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We consider a telegraph equation with nonlocal boundary conditions, and using the application of
Galerkin’s method we established the existence and uniqueness of a generalized solution.

1. Introduction

The initial work devoted to the second-order partial differential equations with nonlocal inte-
gral conditions goes back to Cannon [1]. Subsequent investigations include [1–10] and many
other references therein.

Nonlocal problems for some classes of partial differential equations have attracted
much interest in the last few years, and several papers have been devoted to this subject. The
problem of existence and uniqueness of solutions is of growing interest, as well as methods
of obtaining explicit or approximate solutions for this kind of problems. The main reason of
such a wide interest in this type of problems is that the non-local conditions occur in various
equations of mathematical physics and in mathematical biology.

Nonlocal conditions come up when values of the function on the boundary are
connected to values inside the domain. There are various types of non-local integral con-
ditions for hyperbolic, parabolic, or elliptic equations; we point out an important non-local
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problem (see [11, 12]), studied for a parabolic equation with the following non local con-
ditions.

u(0, t) =
∫1

0
α1(x)u(x, t)dx + d1(t),

u(1, t) =
∫1

0
α2(x)u(x, t)dx + d2(t),

(1.1)

connected with quasistationary thermoelasticity theory. The non-local boundary conditions
of type

α(t) =
∫1

0
u(x, t)dx, u(1, t) = 0, (1.2)

arise in modeling the technology of integral circuits, studied in [13].
Problemswith nonlocal integral conditions formultidimensional hyperbolic equations

have been intensively studied in recent years. However, the nonlocal integral conditions for
equations were in the form of second kind as

∂u

∂η

∣∣∣∣
(x,t)∈∂Ω×I

+
∫T
0

∫
Ω
K(x, ξ, τ)u(ξ, τ)dξdτ = 0, ∀x ∈ ∂Ω, (1.3)

or

u(x, t)|(x,t)∈∂Ω×I +
∫
Ω
K(x, ξ)u(ξ, t)dξ = 0, ∀x ∈ ∂Ω, (1.4)

where Ω is a bounded domain in �n with a smooth boundary, ∂u/∂η is the inward normal
vector to ∂Ω; see [14, 15]. Non-local integral conditions of first kind as

∫
Ω
K(x, ξ)u(ξ, t)dξ = 0, ∀x ∈ ∂Ω, (1.5)

are studied in [15]. Under some assumptions on the kernel K, existence and uniqueness of
the generalized solution are established.

The present work deals with the application of the Galerkin method to determine a
function u = u(x, t), x ∈ Ω ∈ �

n is a bounded domain with a smooth boundary ∂Ω, t ∈ I =
(0, T), which satisfies, in weak sense, the telegraph equation

lu =
∂2u

∂t2
+ a

∂u

∂t
+ bu − c∂

2u

∂x2
= f(x, t), (x, t) ∈ Q = Ω × I, (1.6)
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subject to the initial conditions

u(x, 0) = ϕ(x),

∂u

∂t
(x, 0) = ψ(x)

(1.7)

and the integral condition

∂u

∂η

∣∣∣∣
(x,t)∈∂Ω×I

+
∫
Ω
K(x, ξ)u(ξ, t)dξ = 0, ∀x ∈ ∂Ω, (1.8)

where ∂u/∂η is the inward normal vector to ∂Ω. This equation arises in the analysis of
propagation of electrical signals in a cable transmission line. Both the current and voltage
satisfy an equation of this form. This equation arises also in the propagation of pressurewaves
in the study of pulsate blood flow in arteries.

Cannon et al. [5] have developed and analyzed finite-difference and finite-element
Galerkin’s methods for the solution of one-dimensional heat equation with the Neumann and
integral conditions. Cannon and van der Hoek [4] presented numerical schemes based on the
finite difference method. In [16], the authors have applied the Galerkin method to a parabolic
problem with an integral boundary condition and established the existence, uniqueness, and
continuous dependence upon the data of a weak solution. In [17–21], the authors have used
the method of semidiscretization in time and have established the existence and uniqueness
of a weak solution. In [22], the authors have discussed some existence uniqueness results for
a neutral functional differential equation with a nonlocal initial condition via the Galerkin
approximation.

The paper is organized as follows. In Section 2, we specify notations, state some
inequalities and make the sense of the desired solution precise. In Section 3, we establish
the uniqueness of the solution. Finally, Section 4, is devoted to the construction of the
approximate solution and its existence via the Galerkin method.

2. Notation and Definition

Let L2(Q) be the usual space of Lebesgue square integrable real functions on Q whose inner
product and norm will be denoted by ( , ) and ‖ · ‖, respectively.

W1,2(Q) is the Sobolev space consisting of functions such that all derivatives lower
than one belong to L2(Q) equipped with the norm

‖u‖2W1,2(Q) = ‖u‖2 + ‖∇u‖2 + ‖ut‖2. (2.1)

We define the spaceW1,2
T (Q) = {v(x, t) ∈ W1,2(Q), v(x, T) = 0}.
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2.1. Some Useful Inequalities: Gronwall Inequalities [23]

Let h(t) and y(t) be two integrable nonnegative functions on the interval I with h(t)
nondecreasing. If

y(t) ≤ h(t) + c
∫ t
0
y(s)ds, ∀t ∈ I, (2.2)

where c is a positive constant, then y(t) ≤ h(t)ect, ∀t ∈ I.

Cauchy Schwarz inequality:

(∫
f(t)g(t)dt

)2

≤
(∫ ∣∣f(t)∣∣2dt

)(∫ ∣∣g(t)∣∣2dt
)
. (2.3)

ε-Cauchy inequality:

∣∣αβ∣∣ ≤ ε

2
α2 +

1
2ε
β2, ∀α, β ∈ �, ∀ε ∈ �∗

+ . (2.4)

Trace inequality:

∫
∂Ω

|v|2dsdt ≤
∫
Ω

(
ε|∇v|2 + c(ε)|v|2

)
dxdt, (2.5)

where c(ε) is a positive constant that depends only on ε and on the domain Ω.

2.2. Definition of Generalized Solution

We define the generalized solution of the problem (1.6)–(1.8) as a weak solution that satisfies
for all v ∈ W1,2

T (Q)

(lu, v) =
(
f, v
)
. (2.6)
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Integrating by parts, we get

∫
Q

utt(x, t)v(x, t)dxdt = −
∫
Ω
ψ(x)v(x, 0)dx −

∫
Q

ut(x, t)vt(x, t)dxdt,

∫
Q

ut(x, t)v(x, t)dxdt = −
∫
Ω
ϕ(x)v(x, 0)dx −

∫
Q

u(x, t)vt(x, t)dxdt,

∫
Q

uxx(x, t)v(x, t)dxdt = −
∫T
0

∫
∂Ω
v

(∫
Ω
K(x, ξ)u(ξ, t)dξ

)
dsdt

−
∫
Q

∇u(x, t)∇v(x, t)dxdt.

(2.7)

Regrouping the identities (2.7), then (2.6) becomes

∫
Q

(c∇u∇v − utvt − auvt + buv)dxdt + c
∫T
0

∫
∂Ω
v

(∫
Ω
K(x, ξ)u(ξ, t)dξ

)
dsdt

=
∫
Q

fvdxdt +
∫
Ω
ψ(x)v(x, 0)dx + a

∫
Ω
ϕ(x)v(x, 0)dx.

(2.8)

Definition 2.1. By a generalized solution of problem (1.6)–(1.8) one means a function u ∈ W1,2(Q)
such that the identity (2.8) holds for all function v ∈ W1,2

T (Q).

3. Uniqueness of the Generalized Solution

Now we will show that the generalized solution of problem (1.6)–(1.8), if it exists, is unique.

Theorem 3.1. Assume that ϕ ∈ W1,2(Ω), ψ ∈ L2(Ω), f ∈ L2(Q), K(x, y) ∈ C(Ω ×Ω), and

max
Q

∣∣K(x, y)∣∣ ≤ k1, (3.1)

then the generalized solution of problem (1.6)–(1.8), if it exists, is unique.

Proof. Suppose that there exist two different generalized solutions u1 and u2 for the problem
(1.6)–(1.8); then obviously their difference u = u1−u2 is a generalized solution of the problem
(1.6)–(1.8) with homogeneous equation and homogeneous initial and non local conditions,
that is, f = ϕ = ψ = 0. We will prove that u = 0 in Q. Let v ∈ W1,2

T (Q), and denote Qτ =
{(x, t); 0 < x < 1, 0 < t ≤ τ ≤ T}. Consider the function

v(x, t) =

⎧⎪⎨
⎪⎩

∫ τ
t

u(x, θ)dθ, 0 ≤ t ≤ τ,

0, τ ≤ t ≤ T.
(3.2)
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The identity (2.8) becomes

∫
Q

(c∇u∇v − utvt − auvt + buv)dxdt + c
∫T
0

∫
∂Ω
v

(∫
Ω
K(x, ξ)u(ξ, t)dξ

)
dsdt = 0. (3.3)

Substituting v into (3.3), integrating by parts, and then using the fact that vt(x, t) = −u(x, t),
it follows that

∫
Ω

(
c(∇v(x, 0))2 + u2(x, τ) + bv2(x, 0)

)
dx = −2c

∫ τ
0

∫
∂Ω
v

(∫
Ω
K(s, ξ)u(ξ, t)dξ

)
dsdt

+ 2a
∫ τ
0

∫
Ω
u2(x, t)dxdt.

(3.4)

Using the assumption on the function K, we get

∫
Ω

(
(∇v(x, 0))2 + u2(x, τ) + v2(x, 0)

)
dx

≤ C1

(∫ τ
0

∫
∂Ω
|v|
(∫

Ω
|u(ξ, t)|dx

)
dsdt +

∫τ
0

∫
Ω
u2(x, t)dxdt

)
,

(3.5)

where C1 = max(2ck1, 2a)/min(c, 1, b). Now, applying Cauchy Schwarz inequality to the
first term in the right-hand side of (3.5), then ε-Cauchy inequality with ε = 1, yields

∫
Ω

(
(∇v(x, 0))2 + u2(x, τ) + v2(x, 0)

)
dx ≤ C1

(∫ τ
0

∫
∂Ω

|v|2dsdt + 2
∫ τ
0

∫
Ω
u2(x, t)dxdt

)
.

(3.6)

Using the trace inequality, we obtain

∫
Ω

(
(∇v(x, 0))2 + u2(x, τ) + v2(x, 0)

)
dx

≤ C1

(∫ τ
0

∫
Ω

(
ε(∇v)2 + c(ε)v2

)
dxdt + 2

∫τ
0

∫
Ω
u2(x, t)dxdt

)
.

(3.7)

Considering the function

w(x, t) =
∫ t
0
u(x, θ)dθ, (3.8)
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it is easy to see that v(x, t) = w(x, τ) − w(x, t), ∇v(x, 0) = ∇w(x, τ), and (∇v(x, t))2 ≤
2(∇w(x, τ))2 + 2(∇w(x, t))2. Consequently, substituting w in (3.7), we get

∫
Ω

(
(∇w(x, τ))2 +w2(x, τ) + u2(x, τ)

)
dx ≤ 2τC1

∫
Ω

(
ε(∇w(x, τ))2 + c(ε)w2(x, τ)

)
dx

+ 2C1

∫ τ
0

∫
Ω

(
ε(∇w)2 + c(ε)w2 + u2

)
dxdt.

(3.9)

Seting

C2 = 2C1 max(ε, c(ε)), C3 = 2C1 max(ε, c(ε), 1), (3.10)

it follows that

∫
Ω

(
(∇w(x, τ))2 +w2(x, τ) + u2(x, τ)

)
dx ≤ τC2

∫
Ω

(
(∇w(x, τ))2 +w2(x, τ)

)
dx

+ C3

∫ τ
0

∫
Ω

(
(∇w)2 +w2 + u2

)
dxdt.

(3.11)

Since τ is arbitrary chosen, let 1 − τC2 > 0; then (3.11) becomes

(1 − τC2)
∫
Ω

(
(∇w(x, τ))2 +w2(x, τ) + u2(x, τ)

)
dx ≤ C3

∫ τ
0

∫
Ω

(
(∇w)2 +w2 + u2

)
dxdt.

(3.12)

Applying Gronwall Lemma, we get

∫
Ω

(
(∇w(x, τ))2 +w2(x, τ) + u2(x, τ)

)
dx ≤ 0, ∀τ ∈

]
0,

1
C2

[
. (3.13)

Consequently, we obtain u(x, τ) = 0, for all x ∈ Ω and τ ∈ ]0, 1/C2[.
If T ≤ 1/C2, then u = 0 in Q. In the case where T ≥ 1/C3, we see that ]0, T[⊂

∪n=n0n=1 ](n − 1)/C2, n/C2[, where n0 = [C2T] + 1,[C2T] is the entire part of C2T ; then repeating
the preceding reasoning for τ ∈ ](n − 1)/C2, n/C2[, we get u(x, τ) = 0, for all τ ∈ ](n −
1)/C2, n/C2[, and then u(x, t) = 0 in Q. Thus, the uniqueness is proved.

Remark 3.2. It should be noted that we can prove the uniqueness theorem by using a priori
estimates, so we establish that the generalized solution, if it exists, satisfies the inequality

‖u‖2W1,2(Q) ≤ C
[∥∥f∥∥2 + ∥∥ψ∥∥2

L2(Ω) +
∥∥ϕ∥∥2

W1,2(Ω)

]
. (3.14)
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4. Existence of Generalized Solution

Theorem 4.1. Assume that the assumptions of Theorem 4.1 hold; then the non-local problem (1.6)–
(1.8) has a unique solution u ∈ W1,2(Q).

Proof. In order to prove the existence of the generalized solution we apply Galerkin’s method.
Let {wk(x)} be a fundamental system inW1,2(Ω), such that (wk,wi)L2(Q) = δk,i. Now we will
try to find an approximate solution of the problem (1.6)–(1.8) in the form

u(n) =
n∑
k=1

αk(t)wk(x). (4.1)

The approximates of the functions ϕ(x) and ψ(x) are denoted, respectively, by

ϕ(n)(x) =
n∑
k=1

ϕkwk(x), ψ(n)(x) =
n∑
∑

k=1

ψkwk(x),

αk(0) = ϕk, α′k(0) = ψk.

(4.2)

Substituting the approximation solution in (1.6), multiplying both sides by wi(x), and then
integrating according to x on Ω, we get

∫
Ω

(
c∇u(n)∇wi + u

(n)
tt wi + au

(n)
t wi + bu(n)wi

)
dx

+ c
∫
∂Ω
wi

(∫
Ω
K(x, ξ)u(n)(ξ, t)dξ

)
ds =

∫
Ω
fwidx.

(4.3)

Substituting (4.1) in (4.3), we obtain

∫
Ω

n∑
k=1

(
cαk∇wk∇wi + α′′kwkwi + aα′kwkwi + bαkwkwi

)
dx

+ c
∫
∂Ω

n∑
k=1

wi

(
αk

∫
Ω
K(x, ξ)wk(ξ)dξ

)
ds =

∫
Ω
fwidx.

(4.4)

This implies that

n∑
k=1

[
α′′k(wk,wi)L2(Ω) + α

′
k(awk,wi)L2(Ω) + αk

(
(c∇wk,∇wi)L2(Ω) + (bwk,wi)L2(Ω)

)]

+
n∑
k=1

αk

∫
∂Ω
cwi

(∫
Ω
K(x, ξ)wk(ξ)dξ

)
ds =

∫
Ω
fwidx.

(4.5)
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Denote

βk,i = (c∇wk,∇wi)L2(Ω) + (bwk,wi)L2(Ω) +
∫
∂Ω
cwi

(∫
Ω
K(x, ξ)wk(ξ)dξ

)
ds,

fi =
∫
Ω
fwidx.

(4.6)

Then (4.5) becomes

n∑
k=1

[
α′′kδk,i + aα

′
kδk,i + αkβk,i

]
= fi. (4.7)

We obtain a system of differential equations of second order according to the variable t with
smooth coefficients and the initial conditions

αk(0) = ϕk, α′k(0) = ψk. (4.8)

Consequently, we get a Cauchy problem of linear differential equations with smooth
coefficients that is uniquely solvable. So it has a unique solution u(n) satisfying (4.3).

Lemma 4.2. The sequence (u(n)) is bounded.

Proof. Multiplying (4.4) by α′i and summing over i from 1 to n, we get

∫
Ω

(
u
(n)
t u

(n)
tt + c∇u(n)∇u(n)t + au(n)t u

(n)
t + bu(n)u(n)t

)
dx

+c
∫
∂Ω
u
(n)
t

(∫
Ω
K(x, ξ)u(n)(ξ, t)dξ

)
ds =

∫
Ω
fu

(n)
t dx.

(4.9)

Integrating by parts the left-hand side of (4.9) over t on (0, τ) yields

∫ τ
0

∫
Ω
u
(n)
t u

(n)
tt dxdt =

1
2

∫
Ω

[(
u
(n)
t (x, τ)

)2 − (u(n)t (x, 0)
)2]

dx,

∫ τ
0

∫
Ω
∇u(n)∇u(n)t dxdt =

1
2

∫
Ω

[(
∇u(n)(x, τ)

)2 − (∇u(n)(x, 0))2
]
dx,

∫ τ
0

∫
Ω
u(n)u

(n)
t dxdt =

1
2

∫
Ω

[(
u(n)(x, τ)

)2
−
(
u(n)(x, 0)

)2]
dx,

∫ τ
0

∫
∂Ω
u
(n)
t

(∫
Ω
K(x, ξ)u(n)(ξ)dξ

)
dsdt =

∫
∂Ω
u(n)(x, τ)

(∫
Ω
K(x, ξ)u(n)(ξ, τ)dξ

)
ds

−
∫
∂Ω
u(n)(x, 0)

(∫
Ω
K(x, ξ)u(n)(ξ, 0)dξ

)
ds

−
∫ τ
0

∫
∂Ω
u(n)
(∫

Ω
K(x, ξ)u(n)t (ξ)dξ

)
dsdt.

(4.10)
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Substituting the four last identities into (4.9), we get

∫
Ω

[(
u
(n)
t (x, τ)

)2
+ c
(
∇u(n)(x, τ)

)2
+ b
(
u(n)(x, τ)

)2]
dx

=
∫
Ω

[(
u
(n)
t (x, 0)

)2
+ c
(
∇u(n)(x, 0)

)2
+ b
(
u(n)(x, 0)

)2]
dx

− 2c
∫
∂Ω
u(n)(x, τ)

(∫
Ω
K(x, ξ)u(n)(ξ, τ)dξ

)
ds

+ 2c
∫
∂Ω
u(n)(x, 0)

(∫
Ω
K(x, ξ)u(n)(ξ, 0)dξ

)
ds

+ 2c
∫ τ
0

∫
∂Ω
u(n)(x, t)

(∫
Ω
K(x, ξ)u(n)t (ξ, t)dξ

)
dsdt

− 2a
∫τ
0

∫
Ω

(
u
(n)
t

)2
dxdt + 2

∫ τ
0

∫
Ω
fu

(n)
t dxdt.

(4.11)

Applying Cauchy Schwarz inequality, ε-Cauchy inequality, the hypothesis on the operatorK,

and the fact that −2a ∫τ0
∫
Ω (u(n)t )

2
dxdt ≤ 0 to the second term in the right hand side of (4.11),

we get

∣∣∣∣
∫
∂Ω
u(n)(x, τ)

(∫
Ω
K(x, ξ)u(n)(ξ, τ)dξ

)
ds

∣∣∣∣

≤ 1
2

(
c(ε) + k21|∂Ω|

)∫
Ω

(
u(n)(x, τ)

)2
dx +

ε

2

∫
Ω

(
∇u(n)(x, τ)

)2
dx.

(4.12)

We may obtain similar inequalities for the third and the fourth terms in the right-hand side
of (4.11). Now if we apply Cauchy Schwarz inequality to the last term in (4.11) we get

∣∣∣∣
∫ τ
0

∫
Ω
fu

(n)
t dxdt

∣∣∣∣ ≤ 1
2

∫ τ
0

∫
Ω

∣∣f(x, t)∣∣2dxdt + 1
2

∫ τ
0

∫
Ω

∣∣∣u(n)t (x, t)
∣∣∣2dxdt. (4.13)



International Journal of Mathematics and Mathematical Sciences 11

Using the result inequalities in (4.11) and then regrouping the same terms yield

∫
Ω

[(
u
(n)
t (x, τ)

)2
+ c(1 − ε)

(
∇u(n)(x, τ)

)2
+
(
b − c

(
c(ε) + k21|∂Ω|

))(
u(n)(x, τ)

)2]
dx

≤
∫
Ω

[(
u
(n)
t (x, 0)

)2
+ (c + cε)

(
∇u(n)(x, 0)

)2
+
(
b + c

(
c(ε) + k21 |∂Ω|

))(
u(n)(x, 0)

)2]
dx

+ c
(
c(ε) + k21 |∂Ω|

)∫ τ
0

∫
Ω

(
u(n)(x, t)

)2
dxdt

+ cε
∫ τ
0

∫
Ω

(
∇u(n)(x, t)

)2
dxdt

+
∫ τ
0

∫
Ω

∣∣f(x, t)∣∣2dxdt +
∫ τ
0

∫
Ω

∣∣∣u(n)t (x, t)
∣∣∣2dxdt.

(4.14)

Choose ε such that (1 − ε) > 0 and b − c(c(ε) + k21|∂Ω|) > 0 and let

M = max
{
1, (c + cε),

(
b + c

(
c(ε) + k21 |∂Ω|

))}
,

m = min
{
1 − ε, b − c(c(ε) + k21|∂Ω|)}, K2 =

M

m
,

(4.15)

then (4.14) becomes

∫
Ω

[(
u
(n)
t (x, τ)

)2
+
(
∇u(n)(x, τ)

)2
+
(
u(n)(x, τ)

)2]
dx

≤ K2

[∫
Ω

((
ψ(n)(x)

)2
+
(
∇ϕ(n)(x)

)2
+
(
ϕ(n)(x)

)2)
dx

+
∫ τ
0

∫
Ω

(∣∣∣u(n)t (x, t)
∣∣∣2 + (u(n)(x, t))2(∇u(n)(x, t))2

)
dxdt

+
∫T
0

∫
Ω

∣∣f(x, t)∣∣2dxdt
]
.

(4.16)

Now, we apply Gronwall Lemma to get

∫
Ω

[(
u
(n)
t (x, τ)

)2
+
(
∇u(n)(x, τ)

)2
+
(
u(n)(x, τ)

)2]
dx

≤ eK2T

(∫
Ω

[(
ψ(n)(x)

)2
+
(
∇ϕ(n)(x)

)2
+
(
ϕ(n)(x)

)2]
dx +

∥∥f∥∥2
)
.

(4.17)
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Since ϕ(n) and ψ(n) are the orthogonal projections of ϕ and ψ, respectively, from the Pythag-
orean relation we have that ‖ϕ(n)‖2W1,2(Ω) ≤ ‖ϕ‖2W1,2(Ω) and ‖ψ(n)‖2L2(Ω) ≤ ‖ψ‖2L2(Ω). Integrating
(4.17) according to τ on [0, T] yields

∥∥∥u(n)
∥∥∥2
W1,2(Q)

≤ TeK2T
[∥∥f∥∥2 + ∥∥ψ∥∥2L2(Ω) +

∥∥ϕ∥∥2W1,2(Ω)

]
. (4.18)

Consequently, the sequence {u(n)} is bounded.

Remark 4.3. We have proved that the sequence {u(n)} is bounded, so we can extract a subse-
quence which we denote by {u(nk)} that is weakly convergent; then we prove that its limit is
the desired solution of the problem (1.6)–(1.8).

Lemma 4.4. The limit of the subsequence {u(nk)} is the solution of the problem (1.6)–(1.8).

Proof. For this we prove that the limit of the subsequence {u(nk)} satisfies the identity (2.8)
for all functions v =

∑n
i=1 vi(t)wi(x) ∈ W1,2

T (Q). Since the set Sn = {v(x, t) =∑n
k=1 vk(t)wk(x),

vk(t) ∈ C2(0, T), vk(T) = 0} is such that ∪∞
n=1Sn is dense in W1,2

T (Q), it suffices to prove (2.8)
for v ∈ Sn. Multiplying (4.3) by the function vi(t) ∈ W1,2(0, T), vi(T) = 0, and then taking the
sum from i = 0 to n, we obtain

∫
Ω

(
c∇u(nk)∇v + u(nk)tt v + au(nk)t v + bu(nk)v

)
dx

+ c
∫
∂Ω
v

(∫
Ω
K(x, ξ)u(nk)(ξ, t)dξ

)
ds =

∫
Ω
fvdx.

(4.19)

Integrating by parts on [0, T], we get

∫
Q

(
c∇u(nk)∇v − u(nk)t v − au(nk)v + bu(nk)v

)
dxdt + c

∫T
0

∫
∂Ω
v

(∫
Ω
K(x, ξ)u(nk)(ξ, t)dξ

)
dsdt

=
∫
Ω
ψ(nk)(x)v(x, 0)dx + a

∫
Ω
ϕ(nknk)(x)v(x, 0)dx +

∫
Q

fvdxdt.

(4.20)

Denote the weak limit of the subsequence {u(nk)} by u. When k tends to infinity, we get

∫T
0

∫
∂Ω
v

(∫
Ω
K(x, ξ)u(nk)(ξ, t)dξ

)
dsdt −→

∫T
0

∫
∂Ω
v

(∫
Ω
K(x, ξ)u(ξ, t)dξ

)
dsdt. (4.21)
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Indeed, using Cauchy Schwarz inequality then ε-Cauchy inequality, we obtain

∣∣∣∣∣
∫T
0

∫
∂Ω
v

(∫
Ω
K(x, ξ)u(nk)(ξ, t)dξ

)
dsdt −

∫T
0

∫
∂Ω
v

(∫
Ω
K(x, ξ)u(ξ, t)dξ

)
dsdt

∣∣∣∣∣

≤ k1|∂Ω|
(∫T

0

∫
∂Ω

|v|2dsdt
)1/2

×
(∫T

0

∫
Ω

∣∣∣u(nk)(ξ, t) − u(ξ, t)∣∣∣2dξdsdt
)1/2

−→ 0,

(4.22)

and then by passing to the limit in (4.20) we get that the limit u satisfies(2.8).

Example 4.5. Now we present an example to demonstrate the applications of the results
established in the earlier sections. We consider the following:

∂2u

∂t2
+
∂u

∂t
+ u − ∂2u

∂x2
= sinx(sin t + cos t), 0 < t ≤ T, x ∈ (0, π), (4.23)

with the initial conditions

u(x, 0) = 0,
∂u

∂t(x, 0)
= sin x, x ∈ (0, π), (4.24)

and the nonlocal boundary condition

∂u

∂x
(π, t) − ∂u

∂x
(0, t) −

∫π
0
u(s, t)ds = 0. (4.25)

The results of the earlier sections guarantee the existence and uniqueness of a solution.
It may be noted that u(x, t) = sin x sin t is the unique solution of (4.23)–(4.25).
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