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The notion of equitable coloring was introduced by Meyer in 1973. In this paper we
obtain interesting results regarding the equitable chromatic number χ= for the total graph of
complete bigraphs T(Km,n), the central graph of cycles C(Cn) and the central graph of paths
C(Pn).

1. Introduction

The central graph [1, 2] C(G) of a graph G is formed by adding an extra vertex on each
edge of G, and then joining each pair of vertices of the original graph which were previously
nonadjacent.

The total graph [3, 4] of G has vertex set V (G) ∪ E(G) and edges joining all elements
of this vertex set which are adjacent or incident in G.

If the set of vertices of a graph G can be partitioned into k classes V1, V2, . . . , Vk such
that each Vi is an independent set and the condition ||Vi| − |Vj || ≤ 1 holds for every pair
(i, j), then G is said to be equitably k-colorable. The smallest integer k for which G is equitable
k-colorable is known as the equitable chromatic number [5–10] of G and denoted by χ=(G).
Additional graph theory terminology used in this paper can be found in [3, 4].
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2. Equitable Coloring on Total Graph of Complete Bigraphs

Theorem 2.1. Ifm ≤ n, the equitable chromatic number of total graph of complete bigraphs Km,n,

χ=(T(Km,n)) =

⎧
⎨

⎩

n + 1 if m < n,

n + 2 if m = n.
(2.1)

Proof. Let (X,Y ) be the bipartition ofKm,n, whereX = {vi : 1 ≤ i ≤ m} and Y = {v′
j : 1 ≤ j ≤ n}.

Let uij (1 ≤ i ≤ m; 1 ≤ j ≤ n) be the edges of viv
′
j . By the definition of total graph, T(Km,n) has

the vertex set {vi : 1 ≤ i ≤ m} ∪ {v′
j : 1 ≤ j ≤ n} ∪ {uij : 1 ≤ i ≤ m, 1 ≤ j ≤ n} and the vertices

{uij : 1 ≤ i ≤ m, 1 ≤ j ≤ n} induce n disjoint cliques of order n in T(Km,n). Also vi (1 ≤ i ≤ m)
is adjacent to v′

j (1 ≤ j ≤ n).

Case 1 (ifm = n, χ=(T(Km,n)) = n+2). Nowwe partition the vertex set V (T(Km,n)) as follows:

V1 =
{
u11, u2n, u3(n−1), u4(n−2), . . . , u(n−1)3, un2

}
,

V2 =
{
u12, u21, u3n, u4(n−1), . . . , u(n−1)4, un3

}
,

...

Vn =
{
u1n, u2(n−1), u3(n−2), u4(n−3), . . . , u(n−1)3, un1

}
,

Vn+1 = {v1, v2, . . . , vn},
Vn+2 =

{
v′
1, v

′
2, . . . , v

′
n

}
.

(2.2)

Clearly V1, V2, . . . , Vn+2 are independent sets and |Vi| = n (1 ≤ i ≤ n+2) satisfying the condition
||Vi| − |Vj || = 0, for any i /= j, χ=(T(Km,n)) ≤ n + 2. Since there exists a clique of order n + 1 in
T(Km,n). χ(T(Km,n)) ≥ n+1, also each vi of T(Km,n) receives one color different from the color
class assigned to the clique induced by {uij : 1 ≤ i ≤ m; 1 ≤ j ≤ n}. By the definition of total
graph, each vi is adjacent with v′

j (1 ≤ j ≤ n). Therefore, {v1, v2, . . . , vm} and {v′
1, v

′
2, . . . , v

′
n}

are independent sets and hence χ(T(Km,n)) ≥ n+2. That is, χ=(T(Km,n)) ≥ χ(T(Km,n)) ≥ n+2;
therefore χ=(T(Km,n)) ≥ n + 2. Hence χ=(T(Km,n)) = n + 2.

Case 2 (ifm < n, χ=(T(Km,n)) = n+1). Nowwe partition the vertex set V (T(Km,n)) as follows:

V1 = {u11, u22, u33, u44, . . . , umm} ∪
{
v′
n

}
,

V2 =
{
u12, u23, u34, . . . , um(m−1)

} ∪ {um1} ∪
{
v′
1

}
,

V3 =
{
u13, u24, u35, . . . , um(m−2)

} ∪ {
u(m−1)3, um2

} ∪ {
v′
2
}
,

...

Vn−1 =
{
u1(n−1), u2n

} ∪ {
u31, u32, . . . , um(m−2)

} ∪ {
v′
n−2

}
,

Vn = {u1n} ∪
{
u21, u32, . . . , um(m−1)

} ∪ {
v′
n−1

}
,

Vn+1 = {v1, v2, v3, . . . , vm}.

(2.3)
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Clearly V1, V2, . . . , Vn+1 are independent sets of T(Km,n). Also |V1| = |V2| = · · · = |Vn| = m + 1
and |Vn+1| = m satisfy the condition ||Vi| − |Vj || ≤ 1, for any i /= j, χ=(T(Km,n)) ≤ n + 1. Since
there exists a clique of order n + 1 in T(Km,n). χ(T(Km,n)) ≥ n + 1, that is, χ=(T(Km,n)) ≥
χ(T(Km,n)) ≥ n + 1, therefore χ=(T(Km,n)) ≥ n + 1. Hence χ=(T(Km,n)) = n + 1.

3. Equitable Coloring on Central Graph of Cycles and Paths

Theorem 3.1. If n ≥ 5, the equitable chromatic number of central graph of cycles Cn,

χ=(C(Cn)) =

⎧
⎪⎪⎨

⎪⎪⎩

n + 1
2

if n is odd,

n

2
if n is even.

(3.1)

Proof. Let V (Cn) = {v1, v2, . . . , vn} and E(Cn) = {e1, e2, . . . , en} be the vertices and edges of Cn

taken in the cyclic order. By the definition of central graph, C(Cn) has the vertex set V (Cn) ∪
{ui : 1 ≤ i ≤ n}, where ui is the vertex of subdivision of the edge ei and joining all the
nonadjacent vertices of Cn in C(Cn).

Case 1 (n is odd). We partition the vertex set V (C(Cn)) as

V1 = {v1, v2, un−2, un−1},
V2 = {v3, v4, un},
V3 = {v5, v6, u1, u2},
V4 = {v7, v8, u3, u4},

...

V(n−1)/2 = {vn−2, vn−1, un−6, un−5},
V(n+1)/2 = {vn, un−4, un−3}.

(3.2)

Clearly V1, V2, . . . V(n−1)/2, V(n+1)/2 are independent sets of C(Cn). Also |V1| = |V3| = |V4| =
· · · = |V(n−1)/2| = 4 and |V2| = |V(n+1)/2| = 3. The inequality ||Vi| − |Vj || ≤ 1 holds, for any
i /= j, χ=(C(Cn)) ≤ (n + 1)/2. For each i, vi is nonadjacent with vi−1 and vi+1 and hence
χ(C(Cn)) ≥ (n + 1)/2. That is, χ=C(Cn) ≥ χ(C(Cn)) ≥ (n + 1)/2, χ=(C(Cn)) ≥ (n + 1)/2.
Therefore, χ=(C(Cn)) = (n + 1)/2.

Case 2 (n is even). Now we partition the vertex set V (C(Cn)) as follows:

V1 = {v1, v2, un−3, un−2},
V2 = {v3, v4, un−1, un},
V3 = {v5, v6, u1, u2},
V4 = {v7, v8, u3, u4},

...

Vn/2 = {vn−1, vn, un−5, un−4}.

(3.3)
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Clearly V1, V2, . . . Vn/2 are independent sets of C(Cn). Also |V1| = |V2| = |V3| = |V4| = · · · =
|Vn/2| = 4. The inequality ||Vi| − |Vj || = 0 holds, for any i /= j, χ=(C(Cn)) ≤ n/2. For each i, vi

is nonadjacent with vi−1 and vi+1 and hence χ(C(Cn)) ≥ n/2. That is, χ=C(Cn) ≥ χ(C(Cn)) ≥
n/2, χ=(C(Cn)) ≥ n/2. Therefore, χ=(C(Cn)) = n/2.

Remark 3.2. If n = 3, 4, then χ=(C(Cn)) = 2, 3, respectively.

Theorem 3.3. If n ≥ 5, the equitable chromatic number of central graph of paths Pn,

χ=(C(Pn)) =

⎧
⎪⎨

⎪⎩

n + 1
2

if n is odd,

n

2
if n is even.

(3.4)

Proof. Let V (Pn) = {v1, v2, . . . , vn} and E(Pn) = {e1, e2, . . . , en} be the vertices and edges of Pn.
By the definition of central graph, C(Pn) has the vertex set V (Pn)∪{ui : 1 ≤ i ≤ n−1}, where ui

is the vertex of subdivision of the edge ei and joining all nonadjacent vertices of Pn in C(Pn).

Case 1 (n is odd). Now we partition the vertex set V (C(Pn)) as follows:

V1 = {v1, v2, un−2},
V2 = {v3, v4, un−1},
V3 = {v5, v6, u1, u2},
V4 = {v7, v8, u3, u4},

...

V(n−1)/2 = {vn−1, vn−2, un−6, un−5},
V(n+1)/2 = {vn, un−4, un−3}.

(3.5)

Clearly V1, V2, . . . V(n−1)/2, V(n+1)/2 are independent sets of C(Pn). Also |V3| = |V4| = · · · =
|V(n−1)/2| = 4 and |V1| = |V2| = |V(n+1)/2| = 3. The inequality ||Vi| − |Vj || ≤ 1 holds, for
any i /= j, χ=(C(Pn)) ≤ (n + 1)/2. For each i, vi is nonadjacent with vi−1 and vi+1 and hence
χ(C(Pn)) ≥ (n + 1)/2. That is, χ=C(Pn) ≥ χ(C(Pn)) ≥ (n + 1)/2, χ=(C(Pn)) ≥ (n + 1)/2.
Therefore χ=(C(Pn)) = (n + 1)/2.

Case 2 (n is even). Now we partition the vertex set V (C(Pn)) as follows:

V1 = {v1, v2, un−3, un−2},
V2 = {v3, v4, un−1},
V3 = {v5, v6, u1, u2},
V4 = {v7, v8, u3, u4},

...

Vn/2 = {vn−1, vn, un−5, un−4}.

(3.6)
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Clearly V1, V2, . . . Vn/2 are independent sets of C(Pn). Also |V1| = |V3| = |V4| = · · · = |Vn/2| = 4
and |V2| = 3. The inequality ‖Vi| − |Vj‖ ≤ 1 holds for any i /= j, χ=(C(Pn)) ≤ n/2. For each i, vi is
nonadjacent with vi−1 and vi+1 and hence χ(C(Pn)) ≥ n/2. That is, χ=C(Pn) ≥ χ(C(Pn)) ≥ n/2,
χ=(C(Pn)) ≥ n/2. Therefore, χ=(C(Pn)) = n/2.

Remark 3.4. If n = 1, 2, 3, 4, then χ=(C(Pn)) = 1, 2, 3, 3, respectively.
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