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We investigate how to construct mirror Q-algebras of a Q-algebra, and we obtain the necessary
conditions for M(X) to be a Q-algebra.

1. Introduction

Imai and Iséki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras
[1, 2]. It is known that the class of BCK-algebras is a proper subclass of the class of BCI-
algebras. We refer the reader for useful textbooks for BCK/BCI-algebra to [3–5]. Neggers
et al. [6] introduced the notion of Q-algebras which is a generalization of BCK/BCI/BCH-
algebras, obtained several properties, and discussed quadratic Q-algebras. Ahn and Kim [7]
introduced the notion of QS-algebras, and Ahn et al. [8] studied positive implicativity in
Q-algebras and discussed some relations between R − (L−) maps and positive implicativity.
Neggers and Kim introduced the notion of d-algebras which is another useful generalization
of BCK-algebras and then investigated several relations between d-algebras and BCK-
algebras as well as several other relations between d-algebras and oriented digraphs [9].
After that some further aspects were studied [10–13]. Allen et al. [14] introduced the notion
of mirror image of given algebras and obtained some interesting properties: a mirror algebra
of a d-algebra is also a d-algebra, and a mirror algebra of an implicative BCK-algebra is a left
L-up algebra.

In this paper we introduce the notion of mirror algebras to Q-algebras, and we
investigate how to construct mirror Q-algebras from a Q-algebra; and we also obtain the
necessary conditions for M(X) to be a Q-algebra.
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2. Q-Algebras and Related Algebras

A Q-algebra [6] is a nonempty set X with a constant 0 and a binary operation “∗” satisfying
the following axioms:

(I) x ∗ x = 0,

(II) 0 ∗ x = 0,

(III) (x ∗ y) ∗ z = (x ∗ z) ∗ y for all x, y, z ∈ X.

For brevity we also callX aQ-algebra. InXwe can define a binary relation “≤” by x ≤ y
if and only if x ∗ y = 0.

Example 2.1 (see [6]). Let X : {0, 1, 2, 3} be a set with the following table:

∗ 0 1 2 3

0 0 0 0 0
1 0 0 3 2
2 2 0 0 0
3 3 3 3 0

(2.1)

Then (X, ∗, 0) is a Q-algebra, which is not a BCK/BCI/BCH-algebra.
Ahn and Kim [7] introduced the notion of QS-algebras. They showed that the G-part

of an associative QS-algebra is a group in which every element is an involution. A Q-algebra
X is said to be a QS-algebra if it satisfies the following condition:

(IV) (x ∗ y) ∗ (x ∗ z) = z ∗ y, for all x, y, z ∈ X.

Proposition 2.2 (see [6]). If (X, ∗, 0) is a Q-algebra, then

(V) (x ∗ (x ∗ y)) ∗ y = 0, for all x, y ∈ X.

It was proved that every BCH-algebra is a Q-algebra and every Q-algebra satisfying
some additional conditions is a BCI-algebra.

Neggers and Kim [15] introduced the notion of B-algebras which is related to
several classes of algebras of interest such as BCH/BCI/BCK-algebras and which seems
to have rather nice properties without being excessively complicated otherwise. And they
demonstrated some interesting connections between B-algebras and groups.

Example 2.3. Let X := {0, 1, 2, . . . , ω} be a set. Define a binary operation “∗” on X by

x ∗ y :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, x ≤ y,

ω, y < x, x /= 0,

x, y < x, y = 0.

(2.2)

Then (X, ∗, 0) is a Q-algebra, but not a B-algebra, since (3 ∗ ω) ∗ 0 = 0, 3 ∗ (0 ∗ (0 ∗ω)) = 3.
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Example 2.4. Let X := {0, 1, . . . , 5} be a set with the following table:

∗ 0 1 2 3 4 5

0 0 2 1 3 4 5
1 1 0 2 4 5 3
2 2 1 0 5 3 4
3 3 4 5 0 2 1
4 4 5 3 1 0 2
5 5 3 4 2 1 0

(2.3)

Then (X, ∗, 0) is a B-algebra, but not a Q-algebra, since (5 ∗ 3) ∗ 1 = 1, (5 ∗ 1) ∗ 3 = 0.

Example 2.5. Let X be the set of all real numbers except for a negative integer −n. Define a
binary operation ∗ on X by

x ∗ y :=
n
(
x − y

)

n + y
(2.4)

for any x, y ∈ X. Then (X, ∗, 0) is both a Q-algebra and B-algebra.

If we consider several families of abstract algebras including the well-known BCK-
algebras and several larger classes including the class of d-algebras which is a generalization
of BCK-algebras, then it is usually difficult and often impossible to obtain a complementation
operation and the associated “de Morgan’s laws.” In the sense of this point of view it is
natural to construct a “mirror image” of a given algebra which when adjoined to the original
algebra permits a natural complementation to take place. The class of BCK-algebras is not
closed under this operation but the class of d-algebras is, thus explainingwhy it may be better
to work with this class rather than the class of BCK-algebras. Allen et al. [14] introduced the
notion of mirror algebras of a given algebra.

Let (X, ∗, 0) be an algebra. Let M(X) := X × {0, 1}, and define a binary operation “∗”
on M(X) as follows:

(x, 0) ∗ (y, 0) :=
(
x ∗ y, 0),

(x, 1) ∗ (y, 1) :=
(
y ∗ x, 0),

(x, 0) ∗ (y, 1) :=
(
x ∗ (x ∗ y), 0),

(x, 1) ∗ (y, 0) :=

⎧
⎨

⎩

(
y, 1

)
when x ∗ y = 0,

(x, 1) when x ∗ y /= 0.

(2.5)

Then we say that M(X) := (M(X), ∗, (0, 0)) is a left mirror algebra of the algebra (X, ∗, 0).
Similarly, if we define

(x, ∗) ∗ (y, 1) :=
(
y ∗ (y ∗ x), 0), (2.6)

then M(X) := (M(X), ∗, (0, 0)) is a right mirror algebra of the algebra (X, ∗, 0).
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It was shown [14] that the mirror algebra of a d (resp., d-BH)-algebra is also a d (resp.,
d-BH)-algebra, but the mirror algebra of a BCK-algebra need not be a BCK-algebra.

3. A Construction of Mirror Q-Algebras

In [14] Allen et al. defined (left, right) mirror algebras of an algebra, but it is not known how
to construct mirror algebras of any given algebra. In this paper, we investigate a construction
of a mirror algebra in Q-algebras.

Let (X, ∗, 0) be a Q-algebra, and let M(X) := X × {0, 1}. Define a binary operation “⊕”
on M(X) by

(M1) (x, 0) ⊕ (y, 0) = (x ∗ y, 0),
(M2) (x, 1) ⊕ (y, 1) = (y ∗ x, 0),
(M3) (x, 0) ⊕ (y, 1) = (α(x, y), 0),

(M4) (x, 1) ⊕ (y, 0) = (β(x, y), 1),

where α, β : X ×X → X are mappings.
Consider condition (I). If we let x = y in (1) and (2), then (I) holds trivially. Consider

condition (II). For any (x, 0) ∈ M(X), we have (x, 0) ⊕ (0, 0) = (x ∗ 0, 0) = (x, 0). For any
(x, 1) ∈ M(X), we have (x, 1) = (x, 1) ⊕ (0, 0) = (β(x, 0), 1), which shows that the required
condition is β(x, 0) = x. Consider condition (III). There are 8 cases to check that condition
(III) holds.

Case 1 ((x, 0), (y, 0), (z, 0)). It holds trivially.

Case 2 ((x, 0), (y, 1), (z, 0)). Since ((x, 0) ⊕ (y, 1)) ⊕ (z, 0) = (α(x, y), 0) ⊕ (z, 0) = (α(x, y) ∗ z, 0)
and ((x, 0)⊕ (z, 0))⊕ (y, 1) = (x ∗z, 0)⊕ (y, 1) = (α(x ∗z, y), 0), we obtain the requirement that
α(x, y) ∗ z = α(x ∗ z, y).

Case 3 ((x, 0), (y, 0), (z, 1)). It is the same as Case 2.

Case 4 ((x, 0), (y, 1), (z, 1)). Since ((x, 0)⊕(y, 1))⊕(z, 1) = (α(x, y), 0)⊕(z, 1) = (α(α(x, y), z), 0)
and ((x, 0)⊕ (z, 1))⊕ (y, 1) = (α(x, z), 0)⊕ (y, 1) = (α(α(x, z), y), 0), we obtain the requirement
that α(α(x, y), z) = α(α(x, z), y).

Case 5 ((x, 1), (y, 0), (z, 0)). Since ((x, 1)⊕(y, 0))⊕(z, 0) = (β(x, y), 1)⊕(z, 0) = (β(β(x, y), z), 0)
and ((x, 1)⊕ (z, 0))⊕ (y, 0) = (β(x, z), 1)⊕ (y, 0) = (β(β(x, z), y), 0), we obtain the requirement
that β(β(x, y), z) = β(β(x, z), y).

Case 6 ((x, 1), (y, 0), (z, 1)). Since ((x, 1) ⊕ (y, 0)) ⊕ (z, 1) = (β(x, y), 1) ⊕ (z, 1) = (z ∗ β(x, y), 0)
and ((x, 1)⊕ (z, 1))⊕ (y, 0) = (z ∗x, 0)⊕ (y, 0) = ((z ∗x) ∗y, 0), we obtain the requirement that
z ∗ β(x, y) = (z ∗ x) ∗ y.

Case 7 ((x, 1), (y, 1), (z, 0)). It is the same as Case 6.

Case 8 ((x, 1), (y, 1), (z, 1)). Since ((x, 1)⊕(y, 1))⊕(z, 1) = (β(x, y), 0)⊕(z, 1) = (α(β(x, y), z), 0)
and ((x, 1) ⊕ (z, 1)) ⊕ (y, 1) = (α(β(x, z), y), 0) by exchanging y with z, we obtain the
requirement that α(β(x, y), z) = α(β(x, z), y). If we summarize this discussion, we obtain
the following theorem.
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Theorem 3.1. Let (X, ∗, 0) be a Q-algebra, and let M(X) := X×{0, 1} be a set with a binary operation
“⊕” on M(X) with (M1) ∼ (M4). Then the necessary conditions for (M(X),⊕, (0, 0)) to be a Q-
algebra are the following:

(i) β(x, 0) = x,

(ii) α(α(x, y), z) = α(α(x, z), y),

(iii) α(x, y) ∗ z = α(x ∗ z, y),
(iv) β(β(x, y), z) = β(β(x, z), y),

(v) z ∗ β(x, y) = (z ∗ x) ∗ y,
(vi) α(β(x, y), z) = α(β(x, z), y)

for any x, y, z ∈ X.

Remark 3.2. By condition (M1), if we identify (x, 0) ≡ x for any x ∈ X, then X is a subalgebra
of M(X). By applying Theorem 3.1, we obtain many (mirror) Q-algebras: X ⊆ M(X) ⊆
M(M(X)) = M2(X) ⊆ M3(X) ⊆ M4(X) ⊆ · · · .

Example 3.3. LetZ be the set of all integers. Then (Z,−, 0) is aQ-algebrawhere “−” is the usual
subtraction in Z. If we define mappings α, β : Z ×Z → Z by α(x, y) = β(x, y) = x + y for any
x, y ∈ Z, then the mirror algebra (M(Z),⊕, (0, 0)) is also a Q-algebra, that is, (x, 0) ⊕ (y, 0) =
(x − y, 0), (x, 1) ⊕ (y, 1) = (y − x, 0), (x, 0) ⊕ (y, 1) = (x + y, 0), and (x, 1) ⊕ (y, 0) = (x + y, 1).

Example 3.4. Let X := {0, 1} be a set with the following table:

∗ 0 1

0 0 0
1 1 0

(3.1)

Then (X, ∗, 0) is a Q-algebra. Using the same method we obtain its mirror algebra as follows:
M(X) = {0, α, β, γ}with the following table:

⊕ 0 α β γ

0 0 0 0 0
α α 0 α 0
β β β 0 0
γ γ β α 0

(3.2)

where 0 := (0, 0), α := (0, 1), β := (1, 0), and γ := (1, 1). It is easy to see that (M(X),⊕, 0) is a
Q-algebra.

Problems

(1) Find necessary conditions forM(X) to be a QS-algebra if (X, ∗, 0) is a QS-algebra.
(2) Given a homomorphism f : X → Y of Q-algebras, construct a homomorphism

f̂ : M(X) → M(Y) of Q-algebras which is an extension of f .
(3) Given Q-algebras X, Y , are the mirror algebras M(M(X × Y)) and M(X) ×M(Y)

isomorphic?
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