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The purpose of this paper is to study the strong and weak convergence theorems of the implicit
iteration processes for an infinite family of Lipschitzian pseudocontractive mappings in Banach
spaces.

1. Introduction and Preliminaries

Throughout this paper, we assume that E is a real Banach space, E∗ is the dual space of E,
C is a nonempty closed convex subset of E, R+ is the set of nonnegative real numbers, and
J : E → 2E

∗
is the normalized duality mapping defined by

J(x) =
{
f ∈ E∗ :

〈
x, f

〉
= ‖x‖ · ∥∥f∥∥, ‖x‖ =

∥∥f
∥∥}, x ∈ E. (1.1)

Let T : C → C be a mapping. We use F(T) to denote the set of fixed points of T . We also use
“→ ” to stand for strong convergence and “⇀” for weak convergence. For a given sequence
{xn} ⊂ C, let Wω(xn) denote the weak ω-limit set, that is,

Wω(xn) =
{
z ∈ C : there exists a subsequence {xni} ⊂ {xn} such that xni ⇀ z

}
. (1.2)
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Definition 1.1. (1)Amapping T : C → C is said to be pseudocontraction [1], if for any x, y ∈ C,
there exists j(x − y) ∈ J(x − y) such that

〈
Tx − Ty, j

(
x − y

)〉 ≤ ∥
∥x − y

∥
∥2

. (1.3)

It is well known that [1] the condition (1.3) is equivalent to the following:

∥
∥x − y

∥
∥ ≤ ∥

∥x − y + s
[
(I − Tx) − (

I − Ty
)]∥∥, (1.4)

for all s > 0 and all x, y ∈ C.
(2) T : C → C is said to be strongly pseudocontractive, if there exists k ∈ (0, 1) such that

〈
Tx − Ty, j

(
x − y

)〉 ≤ k
∥
∥x − y

∥
∥2

, (1.5)

for each x, y ∈ C and for some j(x − y) ∈ J(x − y).
(3) T : C → C is said to be strictly pseudocontractive in the terminology of Browder and

Petryshyn [1], if there exists λ > 0 such that

〈
Tx − Ty, j

(
x − y

)〉 ≤ ∥∥x − y
∥∥2 − λ

∥∥(I − T)x − (I − T)y
∥∥2

, (1.6)

for every x, y ∈ C and for some j(x − y) ∈ J(x − y).
In this case, we say T is a λ-strictly pseudocontractive mapping.
(4) T : C → C is said to be L-Lipschitzian, if there exists L > 0 such that

∥∥Tx − Ty
∥∥ ≤ L

∥∥x − y
∥∥, ∀x, y ∈ C. (1.7)

Remark 1.2. It is easy to see that if T : C → C is a λ-strictly pseudocontractive mapping, then
it is a (1 + λ)/λ-Lipschitzian mapping.

In fact, it follows from (1.6) that for any x, y ∈ C,

λ
∥∥(I − T)x − (I − T)y

∥∥2 ≤ 〈
(I − T)x − (I − T)y, j

(
x − y

)〉

≤ ∥∥(I − T)x − (I − T)y
∥∥∥∥x − y

∥∥.
(1.8)

Simplifying it, we have

∥∥(I − T)x − (I − T)y
∥∥ ≤ 1

λ

∥∥x − y
∥∥, (1.9)

that is,

∥∥Tx − Ty
∥∥ ≤ 1 + λ

λ

∥∥x − y
∥∥, ∀x, y ∈ C. (1.10)



International Journal of Mathematics and Mathematical Sciences 3

Lemma 1.3 (see [2, Theorem 13.1] or [3]). Let E be a real Banach space, C be a nonempty closed
convex subset of E, and T : C → C be a continuous strongly pseudocontractive mapping. Then T has
a unique fixed point in C.

Remark 1.4. Let E be a real Banach space, C be a nonempty closed convex subset of E and T :
C → C be a Lipschitzian pseudocontraction mapping. For every given u ∈ C and s ∈ (0, 1),
define a mapping Us : C → C by

Usx = su + (1 − s)Tx, x ∈ C. (1.11)

It is easy to see that Us is a continuous strongly pseudocontraction mapping. By using
Lemma 1.3, there exists a unique fixed point xs ∈ C of Us such that

xs = su + (1 − s)Txs. (1.12)

The concept of pseudocontractive mappings is closely related to accretive operators. It
is known that T is pseudocontractive if and only if I − T is accretive, where I is the identity
mapping. The importance of accretive mappings is from their connection with theory of
solutions for nonlinear evolution equations in Banach spaces. Many kinds of equations, for
example, Heat, wave, or Schrödinger equations can be modeled in terms of an initial value
problem:

du

dt
= Tu − u, u(0) = u0, (1.13)

where T is a pseudocontractive mapping in an appropriate Banach space.
In order to approximate a fixed point of Lipschitzian pseudocontractive mapping, in

1974, Ishikawa introduced a new iteration (it is called Ishikawa iteration). Since then, a question
of whether or not the Ishikawa iteration can be replaced by the simpler Mann iteration has
remained open. Recently Chidume andMutangadura [4] solved this problem by constructing
an example of a Lipschitzian pseudocontractive mapping with a unique fixed point for which
every Mann-type iteration fails to converge.

Inspired by the implicit iteration introduced by Xu and Ori [5] for a finite family
of nonexpansive mappings in a Hilbert space, Osilike [6], Chen et al. [7], Zhou [8] and
Boonchari and Saejung [9] proposed and studied convergence theorems for an implicit
iteration process for a finite or infinite family of continuous pseudocontractive mappings.

The purpose of this paper is to study the strong andweak convergence problems of the
implicit iteration processes for an infinite family of Lipschitzian pseudocontractive mappings
in Banach spaces. The results presented in this paper extend and improve some recent results
of Xu and Ori [5], Osilike [6], Chen et al. [7], Zhou [8] and Boonchari and Saejung [9].

For this purpose, we first recall some concepts and conclusions.
A Banach space E is said to be uniformly convex, if for each ε > 0, there exists a δ > 0

such that for any x, y ∈ E with ‖x‖, ‖y‖ ≤ 1 and ‖x − y‖ ≥ ε, ‖x + y‖ ≤ 2(1 − δ) holds. The
modulus of convexity of E is defined by

δE(ε) = inf
{
1 −

∥∥∥∥
x + y

2

∥∥∥∥ : ‖x‖, ∥∥y∥∥ ≤ 1,
∥∥x − y

∥∥ ≥ ε

}
, ∀ε ∈ [0, 2]. (1.14)
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Concerning the modulus of convexity of E, Goebel and Kirk [10] proved the following
result.

Lemma 1.5 (see [10, Lemma 10.1]). Let E be a uniformly convex Banach space with a modulus of
convexity δE. Then δE : [0, 2] → [0, 1] is continuous, increasing, δE(0) = 0, δE(t) > 0 for t ∈ (0, 2]
and

‖cu + (1 − c)v‖ ≤ 1 − 2min{c, 1 − c}δE(‖u − v‖), (1.15)

for all c ∈ [0, 1], and u, v ∈ E with ‖u‖, ‖v‖ ≤ 1.
A Banach space E is said to satisfy the Opial condition, if for any sequence {xn} ⊂ E with

xn ⇀ x, then the following inequality holds:

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

∥
∥xn − y

∥
∥, (1.16)

for any y ∈ E with y /=x.

Lemma 1.6 (Zhou [8]). Let E be a real reflexive Banach space with Opial condition. Let C be a
nonempty closed convex subset of E and T : C → C be a continuous pseudocontractive mapping.
Then I − T is demiclosed at zero, that is, for any sequence {xn} ⊂ E, if xn ⇀ y and ‖(I − T)xn‖ → 0,
then (I − T)y = 0.

Lemma 1.7 (Chang [11]). Let J : E → 2E
∗
be the normalized duality mapping, then for any

x, y ∈ E,

∥∥x + y
∥∥2 ≤ ‖x‖2 + 2

〈
y, j

(
x + y

)〉
, ∀j(x + y

) ∈ J
(
x + y

)
. (1.17)

Definition 1.8 (see [12]). Let {Tn} : C → E be a family of mappings with
⋂∞

n=1 F(Tn)/= ∅. We
say {Tn} satisfies the AKTT-condition, if for each bounded subset B of C the following holds:

∞∑

n=1

sup
z∈B

‖Tn+1z − Tnz‖ < ∞. (1.18)

Lemma 1.9 (see [12]). Suppose that the family of mappings {Tn} : C → C satisfies the AKTT-
condition. Then for each y ∈ C, {Tny} converges strongly to a point in C. Moreover, let T : C → C
be the mapping defined by

Ty = lim
n→∞

Tny, ∀y ∈ C. (1.19)

Then, for each bounded subset B ⊂ C, limn→∞supz∈B‖Tz − Tnz‖ = 0.

2. Main Results

Theorem 2.1. Let E be a uniformly convex Banach space with a modulus of convexity δE, and C
be a nonempty closed convex subset of E. Let {Tn} : C → C be a family of Ln-Lipschitzian and
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pseudocontractive mappings with L := supn≥1Ln < ∞ and F :=
⋂

n≥1 F(Tn)/= ∅. Let {xn} be the
sequence defined by

x1 ∈ C,

xn = αnxn−1 + (1 − αn)Tnxn, n ≥ 1,
(2.1)

where {αn} is a sequence in [0, 1]. If the following conditions are satisfied:

(i) lim supn→∞αn < 1;

(ii) there exists a compact subsetK ⊂ E such that
⋃∞

n=1 Tn(C) ⊂ K;

(iii) {Tn} satisfies the AKTT-condition, and F(T) ⊂ F, where T : C → C is the mapping
defined by (1.19).

Then xn converges strongly to some point p ∈ F

Proof. First, we note that, by Remark 1.4, the method is well defined. So, we can divide the
proof in three steps.

(I) For each p ∈ F the limit limn→∞‖xn − p‖ exists.
In fact, since {Tn} is pseudocontractive, for each p ∈ F, we have

∥∥xn − p
∥∥2 =

〈
xn − p, j

(
xn − p

)〉

= αn〈xn−1 − p, j
(
xn − p

)〉 + (1 − αn)
〈
Tnxn − p, j

(
xn − p

)〉

≤ αn

∥∥xn−1 − p
∥∥∥∥xn − p

∥∥ + (1 − αn)
∥∥xn − p

∥∥2
, ∀n ≥ 1.

(2.2)

Simplifying, we have that

∥∥xn − p
∥∥ ≤ ∥∥xn−1 − p

∥∥, ∀n ≥ 1. (2.3)

Consequently, the limit limn→∞‖xn−p‖ exists, and so the sequence {xn} is bounded.
(II) Now, we prove that limn→∞‖xn − Tnxn‖ = 0.

In fact, by virtue of (2.1) and (1.4), we have

∥∥xn − p
∥∥ ≤

∥∥∥∥xn − p +
1 − αn

2αn
(xn − Tnxn)

∥∥∥∥

=
∥∥∥∥xn − p +

1 − αn

2
(xn−1 − Tnxn)

∥∥∥∥

=
∥∥∥∥αnxn−1 + (1 − αn)Tnxn − p +

1 − αn

2
(xn−1 − Tnxn)

∥∥∥∥

=
∥∥∥
xn−1 + xn

2
− p

∥∥∥

=
∥∥xn−1 − p

∥∥ ·
∥∥∥∥∥

xn−1 − p

2
∥∥xn−1 − p

∥∥ +
xn − p

2
∥∥xn−1 − p

∥∥

∥∥∥∥∥
.

(2.4)
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Letting u = (xn−1 − p)/‖xn−1 − p‖ and v = (xn − p)/‖xn−1 − p‖, from (2.3), we know
that ‖u‖ = 1, ‖v‖ ≤ 1. It follows from (2.4) and Lemma 1.5 that

∥
∥xn − p

∥
∥ ≤ ∥

∥xn−1 − p
∥
∥
{

1 − δE

(
‖xn−1 − xn‖∥
∥xn−1 − p

∥
∥

)}

. (2.5)

Simplifying, we have that

∥
∥xn−1 − p

∥
∥
{

δE

(
‖xn−1 − xn‖∥
∥xn−1 − p

∥
∥

)}

≤ ∥
∥xn−1 − p

∥
∥ − ∥

∥xn − p
∥
∥. (2.6)

This implies that

∞∑

n=1

∥∥xn−1 − p
∥∥
{

δE

(
‖xn−1 − xn‖∥∥xn−1 − p

∥∥

)}

≤ ∥∥x0 − p
∥∥. (2.7)

Letting limn→∞‖xn − p‖ = r, if r = 0, the conclusion of Theorem 2.1 is proved. If
r > 0, it follows from the property of modulus of convexity δE that ‖xn−1 − xn‖ →
0 (n → ∞). Therefore, from (2.1) and the condition (i), we have that

‖xn−1 − Tnxn‖ =
1

1 − αn
‖xn − xn−1‖ −→ 0 (as n −→ ∞). (2.8)

In view of (2.1) and (2.8), we have

‖xn − Tnxn‖ = αn‖xn−1 − Tnxn‖ −→ 0 (as n −→ ∞). (2.9)

(III) Now, we prove that {xn} converges strongly to some point in F.
In fact, it follows from (2.9) and condition (ii) that there exists a subsequence {xni} ⊂
{xn} such that ‖xni−Tnixni‖ → 0 (as ni → ∞), Tnixni → p and xni → p (some point
in C). Furthermore, by Lemma 1.9, we have Tnip → Tp. consequently, we have

∥∥p − Tp
∥∥ ≤ ∥∥p − xni

∥∥ +
∥∥xni − Tnip

∥∥ +
∥∥Tnip − Tp

∥∥

≤ ∥∥p − xni

∥∥ + ‖xni − Tnixni‖ +
∥∥Tnixni − Tnip

∥∥ +
∥∥Tnip − Tp

∥∥

≤ (1 + L)
∥∥p − xni

∥∥ + ‖xni − Tnixni‖ +
∥∥Tnip − Tp

∥∥ −→ 0.

(2.10)

This implies that p = Tp, that is, p ∈ F(T) ⊂ F. Since xni → p and the limit
limn→∞‖xn − p‖ exists, we have xn → p.

This completes the proof of Theorem 2.1.

Theorem 2.2. Let E be a uniformly convex Banach space satisfying the Opial condition. Let C
be a nonempty closed convex subset of E and {Tn} : C → C be a family of Ln-Lipschitzian
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pseudocontractive mappings with L := supn≥1Ln < ∞ and F :=
⋂

n≥1 F(Tn)/= ∅. Let {xn} be the
sequence defined by (2.1) and {αn} be a sequence in (0, 1). If the following conditions are satisfied:

(i) lim supn→∞αn < 1,

(ii) for any bounded subset B of C

lim
n→∞

sup
z∈B

‖TmTnz − Tnz‖ = 0, for each m ≥ 1. (2.11)

Then the sequence {xn} converges weakly to some point u ∈ F.

Proof. By the same method as given in the proof of Theorem 2.1, we can prove that the
sequence {xn} is bounded and

lim
n→∞

∥
∥xn − p

∥
∥ exists, for each p ∈ F;

lim
n→∞

‖xn − Tnxn‖ = 0.
(2.12)

Now, we prove that

lim
n→∞

‖Tmxn − xn‖ = 0, for each m ≥ 1. (2.13)

Indeed, for each m ≥ 1, we have

‖Tmxn − xn‖ ≤ ‖Tmxn − TmTnxn‖ + ‖TmTnxn − Tnxn‖ + ‖Tnxn − xn‖
≤ (1 + L)‖Tnxn − xn‖ + ‖TmTnxn − Tnxn‖
≤ (1 + L)‖Tnxn − xn‖ + sup

z∈{xn}
‖TmTnz − Tnz‖.

(2.14)

By (2.12) and condition (ii), we have

lim
n→∞

‖Tmxn − xn‖ = 0, for each m ≥ 1. (2.15)

The conclusion of (2.13) is proved.
Finally, we prove that {xn} converges weakly to some point u ∈ F.
In fact, since E is uniformly convex, and so it is reflexive. Again since {xn} ⊂ C is

bounded, there exists a subsequence {xni} ⊂ {xn} such that xni ⇀ u. Hence from (2.13), for
any m > 1, we have

‖Tmxni − xni‖ −→ 0 (as ni −→ ∞). (2.16)

By virtue of Lemma 1.6, u ∈ F(Tm), for all m ≥ 1. This implies that

u ∈ F :=
⋂

n≥
F(Tn) ∩Wω(xn). (2.17)
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Next, we prove thatWω(xn) is a singleton. Let us suppose, to the contrary, that if there
exists a subsequence {xnj} ⊂ {xn} such that xnj ⇀ q ∈ Wω(xn) and q /=u. By the same method
as given above we can also prove that q ∈ F :=

⋂
n≥1 F(Tn) ∩Wω(xn). Taking p = u and p = q

in (2.12). We know that the following limits

lim
n→∞

‖xn − u‖, lim
n→∞

∥
∥xn − q

∥
∥ (2.18)

exist. Since E satisfies the Opial condition, we have

lim
n→∞

‖xn − u‖ = lim sup
ni →∞

‖xni − u‖ < lim sup
ni →∞

∥
∥xni − q

∥
∥

= lim
n→∞

∥
∥xn − q

∥
∥ = lim sup

nj →∞

∥
∥
∥xnj − q

∥
∥
∥

< lim sup
nj →∞

∥∥∥xnj − u
∥∥∥ = lim

n→∞
‖xn − u‖.

(2.19)

This is a contradiction, which shows that q = u. Hence,

Wω(xn) = {u} ⊂ F :=
⋂

n≥1
F(Tn). (2.20)

This implies that xn ⇀ u.
This completes the proof of Theorem 2.2.

In the next lemma, we propose a sequence of mappings that satisfy condition (iii) in
Theorem 2.1. Moreover, we apply this lemma to obtain a corollary of our main Theorem 2.1.

Let E be a Banach space and C be a nonempty closed convex subset of E. From
Definition 1.1(3), we know that if T : C → C is a λ-strictly pseudocontractive mapping,
then it is a ((1 + λ)/λ)-Lipschitzian pseudocontractive mapping.

On the other hand, by the same proof as given in [12] we can prove the following
result.

Lemma 2.3 (see [12] or [9]). Let E be a smooth Banach space, C be a closed convex subset of E. Let
{Sn} : C → C be a family of λn-strictly pseudocontractive mappings with F :=

⋂∞
n=1 F(Sn)/= ∅ and

λ := infn≥1λn > 0. For each n ≥ 1 define a mapping Tn : C → C by:

Tnx =
n∑

k=1

βknSkx, x ∈ C, n ≥ 1, (2.21)

where {βkn} is sequence of nonnegative real numbers satisfying the following conditions:

(i)
∑n

k=1 β
k
n = 1, for all n ≥ 1;

(ii) βk := limn→∞βkn > 0, for all k ≥ 1;

(iii)
∑∞

n=1
∑n

k=1 |βkn+1 − βkn| < ∞.
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Then,

(1) each Tn, n ≥ 1 is a λ-strictly pseudocontractive mapping;

(2) {Tn} satisfies the AKTT-condition;
(3) if T : C → C is the mapping defined by

Tx =
∞∑

k=1

βkSkx, x ∈ C. (2.22)

Then Tx = limn→∞Tnx and F(T) =
⋂∞

k=1 F(Tn) = F :=
⋂∞

n=1 F(Sn).

The following result can be obtained from Theorem 2.1 and Lemma 2.3 immediately.

Theorem 2.4. Let E be a uniformly convex Banach space, C be a nonempty closed convex subset of E.
Let {Sn} : C → C be a family of λn-strictly pseudocontractive mappings with F :=

⋂∞
n=1 F(Sn)/= ∅

and λ := infn≥1λn > 0. For each n ≥ 1 define a mapping Tn : C → C by

Tnx =
n∑

k=1

βknSkx, x ∈ C, n ≥ 1, (2.23)

where {βkn} is a sequence of nonnegative real numbers satisfying the following conditions:

(i)
∑n

k=1 β
k
n = 1, for all n ≥ 1;

(ii) βk := limn→∞βkn > 0, for all k ≥ 1;

(iii)
∑∞

n=1
∑n

k=1 |βkn+1 − βkn| < ∞.

Let {xn} be the sequence defined by

x1 ∈ C,

xn = αnxn−1 + (1 − αn)Tnxn, n ≥ 1,
(2.24)

where {αn} is a sequence in [0, 1]. If the following conditions are satisfied:

(i) lim supn→∞αn < 1;

(ii) there exists a compact subset K ⊂ E such that
⋃∞

n=1 Sn(C) ⊂ K. Then, {xn} converges
strongly to some point p ∈ F.

Proof. Since {Sn} : C → C is a family of λn-strictly pseudocontractive mappings with
λ := infn≥1λn > 0. Therefore, {Sn} is a family of λ-strictly pseudocontractive mappings.
By Remark 1.2, {Sn} is a family of (1 + λ)/λ-Lipschitzian and strictly pseudocontractive
mappings. Hence, by Lemma 2.3, {Tn} defined by (2.21) is a family of (1+ λ)/λ-Lipschitzian,
strictly pseudocontractive mappings with

⋂∞
n=1 F(Tn) = F :=

⋂∞
n=1 F(Sn)/= ∅ and it has also

the following properties:

(1) {Tn} satisfies the AKTT-condition;
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(2) if T : C → C is the mapping defined by (2.22), then Tx = limn→∞Tnx, x ∈ C and
F(T) = F :=

⋂∞
k=1 F(Sn) =

⋂∞
n=1 F(Tn). Hence, by Definition 1.1, {Tn} is also a family

of (1 + λ)/λ-Lipschitzian and pseudocontractive mappings having the properties
(1) and (2) and F :=

⋂∞
n=1 F(Tn)/= ∅. Therefore, {Tn} satisfies all the conditions in

Theorem 2.1. By Theorem 2.1, the sequence {xn} converges strongly to some point
p ∈ F :

⋂∞
k=1 F(Sn) =

⋂∞
n=1 F(Tn).

This completes the proof of Theorem 2.4.
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