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Motivated by the success of the Janowski starlike function, we consider here closely related
functions for log-harmonic mappings of the form f(z) = zh(z)g(z) defined on the open unit
disc U. The functions are in the class of the generalized Janowski starlike log-harmonic mapping,
S∗
lh(A,B, α), with the functional zh(z) in the class of the generalized Janowski starlike functions,

S∗(A,B, α). By means of these functions, we obtained results on the generalized Janowski close-to-
starlike log-harmonic mappings, CSTlh(A,B, α).

1. Introduction

The class S∗(A,B) was investigated by Janowski [1] in early 1970, and since then various
other subclasses in relation with this Janowski class have been introduced and studied. In
that direction, the log-harmonic mappings which have been studied extensively for the past
3 decades, (see [2–10]) were also associated with the Janowski class. Perhaps, the Janowski
starlike log-harmonic univalent functions were first introduced by Polatoğlu and Deniz [11].

A function f is said to be log-harmonic on the open unit disc U = {z : |z| < 1} if it
satisfies the nonlinear elliptic partial differential equation:

fz

f
= a

fz
f
, (1.1)

where the second dilatation function a ∈ H(U) (set of all analytic functions defined on U)
such that |a(z)| < 1 for all z ∈ U. For analytic functions h and g in U, the function f can be
expressed as

f(z) = h(z)g(z) (1.2)
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if f is a nonvanishing log-harmonic mapping and

f(z) = z|z|2βh(z)g(z) (1.3)

if f vanishes at z = 0 but is not identically zero (for Re β > −1/2, g(0) = 1, and h(0)/= 0).
Let f(z) = zh(z)g(z) be a univalent log-harmonic mapping, where 0 /∈ f(U) or

equivalently 0 /∈ hg(U). Then f is starlike log-harmonic mapping if

Re
(
zfz − zfz

f

)
> 0. (1.4)

Results on starlike log-harmonic mapping of order αwas given in [6].
Motivated by [11], the class of the generalized Janowski log-harmonic starlike

functions was introduced in [12]. For real numbers A and B, with −1 ≤ B < A ≤ 1 and
0 ≤ α < 1, the family of analytic functions of the form

p(z) = 1 + p1z + p2z
2 + · · · (1.5)

is in P(A,B, α) if and only if

p(z) =
1 + [(1 − α)A + αB]φ(z)

1 + Bφ(z)
, (1.6)

where the function φ is analytic in U with φ(0) = 0 and |φ(z)| < 1. The following lemma is
also essential for p(z) to be in P(A,B, α).

Lemma 1.1 (see [13]). The function p(z) ∈ P(A,B, α) if and only if

∣∣∣∣∣p(z) −
1 − [(1 − α)A + αB]Br2

1 − B2r2

∣∣∣∣∣ ≤
(1 − α)(A − B)r

1 − B2r2
(1.7)

for |z| ≤ r < 1.

Let S∗(A,B, α) denote the class of the generalized Janowski starlike functions of the
analytic functions s(z) = z + s2z

2 + · · · such that s(z) ∈ S∗(A,B, α) if and only if

zs′(z)
s(z)

= p(z) (1.8)

and p(z) ∈ P(A,B, α) for z ∈ U.
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For univalent log-harmonic mapping f(z) = zh(z)g(z) with g(0) = 1 and h(0)/= 0,
f is in the class of the generalized Janowski starlike log-harmonic mapping denoted by
S∗
lh(A,B, α) if

∣∣∣∣∣p(z) −
1 − [(1 − α)A + αB]Br2

1 − B2r2

∣∣∣∣∣ ≤
(1 − α)(A − B)r

1 − B2r2
, (1.9)

where

p(z) =
h(z)g(z) + zh′(z)g(z) − zg ′(z)h(z)

h(z)g(z)
= 1 +

zh′(z)
h(z)

− zg ′(z)
g(z)

. (1.10)

Also observe that if f ∈ S∗
lh(A,B, α), then

Re
(
zfz − zfz

f

)
≥ 1 − [(1 − α)A + αB]

1 − B
. (1.11)

In the present work, we consider the log-harmonic mapping f(z) = zh(z)g(z) in the
generalized Janowski starlike functions with the functional zh(z) ∈ S∗(A,B, α). We also study
the class of generalized Janowski close-to-starlike in the next section.

2. The Generalized Janowski Starlike Log-Harmonic

Theorem 2.1. If zh(z) ∈ S∗(A,B, α), then

(1 − Br)(1−α)(A−B)/B ≤ |h(z)| ≤ (1 + Br)(1−α)(A−B)/B for B /= 0,

e−(1−α)Ar ≤ |h(z)| ≤ e(1−α)Ar for B = 0.
(2.1)

Proof. Since zh(z) ∈ S∗(A,B, α), Lemma 1.1 yields that for B /= 0 we have

1 − [(1 − α)A + αB]r
1 − Br

≤ Re

(
z(zh(z))′

zh(z)

)
≤ 1 + [(1 − α)A + αB]r

1 + Br
(2.2)

or

−(1 − α)(A − B)r
1 − Br

≤ Re
(
zh′(z)
h(z)

)
≤ (1 − α)(A − B)r

1 + Br
. (2.3)

Simple calculations yield

−(1 − α)(A − B)
−B log(1 − Br) ≤ log|h(z)| ≤ (1 − α)(A − B)

B
log(1 + Br), (2.4)

and the result follows immediately.
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For B = 0, Lemma 1.1 yields

1 − (1 − α)Ar ≤ Re

(
z(zh(z))′

zh(z)

)
≤ 1 + (1 − α)Ar, (2.5)

and the proof is completed similarly.

Theorem 2.2. Let f(z) = zh(z)g(z) ∈ S∗
lh(A,B, α) with zh(z) ∈ S∗(A,B, α). Then one has

(1 − Br)(1−α)(A−B)/B

(1 + Br)(1−α)(A−B)/B ≤ ∣∣g(z)∣∣ ≤ (1 + Br)(1−α)(A−B)/B

(1 − Br)(1−α)(A−B)/B for B /= 0,

e−2(1−α)Ar ≤ ∣∣g(z)∣∣ ≤ e2(1−α)Ar for B = 0.

(2.6)

Proof. It follows from [12] that for f(z) = zh(z)g(z) ∈ S∗
lh(A,B, α), we have

(1 − Br)(1−α)(A−B)/B ≤
∣∣∣∣h(z)g(z)

∣∣∣∣ ≤ (1 + Br)(1−α)(A−B)/B for B /= 0,

e−(1−α)Ar ≤
∣∣∣∣h(z)g(z)

∣∣∣∣ ≤ e(1−α)Ar for B = 0.

(2.7)

With these inequalities and Theorem 2.1, we can conclude the following statement.

Theorem 2.3. Let f(z) = zh(z)g(z) ∈ S∗
lh(A,B, α) with zh(z) ∈ S∗(A,B, α). Then one has

r(1 − Br)2(1−α)(A−B)/B

(1 + Br)(1−α)(A−B)/B ≤ ∣∣f(z)∣∣ ≤ r(1 + Br)2(1−α)(A−B)/B

(1 − Br)(1−α)(A−B)/B for B /= 0,

re−3(1−α)Ar ≤ ∣∣f(z)∣∣ ≤ re3(1−α)Ar for B = 0.

(2.8)

Proof. For f(z) = zh(z)g(z) and |z| = r, it is easy to see that

∣∣f(z)∣∣ = ∣∣∣zh(z)g(z)∣∣∣ = |z||h(z)|
∣∣∣g(z)∣∣∣ = r|h(z)|∣∣g(z)∣∣. (2.9)

Thus, we can obtain the results from Theorems 2.1 and 2.2.

3. The Generalized Janowski Close-to-Starlike Log-Harmonic

Let Plh be mapping the set of all log-harmonic mappings, and let R be defined on U which
are of the form R(z) = K(z)J(z), where K and J are in H(U), K(0) = J(0) = 1 and such that
ReR(z) > 0 for all z ∈ U. These log-harmonic mappings with positive real part were studied
in [5]. Other interesting studies in the same paper were on the close-to starlike log-harmonic
mappings. The author then extended the results to close-to starlike of order α log-harmonic
mappings [2].
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In that direction, we say that F(z) = zH(z)G(z) is the generalized Janowski close-to-
starlike log-harmonic mapping if there exist a log-harmonic mapping f(z) = zh(z)g(z) ∈
ST ∗

lh(A,B, α) (−1 ≤ B < A ≤ 1 and 0 ≤ α < 1), with respect to the second dilatation function
a ∈ H(U) and a log-harmonic mapping with positive real part R ∈ Plh where its second
dilatation function is the same such that

F(z) = f(z)R(z) (3.1)

or equivalently

Re
F(z)
f(z)

> 0. (3.2)

We could also easily derive from (3.1) that

Re
(
zFz − zFz

F

)
= Re

(
zfz − zfz

f

)
+ Re

(
zRz − zRz

R

)
. (3.3)

The geometrical interpretation is that under a generalized Janowski close-to-starlike
log-harmonic mapping, the radius vector of the image of |z| = r < 1 never turns back by the
amount more than ((1 − α)(A − B)/(1 − B))π . As special cases, we see that

(i) for α = 0 or under the Janowski close-to-starlike log-harmonic mappings, the radius
vector of the image of |z| = r < 1 never turns back by an amount more than ((A −
B)/(1 − B))π ,

(ii) for when A = 1, B = −1 or under the close-to-starlike of order α log-harmonic
mappings, the radius vector of the image of |z| = r < 1 never turns back by an
amount more than (1 − α)π ,

(iii) for α = 0, A = 1, B = −1 or under the close-to-starlike log-harmonic mappings, the
radius vector of the image of |z| = r < 1 never turns back by an amount more than
π .

The following theorem gives us the radius of starlikeness for F(z) = zH(z)G(z) ∈
CSTlh(A,B, α).

Theorem 3.1. The radius of starlikeness for F(z) = zH(z)G(z) ∈ CSTlh(A,B, α) is the largest
positive root, r ∈ (0, 1], such that

(1 − [(1 − α)A + αB]r)(1 − r)(1 + r) − 2r(1 − Br) > 0. (3.4)

Proof. For F(z) = zH(z)G(z) ∈ CSTlh(A,B, α), we have

Re
(
zFz − zFz

F

)
= Re

(
zfz − zfz

f

)
+ Re

(
zRz − zRz

R

)
, (3.5)
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and since f ∈ S∗
lh(A,B, α) and R ∈ Plh, (3.5) becomes

Re
(
zFz − zFz

F

)
≥ 1 − [(1 − α)A + αB]r

1 − Br
+

−2r
1 − r2

. (3.6)

Hence,

Re
(
zFz − zFz

F

)
> 0 (3.7)

if

1 − [(1 − α)A + αB]r
1 − Br

− 2r
1 − r2

> 0. (3.8)

Corollary 3.2 (see [2]). The radius of starlikeness for F(z) = zH(z)G(z) ∈ CSTlh is

r < 2 −
√
3. (3.9)

Corollary 3.3 (see [2]). The radius of starlikeness for F(z) = zH(z)G(z) ∈ CSTlh(α) is

r <
2 − α −

√
α2 − 2α + 3

1 − 2α
. (3.10)

Corollary 3.4. The radius of starlikeness for F(z) = zH(z)G(z) ∈ CSTlh(A,B) is the largest
positive root, r ∈ (0, 1], such that

(1 −Ar)(1 − r)(1 + r) − 2r(1 − Br) > 0. (3.11)

Proof. The proof is completed by taking α = 0 in (3.4).

We need the following theorem from [5] to prove our next result.

Theorem

Let R(z) ∈ Plh, and suppose that a(0) = 0. Then, for z ∈ U, we have

e−2|z|/(1−|z|) ≤ |R(z)| ≤ e2|z|/(1−|z|). (3.12)
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Theorem 3.5. For F(z) = zH(z)G(z) ∈ CSTlh(A,B, α) and f(z) = zh(z)g(z) with zh(z) ∈
S∗(A,B, α), one has

r(1 − Br)2(1−α)(A−B)/Be−2r/(1−r)

(1 + Br)(1−α)(A−B)/B ≤ |F(z)| ≤ r(1 − Br)2(1−α)(A−B)/Be2r/(1−r)

(1 + Br)(1−α)(A−B)/B for B /= 0,

re−3(1−α)Ar−(2r/(1−r)) ≤ |F(z)| ≤ re3(1−α)Ar−(2r/(1−r)) for B = 0.

(3.13)

Proof. From (3.12) and Theorem 2.3, we have

e−2r/(1−r) ≤ |R(z)|e2r/(1−r), |z| = r < 1,

r(1 − Br)2(1−α)(A−B)/B

(1 + Br)(1−α)(A−B)/B ≤ ∣∣f(z)∣∣ ≤ r(1 + Br)2(1−α)(A−B)/B

(1 − Br)(1−α)(A−B)/B for B /= 0,

re−3(1−α)Ar ≤ ∣∣f(z)∣∣ ≤ re3(1−α)Ar for B = 0,

(3.14)

respectively. Also, we know that for F ∈ CSTlh(A,B, α), we have F(z) = f(z)R(z)which then
leads to the desired result.
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