for any λ ∈ C, which
means there exist infinitely many left inverses for S.

Theorem 4.3. Let 0 /∈ [q − 2r, q + 2r], and, α1 be the root of P(x) = rx2 + qx + r with |α1| < 1. Then
for μ ∈ {c0, c, �1, �∞} we have

∥∥∥S−1
∥∥∥
(μ:μ)

=
|α1| + |α1|2

|r|∣∣1 − α2
1

∣∣(1 − |α1|)
. (4.4)
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Proof. Since S−1 is a symmetric matrix, the supremum of the �1 norms of the rows is equal
to the supremum of the �1 norms of the columns. So, according to Theorem 1.1, what we
need is to calculate the supremum of the �1 norms of the rows of S−1. Denote the nth row S−1

by S−1
n for n = 0, 1, . . .. Now, let us fix the row n and calculate the �1 norm for this row. Let

ρ = 1/|r(1 − α2
1)|. By using Theorem 4.1, we have

∥
∥
∥S−1

n

∥
∥
∥
�1
= ρ

(
n∑

k=0

∣
∣
∣αn−k+1

1 − αn+k+3
1

∣
∣
∣ +

∞∑

k=n+1

∣
∣
∣α−n+k+1

1 − αn+k+3
1

∣
∣
∣

)

≤ ρ

(
n∑

k=0

(
|α1|n−k+1 + |α1|n+k+3

)
+

∞∑

k=n+1

(
|α1|−n+k+1 + |α1|n+k+3

))

= ρ

(
n∑

k=0

|α1|n−k+1 +
∞∑

k=n+1

|α1|−n+k+1 +
∞∑

k=0

|α1|n+k+3
)

= ρ

(
n+1∑

k=1

|α1|k +
∞∑

k=2

|α1|k +
∞∑

k=n+3

|α1|k
)

= ρ

(

2
∞∑

k=0

|α1|k − 2 − |α1| − |α1|n+2
)

≤ ρ

(

2
∞∑

k=0

|α1|k − 2 − |α1|
)

=
|α1| + |α1|2

|r|∣∣1 − α2
1

∣∣(1 − |α1|)
.

(4.5)

Hence

∥∥∥S−1
∥∥∥
(μ:μ)

= sup
n

∥∥∥S−1
n

∥∥∥
�1
≤ |α1| + |α1|2

|r|∣∣1 − α2
1

∣∣(1 − |α1|)
. (4.6)

On the other hand

∥∥∥S−1
n

∥∥∥
�1
= ρ

(
n∑

k=0

∣∣∣αn−k+1
1 − αn+k+3

1

∣∣∣ +
∞∑

k=n+1

∣∣∣α−n+k+1
1 − αn+k+3

1

∣∣∣

)

≥ ρ

(
n∑

k=0

(
|α1|n−k+1 − |α1|n+k+3

)
+

∞∑

k=n+1

(
|α1|−n+k+1 − |α1|n+k+3

))

= ρ

(
n∑

k=0

|α1|n−k+1 +
∞∑

k=n+1

|α1|−n+k+1 −
∞∑

k=0

|α1|n+k+3
)

= ρ

(
n+1∑

k=1

|α1|k +
∞∑

k=2

|α1|k −
∞∑

k=n+3

|α1|k
)

.

(4.7)

Then

∥∥∥S−1
∥∥∥
(μ:μ)

=sup
n

∥∥∥S−1
n

∥∥∥
�1
≥ lim

n

∥∥∥S−1
n

∥∥∥
�1
=ρ

( ∞∑

k=1

|α1|k+
∞∑

k=2

|α1|k
)

=
|α1| + |α1|2

|r|∣∣1−α2
1

∣∣(1−|α1|)
. (4.8)
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