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We study the long-time behavior of solutions to nonautonomous semilinear parabolic systems
involving the Grushin operators in bounded domains. We prove the existence of a pullback D-
attractor in (L2(Ω))m for the corresponding process in the general case. When the system has a
special gradient structure, we prove that the obtained pullbackD-attractor is more regular and has
a finite fractal dimension. The obtained results, in particular, extend and improve some existing
ones for the reaction-diffusion equations and the Grushin equations.

1. Introduction

Nonautonomous equations are of great importance and interest as they appear in many
applications in the natural sciences. One way of studying the long-time behavior of solutions
of such equations is using the theory of pullback attractors. This theory has been developed
for both the nonautonomous and randomdynamical systems and has shown to be very useful
in the understanding of the dynamics of such dynamical systems (see [1] and references
therein). In recent years, the existence of pullback attractors for reaction-diffusion equations
has been studied widely (see, e.g., [2–6]). However, to the best of our knowledge, little
seems to be known for the asymptotic behavior of solutions of nonautonomous degenerate
equations.

One of the classes of degenerate equations that has been studied widely in recent years
is the class of equations involving an operator of the Grushin type [7]

Gsu = Δxu + |x|2sΔyu, X =
(
x, y

) ∈ Ω ⊂ �N1 × �N2 , s ≥ 0. (1.1)
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The global existence and long-time behavior of solutions to semilinear parabolic equations
involving the Grushin operator, in both autonomous and nonautonomous cases, have been
studied in some recent works [8–10].

In this paper we consider the following nonautonomous semilinear parabolic system:

∂u

∂t
− aGsu + f(u) = g(X, t), X ∈ Ω, t > τ,

u(X, t) = 0, X ∈ ∂Ω, t > τ,

u(X, τ) = uτ(X), X ∈ Ω,

(1.2)

where X = (x, y) ∈ Ω ⊂ �N1 × �N2 (N1,N2 � 1), uτ ∈ (L2(Ω))m is given, u = (u1, . . . , um) is
an unknown vector-function. Here a ∈ Matm(�), f(u) = (f1(u1, . . . , um), . . . , fm(u1, . . . , um)),
and g(X, t) = (g1(X, t), . . . , gm(X, t)) satisfy the following conditions:

(H1) a ∈ Matm(�) has a positive symmetric part: (1/2)(a + a∗) � βIm, β > 0;

(H2) f : �m → �m is a C1-vector function such that:

C1|u|p −C0 ≤
(
f(u), u

)
=

m∑

j=1

fj(u)uj, p ≥ 2, (1.3)

∣
∣f(u)

∣
∣ ≤ C2

(
|u|p−1 + 1

)
, (1.4)

−C3|v|2 ≤
(
fu(u)v, v

)
=

m∑

i=1

m∑

j=1

∂fi

∂uj
(u)vjvi, (1.5)

where C0, C1, C2, and C3 are positive constants;

(H3) g ∈ W1,2
loc(�; (L

2(Ω))m) such that

∫0

−∞
eλ1βs

∥∥g(s)
∥∥2
(L2(Ω))mds < +∞,

∫0

−∞

∫ s

−∞
eλ1βr

∥∥g(r)
∥∥2
(L2(Ω))mdr ds < +∞,

∫0

−∞
eλ1βs

∥∥g ′(s)
∥∥2
(L2(Ω))mds < +∞,

(1.6)

where λ1 is the first eigenvalue of the operator Gs in Ω with the homogeneous
Dirichlet boundary condition.

In order to study problem (1.2), we will use the natural energy space �
1
0(Ω) :=

(S1
0(Ω))m defined as the complete of (C∞

0 (Ω))m in the following norm:

‖u‖
�
1
0(Ω) =

(∫

Ω

(
|∇xu|2 + |x|2s∣∣∇yu

∣
∣2
)
dX

)1/2

. (1.7)

From the results in [11], we know that the embedding �1
0(Ω) ↪→ �p (Ω) is continuous if 1 �

p � 2∗s := (2N(s))/(N(s) − 2), where N(s) := N1 + (s + 1)N2; moreover, this embedding is
compact if 1 � p < 2∗s.
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Notations

Denote �p (Ω) := (Lp(Ω))m, and �−1(Ω) the dual space of �1
0(Ω). For functions u, v : �N →

�m , we set

((∇u,∇v)) :=
m∑

i=1

(
∇ui,∇vi

)
=

m∑

i=1

N∑

k=1

∂ui

∂Xk

∂vi

∂Xk
, (1.8)

so if a = (aij)mi,j=1 ∈ Matm(�), then

((a∇u,∇v)) =
m∑

i,j=1

aij

(
∇ui,∇vj

)
=

m∑

i,j=1

N∑

k=1

aij
∂ui

∂Xk

∂vj

∂Xk
, (1.9)

where (·, ·) denotes the inner product in �N .
Noting that by assumption (H1), we have

((a∇u,∇u)) =
1
2

m∑

i,j=1

(
aij + aji

)(∇ui,∇uj
)
≥ β

m∑

j=1

(
∇uj,∇uj

)
= β

m∑

j=1

∣∣∣∇uj
∣∣∣
2
. (1.10)

Hence

∫

Ω

[
((a∇xu,∇xu)) + |x|2s((a∇yu,∇yu

))]
dX ≥ β‖u‖2

�
1
0(Ω), (1.11)

∫

Ω
(aGsu,Gsu)dX ≥ β‖Gsu‖2�2(Ω). (1.12)

The aim of this paper is to study the long-time behavior of solutions to problem (1.2)
by using the theory of pullback D-attractors. We first prove, under assumptions (H1)–(H3),
the existence of a pullback D-attractor in �2(Ω) for the process U(t, τ) associated to problem
(1.2). Then, with an additional condition that the system has a special gradient structure,
namely, a = βIm and there exists a function F : �m → � such that f(u) = graduF(u), we
prove the existence of a pullbackD-attractor in the space�1

0(Ω)∩�p (Ω) for the processU(t, τ).
Moreover, we prove the boundedness of the pulback D-attractor in �2p−2(Ω) and in �

2
0(Ω),

and give estimates of the fractal dimension of the pulbackD-attractor. It is worth noticing that
our results, in particular, extend and improve some recent results on the existence of pullback
D-attractors for the reaction-diffusion equations [3–5] and for the Grushin equations [8].

Let us explain the methods used in the paper. We first prove the existence of a
family of pullback D-absorbing sets in �1

0(Ω). Thanks to the compactness of the embedding
�
1
0(Ω) ↪→ �2(Ω), we immediately get the existence of a pullback D-attractor in �2 (Ω). When

the system has a special gradient structure, we are able to prove the existence of a pullback
D-attractor in �

1
0(Ω) ∩ �p (Ω). To do this, we follow the general lines of the approach used

in [8], with some modifications so that we can improve conditions imposed on the external
force g. In particular, we use the asymptotic a priori estimate method initiated in [12] to testify
the pullback asymptotic compactness of the corresponding process. Moreover, in this case we
also prove the regularity of the pullbackD-attractor in the spaces �2p−2 (Ω) and �1

0(Ω). Finally,
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using the recent results in [13], we give an estimate of the fractal dimension of the pullback
D-attractor. It is noticed that we do not impose the restriction on the exponent p in (H2) as in
[13].

The rest of the paper is organized as follows. In Section 2, for the convenience of the
reader, we recall some concepts and results on pullback D-attractors which we will use. In
Section 3, we prove the existence of a pullback D-attractor in �2(Ω) in the general case. In
Section 4, under the additional assumption that the system has a gradient structure, we prove
the regularity and fractal dimension estimates of the pullback D-attractor.

2. Preliminaries

2.1. Pullback Attractors

For convenience of the reader,we recall in this section some concepts and results on the theory
of pullback D-attractors, which will be used in the paper.

Let X be a metric space with metric d. Denote by B(X) the set of all bounded subsets
of X. For A,B ⊂ X, the Hausdorff semidistance between A and B is defined by

dist(A,B) = sup
x∈A

inf
y∈B

d
(
x, y

)
. (2.1)

Let {U(t, τ) : t ≥ τ, τ ∈ �} be a process in X, that is, U(t, τ) : X → X such that U(τ, τ) = Id
and U(t, s)U(s, τ) = U(t, τ) for all t ≥ s ≥ τ , τ ∈ �. The process {U(t, τ)} is said to be norm-
to-weak continuous ifU(t, τ)xn ⇀ U(t, τ)x, as xn → x inX, for all t ≥ τ , τ ∈ �. The following
result is useful for verifying the norm-to-weak continuity of a process.

Proposition 2.1 (see [14]). Let X, Y be two Banach spaces,X∗, Y ∗ be, respectively, their dual spaces.
Assume that X is dense in Y , the injection i : X → Y is continuous and its adjoint i∗ : Y ∗ → X∗

is dense, and {U(t, τ)} is a continuous or weak continuous process on Y . Then {U(t, τ)} is norm-to-
weak continuous on X if and only if for t ≥ τ , τ ∈ �, U(t, τ)maps a compact set of X to be a bounded
set of X.

Suppose that D is a nonempty class of parameterized sets D̂ = {D(t) : t ∈ �} ⊂ B(X).

Definition 2.2. The process {U(t, τ)} is said to be pullback D-asymptotically compact if for
any t ∈ �, any D̂ ∈ D, and any sequence {τn}n with τn ≤ t for all n, and τn → −∞, any
sequence xn ∈ D(τn), the sequence {U(t, τn)xn} is relatively compact in X.

Definition 2.3. A process {U(t, τ)} is called pullback ω-D-limit compact if for any ε > 0, any
t ∈ �, and D̂ ∈ D, there exists a τ0 = τ0(D̂, ε, t) ≤ t such that

α

(
⋃

τ≤τ0
U(t, τ)D(τ)

)

≤ ε, (2.2)

where α is the Kuratowski measure of noncompactness of B ∈ B(X),

α(B) = inf
{
δ > 0 | B has a finite open cover of sets of diameter ≤ δ

}
. (2.3)
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Lemma 2.4 (see [3]). A process {U(t, τ)} is pullback D-asymptotically compact if and only if it is
ω-D-limit compact.

Definition 2.5. A family of bounded sets B̂ ∈ D is called pullback D-absorbing for the process
{U(t, τ)} if for any t ∈ � and any D̂ ∈ D, there exists τ0 = τ0(D̂, t) ≤ t such that

⋃

τ≤τ0
U(t, τ)D(τ) ⊂ B(t). (2.4)

Definition 2.6. A family Â = {A(t) : t ∈ �} ⊂ B(X) is said to be a pullback D-attractor for
{U(t, τ)} if

(1) A(t) is compact for all t ∈ �;
(2) Â is invariant, that is, U(t, τ)A(τ) = A(t), for all t ≥ τ ;

(3) Â is pullback D-attracting, that is,

lim
τ →−∞

dist(U(t, τ)D(τ), A(t)) = 0, (2.5)

for all D̂ ∈ D and all t ∈ �;
(4) if {C(t) : t ∈ �} is another family of closed attracting sets, then A(t) ⊂ C(t), for all

t ∈ �.

Theorem 2.7 (see [3]). Let {U(t, τ)} be a norm-to-weak continuous process such that {U(t, τ)} is
pullback D-asymptotically compact. If there exists a family of pullback D-absorbing sets B̂ = {B(t) :
t ∈ �} ∈ D, then {U(t, τ)} has a unique pullback D-attractor Â = {A(t) : t ∈ �} and

A(t) =
⋂

s≤t

⋃

τ≤s
U(t, τ)B(τ). (2.6)

2.2. Fractal Dimension of Pullback Attractors

Given a compactK ⊂ X and ε > 0, we denote byN(K, ε) the minimum number of open balls
in X with radius ε which are necessary to coverK.

Definition 2.8. For any nonempty compact setK ⊂ X, the fractal dimension ofK is the number

dimf(K) := lim
ε→ 0

logN(K, ε)
log 1/ε

. (2.7)

Definition 2.9. A bounded subset B0 ⊂ H is called a uniformly pullback absorbing set for
processU(t, τ) if for every B ⊂ H is bounded, there exists a τ0 ≥ 0 such that

U(t, t − τ0)B ∈ B0, ∀τ ≥ τ0, (2.8)

here, τ0 does not depend on the choice of t.
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Theorem 2.10 (see [13]). Let U(t, τ) be a process in a separable Hilbert space H , B be a uniformly
pullback absorbing set in H , Â = {A(t) : t ∈ �} be a pullback attractor for U(t, τ), if there exists a
finite dimensional projection P in the spaceH such that

‖P(U(t, t − T0)u1 −U(t, t − T0)u2)‖H ≤ l(T0)‖u1 − u2‖H (2.9)

for all u1, u2 ∈ B and some T0, l(T0) > 0 and

‖(I − P)(U(t, t − T0)u1 −U(t, t − T0)u2)‖H ≤ δ‖u1 − u2‖ (2.10)

for all u1, u2 ∈ B, where δ < 1, T0 and l(T0) are independent of the choice of t. Then the family of
pullback attractors Â = {A(t) : t ∈ �} possesses a finite fractal dimension especifically

dimf(A(t)) ≤ dimP log
(
1 +

8l(T0)
1 − δ

)[
log

2
1 + δ

]−1
, ∀t ∈ �. (2.11)

3. Existence of Pullback D-Attractors in �
2(Ω)

Denote

V := Lp(τ, T ;�p (Ω)) ∩ L2
(
τ, T ;�1

0(Ω)
)
,

V ∗ := L2
(
τ, T ;�−1(Ω)

)
+ Lp′

(
τ, T ;�p′ (Ω)

)
,

(3.1)

where p′ is the conjugate of p (i.e., 1/p + 1/p′ = 1).

Definition 3.1. Let T > 0 and uτ ∈ �2 (Ω) be given. A function u is called a weak solution of
problem (1.2) on (τ, T) if

u ∈ V,
∂u

∂t
∈ V ∗,

u|t=τ = uτ a.e. in Ω,

∫T

τ

∫

Ω

[(
ut, ϕ

)
+
((
a∇xu,∇xϕ

))
+ |x|2s((a∇yu,∇yϕ

))
+
(
f(u), ϕ

)]
dX dt

=
∫T

τ

∫

Ω

(
g(t), ϕ

)
dX dt

(3.2)

for all test functions ϕ ∈ V .

One can prove that if u ∈ V and ∂u/∂t ∈ V ∗, then u ∈ C([0, T];�2(Ω)) (see [10]). This
makes the initial condition in (1.2) meaningful.
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Theorem 3.2. Under assumptions (H1)–(H3), for any τ ∈ �, T > τ , uτ ∈ �2(Ω) given, problem
(1.2) has a unique weak solution u on (τ, T). Moreover, the solution u exists on the interval (τ,+∞)
and the following inequality holds:

‖u‖2
�2(Ω) ≤ e−λ1β(t−τ)‖uτ‖2�2(Ω) +

2C0|Ω|
λ1β

+ e−λ1βt
∫ t

−∞
eλ1βs

∥∥g(s)
∥∥2
�2(Ω)ds, ∀t ≥ τ. (3.3)

Proof. The existence and uniqueness of a weak solution to problem (1.2) are proved similarly
to the scalar case in [10], so it is omitted here.

We now prove inequality (3.3). Multiplying (1.2) by u, integrating over Ω, and using
(1.11), we have

1
2
d

dt
‖u‖2

�2(Ω) + β‖u‖2
�
1
0(Ω) +

∫

Ω

(
f(u), u

)
dX =

∫

Ω

(
g(t), u

)
dX. (3.4)

Using condition (1.3) and the Cauchy inequality, we obtain

d

dt
‖u‖2

�2(Ω) + 2β‖u‖2
�
1
0(Ω) + 2C1‖u‖p�p(Ω) − 2C0|Ω| ≤ 2

βλ1

∥
∥g(t)

∥
∥2
�2(Ω) +

βλ1

2
‖u‖2

�2(Ω). (3.5)

Because ‖u‖2
�
1
0(Ω)

≥ λ1‖u‖2�2(Ω), so (3.5) becomes

d

dt
‖u‖2

�2(Ω) + λ1β‖u‖2�2(Ω) ≤ 2C0|Ω| + 1
λ1β

∥∥g(t)
∥∥2
�2(Ω). (3.6)

Applying the Gronwall inequality we get (3.3).

Now, we can define the family of two-parameter mappings

U(t, τ) : �2(Ω) −→ �
1
0(Ω) ∩ �p (Ω),

uτ �−→ U(t, τ)uτ ,
(3.7)

where U(t, τ)uτ = u(t) is the unique weak solution of (1.2) with the initial datum uτ at time
τ . ThenU defines a continuous process on �2 (Ω).

Let R be the set of all functions r : � → (0,+∞) such that limt→−∞eλ1βtr2(t) = 0 and
denote by D the class of all families D̂ = {D(t) : t ∈ �} ⊂ B(�1

0(Ω)) such that D(t) ⊂ B̂(r(t))
for some r(t) ∈ R, where B̂(r(t)) is the closed ball in �1

0(Ω) with radius r(t).
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Lemma 3.3. Under assumptions (H1)–(H3), there exists a constant C > 0 such that the solution u of
problem (1.2) satisfies the following inequality for all t > τ :

‖u‖2
�
1
0(Ω) ≤ C

((
1 + (t − τ) +

1
t − τ

)
e−α(t−τ)‖uτ‖2�2(Ω) +

(
1 +

1
t − τ

)

+
(
1 +

1
t − τ

)
e−αt

∫ t

−∞
eαs

∥
∥g(s)

∥
∥2
�2(Ω)ds

+
(
1 +

1
t − τ

)
e−αt

∫ t

−∞

∫ s

−∞
eαr

∥
∥g(r)

∥
∥2
�2(Ω) dr ds

)

,

(3.8)

where α = βλ1. This implies that there exists a family of pullback D-absorbing sets in �1
0(Ω) for the

process {U(t, τ)}.

Proof. We multiply (1.2) by −Gsu and integrate over Ω. After some standard transformations
we obtain

1
2
d

dt
‖u(t)‖2

�
1
0(Ω) + β‖Gsu(t)‖2�2(Ω)

�

∫

Ω

[(
f(u(t)),Δxu(t)

)
+ |x|2s(f(u),Δyu(t)

)]
dX +

∫

Ω

(
g,Gsu(t)

)
dX.

(3.9)

Without loss of generality, we may assume that f(0) = 0. Otherwise we can replace f(u)
by f̃(u) = f(u) − f(0). The function f̃ satisfies the same conditions with modified constants
Ci (i = 0, 1, 2, 3), because |f(0)| � C2 (see (1.4)). Hence, since f(u(t))|∂Ω = 0, we get

∫

Ω

(
f(u),Δxu(t)

)
dX =

N1∑

k=1

m∑

i=1

∫

Ω
fi(u)

∂2ui

∂X2
k

dX

= −
N1∑

k=1

m∑

i=1

m∑

j=1

∫

Ω

∂fi

∂uj
(u)

∂uj

∂Xk

∂ui

∂Xk
dX

= −
N1∑

k=1

∫

Ω

(
fu(u)

∂u

∂Xk
,
∂u

∂Xk

)
dX

≤ C3

N1∑

k=1

∫

Ω

∣∣
∣∣
∂u

∂Xk

∣∣
∣∣

2

dX = C3

∫

Ω
|∇xu|2dX,

(3.10)

where we have used condition (1.5). Similarly, we have

∫

Ω
|x|2s(f(u),Δyu(t)

)
dX ≤ C3

∫

Ω
|x|2s∣∣∇yu

∣
∣2dX. (3.11)
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Hence

∫

Ω

(
f(u),Δxu(t)

)
dX +

∫

Ω
|x|2s(f(u),Δyu(t)

) ≤ C3‖u(t)‖2�1
0(Ω). (3.12)

By the Cauchy inequality we have

∫

Ω

(
g,Gsu(t)

)
dX ≤ 1

2β
∥∥g

∥∥2
�2(Ω) +

β

2
‖Gsu(t)‖2�2(Ω). (3.13)

From (3.9)–(3.13) we obtain

d

dt
‖u(t)‖2

�
1
0(Ω) + β‖Gsu(t)‖2�2(Ω) ≤ 2C3‖u(t)‖2�1

0(Ω) +
1
β

∥∥g
∥∥2
�2(Ω), (3.14)

thus,

d

dt
‖u(t)‖2

�
1
0(Ω) + α‖u(t)‖2

�
1
0(Ω) � 2C3‖u(t)‖2�1

0(Ω) +
1
β

∥∥g
∥∥2
�2(Ω), (3.15)

where α = βλ1. Multiplying (3.15) by (t − τ)eαt and integrating from τ to t, we obtain

(t − τ)eαt‖u‖2
�
1
0(Ω) ≤ (2C3(t − τ) + 1)

∫ t

τ

eαs‖u(s)‖2
�
1
0(Ω)ds +

t − τ

β

∫ t

−∞
eαs

∥∥g(s)
∥∥2
�2(Ω)ds.

(3.16)

Multiplying (3.3) by αeαt and integrating from τ to t, we have

α

∫ t

τ

eαs‖u(s)‖2
�2(Ω)ds ≤ α(t − τ)eατ‖uτ‖2�2(Ω) +

2C0|Ω|
α

eαt +
∫ t

−∞

∫ s

−∞
eαr

∥∥g(r)
∥∥2
�2(Ω)dr ds.

(3.17)

Now, from (3.5) we get

d

dt
‖u‖2

�2(Ω) + β‖u‖2
�
1
0(Ω) ≤

1
α

∥
∥g(t)

∥
∥2
�2(Ω) + 2C1|Ω|. (3.18)

Multiplying this equation by eαt and integrating from τ to t, we deduce that

eαt‖u(t)‖2
�2(Ω) + β

∫ t

τ

eαs‖u(s)‖2
�
1
0(Ω)ds

≤ eατ‖uτ‖2�2(Ω) +
2C1|Ω|

α
eαt +

1
α

∫ t

τ

eαs
∥∥g(s)

∥∥2
�2(Ω)ds + α

∫ t

τ

eαs‖u(s)‖2
�2(Ω)ds.

(3.19)



10 International Journal of Mathematics and Mathematical Sciences

Using (3.17), (3.19) becomes

eαt‖u(t)‖2
�2(Ω) + β

∫ t

τ

eαs‖u(s)‖2
�
1
0(Ω)ds

≤ eατ‖uτ‖2�2(Ω) +
(C0 + C1)|Ω|

α
eαt + α(t − τ)eατ‖uτ‖2�2(Ω)

+
1
α

∫ t

−∞
eατ

∥∥g(s)
∥∥2
�2(Ω)ds +

∫ t

−∞

∫ s

−∞
eαr

∥∥g(r)
∥∥2
�2(Ω)dr ds.

(3.20)

Substituting (3.20) into (3.16) we obtain

‖u(t)‖2
�
1
0(Ω) ≤ e−α(t−τ)

(
2C3 +

1
λ1

+
2C3

λ1
(t − τ) +

1
β(t − τ)

)
‖uτ‖2�2(Ω)

+
(
2C3 +

1
t − τ

)
C0 + C1

αβ
|Ω| + 1

αβ

(
2C3 + α +

1
t − τ

)
e−αt

∫ t

−∞
eαs

∥∥g(s)
∥∥2
�2(Ω)ds

+
1
β

(
2C3 +

1
t − τ

)
e−αt

∫ t

−∞

∫ s

−∞
eαr

∥∥g(r)
∥∥2
�2(Ω)dr ds.

(3.21)

Hence we get (3.8)with C = C(β, C0, C1, C3, λ1).
Let r20(t) be the right-hand side of (3.8), and let B̂0(r0(t)) be the closed ball in �

1
0(Ω)

centered at 0 with radius r0(t). Obviously for any D̂ ∈ D and any t ∈ �, by (3.8) there exists
τ0 = τ0(D̂) ≤ t such that the solution u with initial datum uτ ∈ D(τ) at time τ satisfies
‖u(t)‖�1

0(Ω) ≤ r0(t) for all τ ≤ τ0; that is, B̂ = {B̂0(r0(t)) : t ∈ �} is a family of bounded
pullback D-absorbing sets in �1

0(Ω).

From the above lemma we deduce that the process {U(t, τ)} maps a compact set of
�
1
0(Ω) to be a bounded set of �1

0(Ω), and thus by Proposition 2.1, the process {U(t, τ)} is
norm-to-weak continuous in �

1
0(Ω). Since {U(t, τ)} has a family of pullback D-absorbing

sets in �
1
0(Ω) and the embedding �

1
0(Ω) ↪→ �2(Ω) is compact, we immediately get the

following.

Theorem 3.4. Under assumptions (H1)–(H3), the process {U(t, τ)} associated to problem (1.2) has
a pullback D-attractor in �2(Ω).

4. Some Further Results in the Gradient Case

In this section, instead of (H1)–(H3), we assume that

(H1bis) a = βIm, where Im is the unit matrix and β > 0;
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(H2bis) f satisfies (H2) and f(u) = graduF(u) = ((∂F/∂u1)(u), . . . , (∂F/∂um)(u)), where
F : �m → � is a potential function satisfying

C1|u|p −C0 ≤ F(u) ≤ C2|u|p + C0, ∀u ∈ �m,
(4.1)

with C1, C2, C0 being positive constants

(H3bis) g ∈ W1,2
loc(�,�

2(Ω)) satisfies

∫0

−∞
eαt

(∥∥g(t)
∥∥2
�2(Ω) +

∥∥g ′(t)
∥∥2
�2(Ω)

)
dt < +∞, (4.2)

where α = βλ1.

The aim of this section is to prove that the pullback D-attractor obtained in Section 3 is more
regular and has a finite fractal dimension.

4.1. Existence of a Pullback D-Attractor in �
1
0(Ω) ∩ �p (Ω)

Denote by R the set of all functions r : � → (0,+∞) such that limt→−∞eλ1βtr2(t) = 0
and denote by D the class of all families D̂ = {D(t) : t ∈ �} ⊂ B(�1

0(Ω) ∩ �p (Ω)) such
that D(t) ⊂ B̂(r(t)) for some r(t) ∈ R, where B̂(r(t)) is the closed ball in �

1
0(Ω) ∩ �p (Ω)

with radius r(t). Thanks to the above gradient structure, one can prove the existence of a
pullback D-attractor, not only in �2 (Ω), but also in the space �1

0(Ω) ∩ �p (Ω) for the process
{U(t, τ)}.

We first prove the following.

Lemma 4.1. Under assumptions (H1bis)–(H3bis), the solution u of problem (1.2) satisfies the
following inequality for all t > τ :

‖u‖2
�
1
0(Ω) + ‖u‖p

�p(Ω) ≤ C

(

e−α(t−τ)‖uτ‖2�2(Ω) + 1 + e−αt
∫ t

−∞
eαr

∥∥g(r)
∥∥2
�2(Ω)dr

)

, (4.3)

where C = C(C0, C1, C1, C0, β, λ1). This implies that there exists a family of pullback D-absorbing
sets in �1

0(Ω) ∩ �p (Ω) for the process {U(t, τ)}.

Proof. Using (3.5) with α = λ1β and the fact that ‖u‖2
�
1
0(Ω)

≥ λ1‖u‖2�2(Ω), we have

d

dt
‖u‖2

�2(Ω) + α‖u‖2
�2(Ω) +

β

2
‖u‖2

�
1
0(Ω) + 2C1‖u‖p�p(Ω) ≤ 2C0|Ω| + 2

α

∥∥g(t)
∥∥2
�2(Ω), (4.4)

thus

d

dt

(
eαt‖u‖2

�2(Ω)

)
+ Ceαt

(
β‖u‖2

�
1
0(Ω) + 2‖u‖p

�p(Ω)

)
≤ 2C0|Ω|eαt + 2

α
eαt

∥∥g(t)
∥∥2
�2(Ω). (4.5)
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Integrating from τ to s, τ ≤ s ≤ t + 1, and in particular, we have

eαs‖u(s)‖2
�2(Ω) ≤ eατ‖uτ‖2�2(Ω) + 2

C0

α
|Ω|eαs + 2

α

∫ s

τ

eαr
∥∥g(r)

∥∥2
�2(Ω)dr. (4.6)

Furthermore, multiplying (4.5) from s to s + 1 and using (4.6) we obtain

∫ s+1

s

eαr
(
β‖u(r)‖2

�
1
0(Ω) + 2‖u(r)‖p

�p(Ω)

)
dr

≤ eαs‖u(s)‖2
�2(Ω) + 2

C0|Ω|
α

eαs +
2
α

∫ s+1

s

eαr
∥∥g(r)

∥∥2
�2(Ω)dr

≤ C

(

eατ‖uτ‖2�2(Ω) + eαs +
∫ s+1

s

eαr‖u(r)‖2
�2(Ω) +

∫ s

τ

eαr‖u(r)‖2
�2(Ω)

)

≤ C

(

eατ‖uτ‖2�2(Ω) + eαt +
∫ t

τ

eαr‖u(r)‖2
�2(Ω)

)

.

(4.7)

By assumption (H2bis), then (4.7) becomes

∫ s+1

s

eαr
(
β‖u(r)‖2

�
1
0(Ω) + 2F(u(r))

)
dr ≤ C

(

eατ‖uτ‖2�2(Ω) + eαt +
∫ t

τ

eαr‖u(r)‖2
�2(Ω)

)

. (4.8)

Multiplying (1.2) by ∂u/∂t and integrating over Ω, we have

‖ut‖2�2(Ω) +
1
2
d

dt

(
β‖u‖2

�
1
0(Ω) +

∫

Ω
F(u)dX

)
=
∫

Ω

(
g(t), ut

)
dX ≤ 1

2
∥∥g(t)

∥∥2
�2(Ω) +

1
2
‖ut‖2�2(Ω),

(4.9)

thus

d

dt
eαt

(
β‖u(t)‖�1

0(Ω) + 2
∫

Ω
F(u(t))dX

)
≤ eαt

(
β‖u(t)‖�1

0(Ω) + 2
∫

Ω
F(u(t))dX

)
+ eαt

∥∥g(t)
∥∥2
�2(Ω).

(4.10)

Using (4.8), (4.10), and the uniform Gronwall inequality, we get

eαt
(
β‖u(t)‖2

�
1
0(Ω) + 2

∫

Ω
F(u(t))dX

)
≤ C

(

eατ‖uτ‖2�2(Ω) + eαt +
∫ t

τ

eαr
∥∥g(r)

∥∥2
�2(Ω)dr

)

.

(4.11)
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Now, using (H2bis) once again we have from (4.11) that

eαt
(
β‖u(t)‖2

�
1
0(Ω) + 2‖u(t)‖p

�p(Ω)

)
≤ C

(

eατ‖uτ‖2�2(Ω) + eαt +
∫ t

τ

eαr
∥∥g(r)

∥∥2
�2(Ω)dr

)

. (4.12)

Thus we obtain (4.3)with a suitable positive constant

C = C
(
C0, C1, C1, C0, β, λ1

)
. (4.13)

Hence, by the argument as in the end of the proof of Lemma 3.3, we obtain a family of
bounded pullback D-absorbing sets in �1

0(Ω) ∩ �p (Ω).

To prove that the process {U(t, τ)} is pullbackD-asymptotically compact in �p (Ω), we
need the following lemma.

Lemma 4.2 (see [8, Lemma 3.6]). Let {U(t, τ)} be a norm-to-weak continuous process in �2(Ω)
and �p (Ω), and let {U(t, τ)} satisfy the following two conditions:

(i) {U(t, τ)} is pullback D-asymptotically compact in �2(Ω);

(ii) for any ε > 0, B̂ ∈ D, there exist constants M(ε, B̂) and τ0(ε, B̂) ≤ t such that

(∫

Ω(|U(t,τ)uτ |≥M)
|U(t, τ)uτ |p

)1/p

< ε, for any uτ ∈ B(τ), τ ≤ τ0. (4.14)

Then {U(t, τ)} is pullback D-asymptotically compact in �p (Ω).

Theorem 4.3. Under assumptions (H1bis)–(H3bis), the process {U(t, τ)} associated to problem (1.2)
has a pullback D-attractor in �p (Ω).

Proof. It is sufficient to show that the process {U(t, τ)} satisfies the condition (ii) in
Lemma 4.2.Wewill give some formal calculations, a rigorous proof is done by use of Galerkin
approximations and Lemma 11.2 in [15].

LetM be a positive number, we will write u ≥ M (or u ≤ −M) as any component of u
is greater than or equal toM (or as any component of u is less than or equal to −M).

Using (1.3), (1.4), and for u ≥ M large enough, we have

(
f(u), u −M

) ≥ (
f(u), u

) −M
√
m
∣∣f(u)

∣∣

≥ C̃3|u|p − C̃2|u|p−1

≥ C4

2
|u −M|p + α

p
|u −M|2, with 0 <

C4

2
< C̃3,

(4.15)

because lim|u|→+∞(C̃3|u|p − C̃2|u|p−1)/((C4/2)|u −M|p + (α/p)|u −M|2) > 1.
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Multiplying (1.2) by (u −M)+|(u −M)+|p−2 and integrating over Ωwe obtain

1
p

d

dt

∫

Ω(u≥M)
|u −M|pdX +

∫

Ω(u≥M)

((
a∇x(u −M),∇x

(
(u −M)|u −M|p−2

)))
dX

+
∫

Ω(u≥M)
|x|2s

((
a∇y(u −M),∇y

(
(u −M)|u −M|p−2

)))
dX

+
∫

Ω(u≥M)
|u −M|p−2(f(u), u −M

)
dX =

∫

Ω

(
g(t), u −M

)
dX,

(4.16)

where

(u −M)+ :=

⎧
⎨

⎩

u −M if u ≥ M,

0, in other cases.
(4.17)

On the other hand, by the Cauchy inequality, we have

∣
∣∣
(
g(t), (u −M)

)|u −M|p−2
∣
∣∣ ≤ |u −M|p−1

∣∣g(t)
∣∣ ≤ C4

2
|u −M|2p−2 + 1

2C4

∣∣g
∣∣2, (4.18)

which implies that

(
g(t), u −M

)|u −M|p−2 ≥ −C4

2
|u −M|2p−2 − 1

2C4

∣∣g
∣∣2. (4.19)

Hence, from (4.15) and (4.19), we have

|u −M|p−2[(f(u), u −M
)
+
(
g(t), u −M

)] ≥ α

p
|u −M|p − 1

2C4

∣∣g
∣∣2. (4.20)

From (4.16), using (4.20) and noting that

∫

Ω(u≥M)

((
a∇x(u −M),∇x

(
(u −M)|u −M|p−2

)))
dX

+
∫

Ω(u≥M)
|x|2s

((
a∇y(u −M),∇y

(
(u −M)|u −M|p−2

)))
dX ≥ 0, a = βIm,

(4.21)

we have

d

dt
‖u −M‖p

�p(Ω(u≥M)) + α‖u −M‖p
�p(Ω(u≥M))) ≤

p

2C4

∥∥g
∥∥2
�2(Ω). (4.22)
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Now, multiplying the above inequality by (t − τ)eαt and integrating from τ to t, we get

(t − τ)eαt‖u −M‖p
�p(Ω(u≥M))

≤
∫ t

τ

eαs‖u −M‖p
�p(Ω(u≥M))ds +

p

2C4
(t − τ)

∫ t

τ

eαs
∥∥g(s)

∥∥2
�2(Ω)ds

≤
∫ t

τ

eαs‖u‖p
�p(Ω)ds +

p

2C4
(t − τ)

∫ t

τ

eαs
∥
∥g(s)

∥
∥2
�2(Ω)ds.

(4.23)

Then

‖(u −M)+‖p�p(Ω) ≤
1

t − τ
e−αt

∫ t

τ

eαs‖u‖p
�p(Ω)ds +

pe−αt

2C4

∫ t

−∞
eαs

∥∥g(s)
∥∥2
�2(Ω)ds. (4.24)

On the other hand, integrating (4.5) from τ to t, we have

∫ t

τ

eαs‖u(s)‖p
�p(Ω)ds ≤ eατ‖uτ‖2�2(Ω) + 2

C0

α
|Ω|eαt + 1

α

∫ t

τ

eαs
∥
∥g(s)

∥
∥2
�2(Ω)ds. (4.25)

Therefore, substituting (4.25) into (4.24), we obtain

‖(u −M)+‖p�p(Ω) ≤ C

(
e−α(t−τ)

t − τ
‖uτ‖2�2(Ω) +

1
t − τ

+
1

t − τ
e−αt

∫ t

−∞
eαs

∥∥g(s)
∥∥2
�2(Ω)ds

)

.

(4.26)

Hence, for any ε > 0, there existsM1 > 0 and τ1 < t such that for any τ < τ1 and anyM ≥ M1,
we have

∫

Ω(u(t)≥M)
|u −M|pdx ≤ ε. (4.27)

Repeating the same step above, just taking (u+M)− instead of (u−M)+, we deduce that there
exist M2 > 0 and τ2 < t such that for any τ < τ2 and any M ≥ M2,

∫

Ω(u(t)≤−M)
|u +M|pdx ≤ ε, (4.28)

where

(u +M)− =

⎧
⎨

⎩

u +M, u ≤ −M,

0, in other cases.
(4.29)
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Let M0 = max{M1,M2} and τ0 = min{τ1, τ2}, we obtain

∫

Ω(|u|≥M)
(|u| −M)pdx ≤ ε for τ ≤ τ0, M ≥ M0. (4.30)

So, we have

∫

Ω(|u|≥2M)
|u|pdx =

∫

Ω(|u|≥2M)
((|u| −M) +M)pdx

≤ 2p−1
(∫

Ω(|u|≥2M)
(|u| −M)pdx +

∫

Ω(|u|≥2M)
Mpdx

)

≤ 2p−1
(∫

Ω(|u|≥M)
(|u| −M)pdx +

∫

Ω(|u|≥M)
(|u| −M)pdx

)

≤ 2pε.

(4.31)

This completes the proof.

To prove the existence of a pullbackD-attractor in �1
0(Ω)∩�p (Ω), we need the folowing

lemma.

Lemma 4.4. Under assumptions (H1bis)–(H3bis), for any t ∈ � and any bounded subset B ⊂ �2(Ω),
there exists a positive constant T = T(B, t) ≤ t such that

‖ut(t)‖2�2(Ω) ≤ C

(

1 + e−αt
∫ t

−∞
eαs

(∥∥g(s)
∥∥2
�2(Ω) +

∥∥g ′(s)
∥∥2
�2(Ω)

)
ds

)

, (4.32)

for all τ ≤ T(B, t) and all uτ ∈ B, where C > 0 is independent of t and B.

Proof. We give some formal calculations, a rigorous proof is done by use of Galerkin
approximations and Lemma 11.2 in [15].

Differentiating (1.2) in time and setting v = ut, we get

vt − aGsv + f ′(u)v = g ′(r). (4.33)

Multiplying this inequality by eαrv and integrating over Ω and using (1.11), we get

1
2
d

dr

(
eαr‖v‖2

�2(Ω)

)
+ βeαr‖v‖2

�
1
0(Ω) + eαr

∫

Ω

(
f ′(u)v, v

)
dX ≤ α

2
eαr‖v‖2

�2(Ω) + eαr
∫

Ω

(
g ′(r), v

)
dX.

(4.34)

By the Cauchy inequality and using (1.5), we obtain that

d

dr

(
eαr‖v‖2

�2(Ω)

)
≤ (2C3 + α + 1)eαr‖v‖2

�2(Ω) + eαr
∥∥g ′(r)

∥∥2
�2(Ω). (4.35)
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Let τ ≤ s ≤ t − 1. Using (3.5), we have

d

ds

(
eαs‖u‖2

�2(Ω)

)
+ β‖u‖2

�
1
0(Ω) + 2C1e

αs‖u‖p
�p(Ω) ≤

1
α
eαs

∥∥g(s)
∥∥2
�2(Ω) +C0e

αs|Ω|. (4.36)

By (H2bis) we then infer from the above inequality that

d

ds

(
eαs‖u‖2

�2(Ω)

)
+ C

(
βeαs‖u‖2

�
1
0(Ω) + 2eαs

∫

Ω
F(u)dX

)
≤ C

(
eαs

∥∥g(s)
∥∥2
�2(Ω) + eαs

)
.

(4.37)

Integrating this inequality from r to r + 1, we obtain

∫ r+1

r

(
βeαs‖u‖2

�
1
0(Ω) + 2eαs

∫

Ω
F(u)dX

)
ds

≤ C

(

eαr‖u(r)‖2
�2(Ω) +

∫ r+1

r

(
eαs

∥
∥g(s)

∥
∥2
�2(Ω) + eαs

)
ds

)

.

(4.38)

On the other hand, integrating (4.36) from τ to t, we obtain

eαt‖u‖2
�2(Ω) ≤ eατ‖uτ‖2�2(Ω) +

1
α

∫ t

−∞
eαs

∥∥g(s)
∥∥2
�2(Ω)ds +

C0|Ω|
α

eαt. (4.39)

So, substituting (4.39) into (4.38), we deduce

∫ r+1

r

(
βeαs‖u‖2

�
1
0(Ω) + 2eαs

∫

Ω
F(u)dX

)
ds

≤ C

(

eατ‖uτ‖2�2(Ω) +
∫ t

−∞
eαs

∥
∥g(s)

∥
∥2
�2(Ω)ds + eαt

)

< ∞, ∀r ∈ [τ, t − 1].

(4.40)

Now multiplying (1.2) by eαrv and integrating over Ω, we have

eαr‖v‖2
�2(Ω) +

d

dr

(
βeαr‖u‖2

�
1
0(Ω) + 2eαr

∫

Ω
F(u)dX

)

≤ α

(
βeαr‖u‖2

�
1
0(Ω) + 2eαr

∫

Ω
F(u)dX

)
+ eαr

∥∥g(r)
∥∥2
�2(Ω).

(4.41)

So applying the uniform Gronwall inequality, we get

βeαr‖u‖2
�
1
0(Ω) + 2eαr

∫

Ω
F(u)dX ≤ C

(

eατ‖uτ‖2�2(Ω) + eαt +
∫ t

−∞
eαs

∥∥g(s)
∥∥2
�2(Ω)ds

)

. (4.42)
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Integrating (4.41) from r to r + 1 and by (4.40)–(4.42), we have

∫ r+1

r

eαs‖v‖2
�2(Ω)ds ≤ C

(

eατ‖uτ‖2�2(Ω) + eαt +
∫ t

−∞
eαs

∥∥g(s)
∥∥2
�2(Ω)ds

)

. (4.43)

Therefore, by (4.35), (4.43), using the uniform Gronwall inequality once again, we get

eαt‖v‖2
�2(Ω) ≤ C

(

eατ‖uτ‖2�2(Ω) + eαt +
∫ t

−∞
eαs

(∥∥g(s)
∥∥2
�2(Ω) +

∥∥g ′(s)
∥∥2
�2(Ω)

)
ds

)

. (4.44)

Hence we get (4.32).

Theorem 4.5. Under assumptions (H1bis)–(H3bis), the process {U(t, τ)} associated to problem (1.2)
has a pullback D-attractor in �1

0(Ω) ∩ �p (Ω).

Proof. By Lemma 4.1, {U(t, τ)} has a family of bounded pullbackD-absorbing sets in �1
0(Ω)∩

�p (Ω). It remains to show that {U(t, τ)} is pullback D-asymptotically compact in �
1
0(Ω) ∩

�p (Ω), that is, for any t ∈ �, any B̂ ∈ D, and any sequence τn → −∞, any sequence uτn ∈
B(τn), the sequence {U(t, τn)uτn} is precompact in �1

0(Ω) ∩ �p (Ω). Thanks to Theorem 4.3, we
need only to show that the sequence {U(t, τn)uτn} is precompact in �1

0(Ω).
Let un(t) = U(t, τn)uτn . By Theorem 3.4, we can assume that {un(t)} is a Cauchy

sequence in �2(Ω). We have

‖un(t) − um(t)‖2�1
0(Ω)

= −〈Gsun(t) −Gsum(t), un(t) − um(t)〉

= −
〈
dun

dt
(t) − dum

dt
(t), un(t) − um(t)

〉
− 〈

f(un(t)) − f(um(t)), un(t) − um(t)
〉

≤
∥
∥∥∥
d

dt
un(t) − d

dt
um(t)

∥
∥∥∥

2

�2(Ω)
‖un(t) − um(t)‖2�2(Ω) + C3‖un(t) − um(t)‖2�2(Ω),

(4.45)

where we have used condition (1.5). Because {un(t)} is a Cauchy sequence in �2(Ω) and by
Lemma 4.4, one gets

‖un(t) − um(t)‖�1
0(Ω) −→ 0, as m,n −→ ∞. (4.46)

The proof is complete.

4.2. �2p−2(Ω) and �
2
0(Ω)-Boundedness of the Pullback D-Attractor

First, we prove the existence of a family of pullback D-absorbing sets for process U(t, τ) in
�
2p−2 (Ω).
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Proposition 4.6. Under assumptions (H1bis)–(H3bis), then for any t ∈ � and any bounded subset
B ⊂ �2(Ω), there exists a positive constant τ0 = τ0(B, t) ≤ t such that

‖u‖2p−2
�2p−2(Ω) ≤ C

(

1 +
∥∥g(t)

∥∥2
�2(Ω) + e−αt

∫ t

−∞
eαs

(∥∥g(s)
∥∥2
�2(Ω) +

∥∥g ′(s)
∥∥2
�2(Ω)

)
ds

)

(4.47)

for all τ ≤ τ0 and all uτ ∈ B, where C > 0 is independent of t and B.

Proof. Multiplying (1.2) by |u|p−2u and integrating over Ωwe obtain

∫

Ω

[((
a∇xu,∇x

(
|u|p−2u

)))
+ |x|2s

((
a∇yu,∇y

(
|u|p−2u

)))]
dX +

∫

Ω

(
f(u), u

)|u|p−2dX

= −
∫

Ω

(
ut, |u|p−2u

)
dX +

∫

Ω

(
g(t), |u|p−2u

)
dX.

(4.48)

By the Cauchy inequality, (1.3) and note that

∫

Ω

[((
a∇xu,∇x

(
|u|p−2u

)))
+ |x|2s

((
a∇yu,∇y

(
|u|p−2u

)))]
dX ≥ 0; here a = βIm,

(4.49)

then we get

C1‖u‖2p−2
�2p−2(Ω) ≤

1
C1

‖ut‖2�2(Ω) +
1
C1

∥∥g(t)
∥∥2
�2 +

C1

2
‖u‖2p−2

�2p−2. (4.50)

Hence, by (4.32) we deduce from (4.16) that

C1

2
‖u‖2p−2

�2p−2(Ω) ≤
1
C1

C

(

1 + e−αt
∫ t

−∞
eαs

(∥∥g(s)
∥∥2
�2(Ω) +

∥∥g ′(s)
∥∥2
�2(Ω)

)
ds

)

+
1
C1

∥∥g(t)
∥∥2
�2(Ω).

(4.51)

Therefore, we get (4.47) and the proof is complete.

And now, we denote by �2
0(Ω) the closure of (C∞

0 (Ω))m in the norm

‖u‖
�
2
0(Ω) =

(∫

Ω

(
|Δxu|2 + |x|2sΔyu|2

)
dX

)1/2

. (4.52)

It is easy to see that �2
0(Ω) is a Banach space endowed with the above norm. We now prove

the �2
0(Ω)-boundedness of the pullback D-attractor.
First, we recall a lemma (see [15]) which is necessary for our proof.
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Lemma 4.7. Let X, Y be Banach spaces such that X is reflexive, and the inclusion X ⊂ Y is
continuous. Assume that {un} is a bounded sequence in L∞(τ, T ;X) such that un ⇀ u weakly in
Lq(τ, T ;X) for some q ∈ [1,+∞) and u ∈ C([τ, T];Y). Then, u(t) ∈ X for all t ∈ [τ, T] and
‖u(t)‖X ≤ supn≥1‖un‖L∞(τ, T ;X), for all t ∈ [τ, T].

Let un(t) be the Galerkin approximations of the solution u(t) of (1.2) then by Lemma 4.7
with noticing that un = U(t, τ)unτ ⇀ u = U(t, τ)uτ in L2(τ, T ;�1

0(Ω)) and the inclusion
�
2
0(Ω) ⊂ �1

0(Ω) is continuous, we only need the estimation on u(t) = U(t, τ)uτ .

Theorem 4.8. Under assumptions (H1bis)–(H3bis), the pullback D-attractor Â = {A(t) : t ∈ �} in
�
1
0(Ω)∩ �p (Ω) of the process {U(t, τ)} is bounded in �2

0(Ω). More precisely, for any τ < T1 < T2, the
set

⋃
t∈[T1,T2] A(t) is a bounded subset of �2

0(Ω).

Proof. Let us fix a bounded set B ⊂ �
2(Ω), τ ∈ �, ε > 0, t > τ + ε and uτ ∈ B. Multiplying the

first equation in (1.2) by Gsu and integrating over Ω, we have

∫

Ω
(aGsu(r), Gsu(r))dX =

∫

Ω

(
u′
r , Gsu(r)

)
dX +

∫

Ω

(
f(u(r)), Gsu(r)

)
dX

−
∫

Ω

(
g(r), Gsu(r)

)
dX.

(4.53)

By the Cauchy inequality we have

−
∫

Ω

(
g(r), Gsu(r)

)
dX ≤ 2

β

∥∥g(r)
∥∥2
�2(Ω) +

β

8
‖Gsu(r)‖2�2(Ω),

∫

Ω

(
u′
r , Gsu(r)

)
dX ≤ 2

β

∥
∥u′

r

∥
∥2
�
1
0(Ω) +

β

8
‖Gsu(r)‖2�2(Ω).

(4.54)

Using (3.12), (1.12), and (4.54), then from (4.53) we get

β‖Gsu(r)‖2�2(Ω) ≤ C3‖u(r)‖2�1
0(Ω) +

2
β

(∥∥u′
r

∥∥2
�2(Ω) +

∥∥g(r)
∥∥2
�2(Ω)

)
+
β

4
‖Gsu(r)‖2�2(Ω)

= C3

∫

Ω
(u(r),−Gsu(r))dX +

2
β

(∥
∥u′

r

∥
∥2
�2(Ω) +

∥
∥g(r)

∥
∥2
�2(Ω)

)
+
β

4
‖Gsu(r)‖2�2(Ω)

≤ 2C2
3

β
‖u(r)‖2

�2(Ω) +
2
β

∥∥u′
r

∥∥2
�2(Ω) +

2
β

∥∥g(r)
∥∥2
�2(Ω) +

β

2
‖Gsu(r)‖2�2(Ω).

(4.55)

Hence,

β

2
‖Gsu(r)‖2�2(Ω) ≤

2C2
3

β
‖u(r)‖2

�2(Ω) +
2
β

∥∥u′
r

∥∥2
�2(Ω) +

2
β

∥∥g(r)
∥∥2
�2(Ω). (4.56)
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Differentiating the first equation in (1.2) in time t and setting v(r) = u′(r), then multiplying
by v(r) and using (1.11) we get

1
2
d

dr
‖v(r)‖2

�2(Ω) + β‖v(r)‖2
�
1
0(Ω) ≤ −

∫

Ω

(
f ′
u(u)v(r), v(r)

)
dX +

∫

Ω

(
g ′(r), v(r)

)
dX

≤ C3‖v(r)‖2�2(Ω) +
1
2
‖v(r)‖2

�2(Ω) +
1
2
∥
∥g ′(r)

∥
∥2
�2(Ω).

(4.57)

Hence,

d

dr
‖v(r)‖2

�2(Ω) ≤ (2C3 + 1)‖v(r)‖2
�2(Ω) +

∥∥g ′(r)
∥∥2
�2(Ω). (4.58)

Integrating the above inequality, we have

‖v(r)‖2
�2(Ω) ≤ ‖v(s)‖2

�2(Ω) + (2C3 + 1)
∫ t

τ+ε/2
‖v(θ)‖2

�2(Ω) +
∫ t

τ+ε/2

∥∥g ′(θ)
∥∥2
�2(Ω)dθ, (4.59)

for all τ + ε/2 ≤ s ≤ r ≤ t.
Now, integrating with respect to s between τ + ε/2 and r, we get

(
r − τ − ε

2

)
‖v(r)‖2

�2(Ω)

≤
∫ r

τ+ε/2
‖v(s)‖2

�2(Ω)ds

+ (2C3 + 1)
(
r − τ − ε

2

)∫ t

τ+ε/2
‖v(θ)‖2

�2(Ω)dθ +
(
r − τ − ε

2

)∫ t

τ+ε/2

∥
∥g ′(θ)

∥
∥2
�2(Ω)dθ

≤
(
(2C3 + 1)

(
t − τ − ε

2

)
+ 1

)∫ t

τ+ε/2
‖v(θ)‖2

�2(Ω)dθ +
(
r − τ − ε

2

)∫ t

τ+ε/2

∥∥g ′(θ)
∥∥2
�2(Ω)dθ,

(4.60)

for all τ + ε/2 ≤ r ≤ t, and in particular, for all r ∈ [τ + ε, t] we have that (from the above
estimate)

‖v(r)‖2
�2(Ω) ≤

2
ε

(
(2C3 + 1)

(
t − τ − ε

2

)
+ 1

)∫ t

τ+ε/2
‖v(θ)‖2

�2(Ω)dθ +
∫ t

τ

∥∥g ′(θ)
∥∥2
�2(Ω)dθ.

(4.61)

On the other hand, multiplying the first equation in (1.2) by v(r) and integrating over Ω, we
deduce that

‖v(r)‖2
�2(Ω) +

β

2
d

dr
‖u(r)‖2

�
1
0(Ω) +

∫

Ω

(
f(u, v)

)
dX ≤

∫

Ω

(
g, v

)
dX, (4.62)
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where we have used (1.11). Using the Cauchy inequality and condition (H2bis), then (4.62)
becomes

‖v(r)‖2
�2(Ω) +

d

dr

(
β‖u(r)‖2

�
1
0(Ω) + 2

∫

Ω
F(u(r))dX

)
≤ ∥
∥g(r)

∥
∥2
�2(Ω). (4.63)

Integrating from τ + ε/2 to twe have

∫ t

τ+ε/2
‖v(θ)‖2

�2(Ω)dθ + β‖u(t)‖2
�
1
0(Ω) + 2

∫

Ω
F(u(t))dX ≤ β

∥∥∥u
(
τ +

ε

2

)∥∥∥
2

�
1
0(Ω)

+ 2
∫

Ω
F
(
u
(
τ +

ε

2

))
dX +

∫ t

τ+ε/2

∥∥g(θ)
∥∥2
�2(Ω),

(4.64)

and hence because of (4.1), we get

∫ t

τ+ε/2
‖v(θ)‖2

�2(Ω)dθ ≤ β
∥∥
∥u

(
τ +

ε

2

)∥∥
∥
2

�
1
0(Ω)

+ 2C2

∥∥
∥u

(
τ +

ε

2

)∥∥
∥
p

�p(Ω)

+ 4C0|Ω| +
∫ t

τ

∥∥g(θ)
∥∥2
�2(Ω).

(4.65)

Now, substituting (4.65) into (4.61) we deduce

‖v(θ)‖2
�2(Ω) ≤

2
ε

(
(2C3 + 1)

(
t − τ − ε

2

)
+ 1

)

×
(

β
∥
∥∥u

(
τ +

ε

2

)∥∥∥
2

�
1
0(Ω)

+ 2C2

∥
∥∥u

(
τ +

ε

2

)∥∥∥
2

�p(Ω)
+ 4C0|Ω| +

∫ t

τ

∥∥g(θ)
∥∥2
�2(Ω)dθ

)

+
∫ t

τ

∥
∥g ′(θ)

∥
∥2
�2(Ω)dθ,

(4.66)

for all r ∈ [τ + ε, t]. Finally, from (4.66) and (4.56) we obtain

‖Gsu(r)‖2�2(Ω) ≤
8
β2ε

(
(2C3 + 1)

(
t − τ − ε

2

)
+ 1

)

×
(

β
∥∥∥u

(
τ +

ε

2

)∥∥∥
2

�
1
0(Ω)

+ 2C2

∥∥∥u
(
τ +

ε

2

)∥∥∥
p

�p(Ω)
+ 4C0|Ω| +

∫ t

τ

∥
∥g(θ)

∥
∥2
�2(Ω)dθ

)

+
2
β

∫ t

τ

∥∥g ′(θ)
∥∥2
�2(Ω)dθ +

2
β2

(
C2

3‖u(r)‖2�2(Ω) + 2
∥∥g(r)

∥∥2
�2(Ω)

)
, ∀r ∈ [τ + ε, t].

(4.67)

Because ‖u‖2
�
2
0(Ω)

= ‖Gsu‖2�2(Ω) then from (4.67), the proof is complete.
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4.3. Fractal Dimensional Estimates of the Pullback D-Attractor

Theorem 4.9. Under assumptions (H1bis)–(H3bis), the process U(t, τ) possesses a pullback D-
attractorA�2(Ω) which has a finite fractal dimension in �2(Ω) and

dimf(A(t)) ≤ k log

(

1 +
8 · e2C3

1 − δ

)[
log

2
1 + δ

]−1
, ∀t ∈ �, (4.68)

where δ < 1, k ∈ �, and C3 in (1.5).

Proof. Let Hk = span{e1, e2, . . . , ek} ⊂ �2 (Ω) and Pk : �2(Ω) → Hk be the orthogonal
projection, where e1, e2, . . . , ej , . . . are the eigenvectors of the operator −Gs corresponding to
eigenvalues {λj}∞j=1 such that 0 < λ1 < λ2 ≤ λ3 ≤ · · · ≤ λj ≤ · · · and λj → +∞ as j → +∞.

From (4.3), we can easily show that there exists a uniformly pullback absorbing set B
of process U(t, τ) in �1

0(Ω). We set u1(t) = U(t, τ)u1τ and u2(t) = U(t, τ)u2τ to be solutions
associated to problem (1.2) with initial datum u1τ , u2τ ∈ B.

Letw = u1 − u2, because u1, u2 being two solutions of (1.2) then we have

∂w

∂t
− aGsw + f(u1) − f(u2) = 0. (4.69)

Multiplying (4.69) withw and integrating over Ω then we have

1
2
d

dt
‖w(t)‖2

�2(Ω) + β‖w‖2
�
1
0(Ω) +

∫

Ω

(
f(u1) − f(u2), w

)
dX ≤ 0, (4.70)

here, we have used (1.11).
Using (1.5) then we have

d

dt
‖w(t)‖2

�2(Ω) ≤ 2C3‖w(t)‖2
�2(Ω). (4.71)

Thus,

‖w(t)‖2
�2(Ω) ≤ e2C3(t−τ)‖w(τ)‖2

�2(Ω). (4.72)

Letw(t) = w1(t) +w2(t)wherew1(t) := Pkw(t) andw2(t) := (I −Pk)w(t). Therefore, by (4.72)
we have

‖w1(t)‖2�2(Ω) ≤ e2C3(t−τ)‖w(τ)‖2
�2(Ω). (4.73)

Now, taking the inner product of (4.69) withw2 in �2(Ω), we have

1
2
d

dt
‖w2(t)‖2�2(Ω) + β‖w2‖2�1

0(Ω) ≤ −
∫
(
f(u1) − f(u2), w2

)
dX. (4.74)
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Using the Hölder inequality and (1.4), we have

−
∫

Ω

(
f(u1) − f(u2), w2

)
dX ≤

∫

Ω

∣∣f(u1) − u(u2)
∣∣|w2|dX

≤
(∫

Ω

∣∣f(u1) − f(u2)
∣∣2dX

)1/2(∫

Ω
|w2|2dX

)1/2

≤ C

(∫

Ω

(
1 + |u1|2p−2 + |u2|2p−2

)
dX

)1/2

‖w2‖�2(Ω)

≤ C
(
1 + ‖u1‖2p−2

�2p−2(Ω) + ‖u2‖2p−2
�2p−2(Ω)

)1/2
‖w‖�2(Ω)

≤ C
(
1 + ‖u1‖2p−2

�2p−2(Ω) + ‖u2‖2p−2
�2p−2(Ω)

)
‖w‖�2(Ω).

(4.75)

Therefore, by (4.74), (4.75), and Proposition 4.6 we obtain

1
2
d

dt
‖w2(t)‖2�2(Ω) + β‖w2‖2�1

0(Ω)

≤ C

(

1 +
∥∥g(t)

∥∥2
�2(Ω) + e−αt

∫ t

−∞
eαs

(∥∥g(s)
∥∥2
�2(Ω) +

∥∥g ′(s)
∥∥2
�2(Ω)

)
ds

)

‖w(t)‖�2(Ω).

(4.76)

Because ‖w2(t)‖2
�
1
0(Ω)

≥ λk‖w2(t)‖2�2(Ω), then (4.76) implies that

d

dt
‖w2(t)‖2�2(Ω) + 2βλk‖w2‖2�2(Ω)

≤ 2C

(

1 +
∥∥g(t)

∥∥2
�2(Ω) + e−αt

∫ t

−∞
eαs

(∥∥g(s)
∥∥2
�2(Ω) +

∥∥g ′(s)
∥∥2
�2(Ω)

)
ds

)

‖w(t)‖�2(Ω).

(4.77)

Now, multiplying (4.77) by eβλkt and integrating from τ to t, we get

‖w2(t)‖2�2(Ω) ≤ e−βλk(t−τ)‖w(τ)‖2
�2(Ω) + 2Ce−βλkt

∫ t

τ

e−βλks

×
[
1 +

∥∥g(s)
∥∥2
�2(Ω) + e−αt

∫ s

−∞
eαr

(∥∥g(r)
∥∥2
�2(Ω) +

∥∥g ′(r)
∥∥2
�2(Ω)

)
dr

]

× ‖w(s)‖
�2(Ω)ds.

(4.78)
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Using (4.73) we have

‖w2(t)‖2�2(Ω) ≤ e−βλk(t−τ)‖w(τ)‖2
�2(Ω) + C‖w(τ)‖�2(Ω)e

−βλkt
∫ t

τ

eβλkseC3(s−τ)

×
[
1 +

∥∥g(s)
∥∥2
�2(Ω) + e−αs

∫ s

−∞
eαr

(∥∥g(r)
∥∥2
�2(Ω) +

∥∥g ′(r)
∥∥2
�2(Ω)

)
dr

]
ds

≤ e−βλk(t−τ)‖w(τ)‖2
�2(Ω) + C‖w(τ)‖�2(Ω)e

C3(t−τ)
∫ t

−∞
e−βλk(t−s)

×
[
1 +

∥∥g(s)
∥∥2
�2(Ω) + e−αs

∫ s

−∞
eαr

(∥∥g(r)
∥∥2
�2(Ω) +

∥∥g ′(r)
∥∥2
�2(Ω)

)
dr

]
ds

≤ e−βλk(t−τ)‖w(τ)‖2
�2(Ω) + C‖w(τ)‖�2(Ω)e

C3(t−τ)

×
[

1
βλk

+
∫ t

−∞
e−βλk(t−s)

∥∥g(s)
∥∥2
�2(Ω)ds +

∫ t

−∞
e−βλk(t−s)e−αs

×
(∫ s

−∞
eαr

(∥∥g(r)
∥∥2
�2(Ω) +

∥∥g ′(r)
∥∥2
�2(Ω)

)
dr

)
ds

]
.

(4.79)

Now, because

∫ t

−∞
eαs

∥
∥g(s)

∥
∥2
�2(Ω)ds < +∞, (4.80)

we can see that, for all t ∈ � (see, e.g., [6, Lemma 3.6]),

∫ t

−∞
e−βλk(t−s)

∥
∥g(s)

∥
∥2
�2(Ω)ds −→ 0 as k −→ +∞, (4.81)

and we have

∫ t

−∞
e−βλk(t−s)e−βλ1s

(∫ s

−∞
eαr

(∥∥g(r)
∥∥2
�2(Ω) +

∥∥g ′(r)
∥∥2
�2(Ω)

)
dr

)
ds

≤
(∫ t

−∞
e−βλkt+β(λk−λ1)sds

)(∫ t

−∞
eαr

(∥∥g(r)
∥∥2
�2(Ω) +

∥∥g ′(r)
∥∥2
�2(Ω)

)
dr

)

=
e−αt

βλk − α

∫ t

−∞
eαs

(∥∥g(r)
∥∥2
�2(Ω) +

∥∥g ′(r)
∥∥2
�2(Ω)

)
dr.

(4.82)
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Thus, for any t ∈ �, from (4.82) we have

∫ t

−∞
e−βλk(t−s)e−βλ1s

(∫ s

−∞
eαr

(∥
∥g(r)

∥
∥2
�2(Ω) +

∥
∥g ′(r)

∥
∥2
�2(Ω)

)
dr

)
ds −→ 0 as k −→ +∞.

(4.83)

Combining (4.81), (4.83) and taking T0 = t− τ = 1, we get k is sufficient large then from (4.79)
we deduce

‖w2(t)‖2�2(Ω) ≤ δ‖w(τ)‖2
�2(Ω), here 0 < δ < 1. (4.84)

From (4.73) and (4.31), we have

‖w1(t)‖2�2(Ω) ≤ l0‖w(τ)‖2
�2(Ω), ‖w2(t)‖2�2(Ω) ≤ δ‖w(τ)‖2

�2(Ω), ∀t ∈ �. (4.85)

Here, l0 = e2C3 ; 0 < δ < 1; T0 = 1. Thus, the process U(t, τ) associated to (1.2) satisfies all
conditions of Theorem 2.10. This completes the proof.
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