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It is our purpose in this paper to prove two convergents of viscosity approximation scheme to
a common fixed point of a family of multivalued nonexpansive mappings in Banach spaces.
Moreover, it is the unique solution in F to a certain variational inequality, where F := ∩∞

n=0F(Tn)
stands for the common fixed-point set of the family of multivalued nonexpansive mapping {Tn}.

1. Introduction

LetX be a Banach space with dualX∗, and letK be a nonempty subset ofX. A gauge function
is a continuous strictly increasing function ϕ : R+ → R+ such that ϕ(0) = 0 and limt→∞ϕ(t) =
∞. The duality mapping Jϕ : X → X∗ associated with a gauge function ϕ is defined by
Jϕ(x) := {f ∈ X∗ : 〈x, f〉 = ‖x‖‖f‖, ‖f‖ = ϕ(‖x‖)}, x ∈ X, where 〈·, ·〉 denotes the generalized
duality pairing. In the particular case ϕ(t) = t, the duality map J = Jϕ is called the normalized
duality map. We note that Jϕ(x) = (ϕ(‖x‖)/‖x‖)J(x). It is known that if X is smooth, then Jϕ
is single valued and norm to weak∗ continuous (see [1]). When {xn} is a sequence in X, then
xn → x(xn ⇀ x, xn ⇁ x)will denote strong (weak, weak∗) convergence of the sequence {xn}
to x. s

Following Browder [2], we say that a Banach spaceX has the weakly continuous dual-
ity mapping if there exists a gauge function ϕ for which the duality map Jϕ is single valued
and weak to weak∗ sequentially continuous, that is, if {xn} is a sequence in X weakly conver-
gent to a point x, then the sequence {Jϕ(xn)} converges weak∗ to Jϕ(x). It is known that lp(1 <
p < 1) spaces have a weakly continuous duality mapping Jϕ with a gauge ϕ(t) = tp−1. Setting

Φ(t) =
∫ t

0
ϕ(τ)dτ, t ≥ 0, (1.1)
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it is easy to see that Φ(t) is a convex function and Jϕ(x) = ∂Φ(‖x‖), for x ∈ X, where ∂
denotes the subdifferential in the sense of convex analysis. We will denote by 2X the family
of all subsets ofX, by CB(X) the family of all nonempty closed bounded subsets ofX, and by
C(X) the family of all nonempty compact subsets of X. A multivalued mapping T : K → 2X

is said to be nonexpansive (resp., contractive) if

H
(
Tx, Ty

) ≤ ∥∥x − y
∥∥, x, y ∈ K,

(
resp., H

(
Tx, Ty

) ≤ k
∥∥x − y

∥∥, for some k ∈ (0, 1)
)
,

(1.2)

where H(·, ·) denotes the Hausdorff metric on CB(X) defined by

H(A,B) := max

{
sup
x∈A

inf
y∈B

∥∥x − y
∥∥, sup

y∈B
inf
x∈A

∥∥x − y
∥∥
}
, A, B ∈ CB(X). (1.3)

Since Banach’s contraction mapping principle was extended nicely to multivalued mappings
byNadler in 1969 (see [3]), many authors have studied the fixed-point theory formultivalued
mappings.

In this paper, we construct two viscosity approximation sequences for a family of
multivalued nonexpansive mappings in Banach spaces. Let K be a nonempty closed convex
subset of Banach space X and let Tn : K → C(K), n = 1, 2 . . . be a family of multivalued
nonexpansive mapping, f : K → K is a contraction mapping with constant α ∈ (0, 1). Let
αn ∈ (0, 1), βn ∈ (0, 1). For any given x0 ∈ K, let y0 ∈ T0x0 such that

x1 = α0f(x0) + (1 − α0)y0. (1.4)

From Nadler Theorem (see [3]), we can choose y1 ∈ T1x1 such that

∥∥y0 − y1
∥∥ ≤ H(T0x0, T1x1). (1.5)

Inductively, we can get the sequence {xn} as follows:

xn+1 = αnf(xn) + (1 − αn)yn, ∀n ∈ N, (1.6)

where, for each n ∈ N, yn ∈ Tnxn such that

∥∥yn+1 − yn

∥∥ ≤ H(Tn+1xn+1, Tnxn). (1.7)

Similarly, we also have the following multivalued version of the modified Mann iteration:

xn+1 = βnf(xn) + αnxn +
(
1 − αn − βn

)
yn, (1.8)

and yn ∈ Tnxn such that ‖yn+1 − yn‖ ≤ H(Tn+1xn+1, Tnxn). Then, {xn} is said to satisfy
Condition (A′) if for any subsequence xnk ⇀ x and d(xn+1, Tn(xn)) → 0 implies that x ∈ F,
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where F := ∩∞
i=0F(Tn)/= ∅ is the common fixed-point set of the family of multivalued mapping

{Tn}. We give an example of a family of multivalued nonexpansive mappings with Condition
(A′) as follows.

Example 1.1. Take X = R and Tn = T (for all n ≥ 0), where T is defined by

T(x) =

⎧⎪⎨
⎪⎩
{0}, x ≤ 1,{
x − 1

2
,
1
2
− x

}
, otherwise.

(1.9)

Let f : R → {0} and αn = 1/n, n ≥ 2, then F = {0} and the iteration (1.6), reduced to

xn+1 =
(
1 − 1

n + 2

)
yn, ∀n ≥ 0, (1.10)

where yn ∈ Txn, and it satisfies Condition (A′). In fact, if x0 ≤ 1, then (for all n ∈ N, n > 0)xn =
0 and Condition (A′) is automatically satisfied. If x0 > 1, then there exists an integer p ≥ 2,
such that

x0 ∈
(

p
(
p + 1

)
4

− 1
2
,

(
p + 1

)(
p + 2

)
4

− 1
2

]
, xp−1 =

1
p

(
x0 −

p
(
p − 1

)
4

)
. (1.11)

Then, yp ∈ Txp−1 = {0}; hence, xn = 0 (for all n ≥ p), from which we deduce that Condition
(A′) is satisfied.

2. Preliminaries

Let K ⊂ X be a closed convex and Q a mapping of X onto K, then Q is said to be sunny if
Q(Q(x) + t(x − Q(x))) = Q(x) for all x ∈ X and t ≥ 0. A mapping Q of X into X is said to
be a retraction if Q2 = Q. A subset K of X is said to be a sunny nonexpansive retract of X if
there exists a sunny nonexpansive retraction of X onto K, and it is said to be a nonexpansive
retract of X. If X = H, the metric projection P is a sunny nonexpansive retraction from H to
any closed convex subset of H. The following Lemmas will be useful in this paper.

Lemma 2.1 (see [4]). Let K be a nonempty convex subset of a smooth Banach space X, let J : X →
X∗ be the (normalized) duality mapping of X, and let Q : X → K be a retraction, then the following
are equivalent:

(1) 〈x − Px, j(y − Px)〉 ≤ 0 for all x ∈ X and y ∈ K,

(2) Q is both sunny and nonexpansive.

We note that Lemma 2.1 still holds if the normalized duality map J is replaced with the general duality
map Jϕ, where ϕ is a gauge function.

Lemma 2.2 (see [5]). Let {an} be a sequence of nonnegative real numbers satisfying the property

an+1 ≤
(
1 − γn

)
an + βn, n ≥ 0, (2.1)
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where {γn} ⊂ (0, 1) and {βn} is a real number sequence such that

(i)
∑∞

n=0 γn = ∞,

(ii) either lim supn→∞(βn/γn) ≤ 0 or
∑∞

n=0 |βn| < ∞,

then {an} converges to zero, as n → ∞.

Lemma 2.3 (see [1]). Let X be a real Banach space, then for all x, y ∈ X, one gets that

Φ
(‖x + y‖) ≤ Φ(‖x‖) + 〈y, jϕ

(
x + y

)〉, ∀jϕ ∈ Jϕ. (2.2)

Lemma 2.4 (see [6]). Let {xn} and {yn} be bounded sequences in a Banach space X such that

xn+1 = γnxn +
(
1 − γn

)
yn, n ≥ 0, (2.3)

where {γn} is a sequence in [0, 1] such that

0 < lim inf
n→∞

γn ≤ lim sup
n→∞

γn < 1. (2.4)

Assume that lim supn→∞(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0, then limn→∞‖yn − xn‖ = 0.

3. Main Results

Theorem 3.1. LetX be a reflexive Banach space with weakly sequentially continuous duality mapping
Jϕ for some gauge ϕ, let K be a nonempty closed convex subset of X, and let Tn : K → C(K), n =
0, 1, 2 . . ., be a family of multivalued nonexpansive mappings with F /= ∅ which is sunny nonexpansive
retract of K with Q a nonexpansive retraction. Furthermore, Tn(p) = {p} for any fixed-point p ∈ F,
{xn} is defined by (1.6), and αn ∈ (0, 1) satisfies the following conditions:

(1) αn → 0 as n → ∞,

(2)
∑∞

n=0 αn = ∞,

(3) {xn} satisfies Condition (A′).

Then, {xn} converges strongly to a common fixed-point x = Q(f(x)) of a family Tn, n = 0, 1, 2 . . ., as
n → ∞. Moreover, x is the unique solution in F to the variational inequality

〈
f(x) − x, jϕ

(
y − x

)〉 ≤ 0, ∀y ∈ F. (3.1)

Proof. First, we show the uniqueness of the solution to the variational inequality (3.1) in X.
In fact, let y ∈ F be another solution of (3.1) in F, then we have

〈
f(x) − x, jϕ

(
y − x

)〉 ≤ 0,
〈
f
(
y
) − y, jϕ

(
x − y

)〉 ≤ 0. (3.2)

From (3.2), we have that

(1 − α)ϕ
(∥∥x − y

∥∥)∥∥x − y
∥∥ ≤ 0. (3.3)
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We must have x = y and the uniqueness is proved. Let p ∈ F, then, from iteration (1.6), we
obtain that

∥∥xn+1 − p
∥∥ ≤ ∥∥xn+1 − αnf

(
p
) − (1 − αn)p

∥∥ + ∥∥αnf
(
p
)
+ (1 − αn)p − p

∥∥
=
∥∥αn

(
f(xn) − f

(
p
))

+ (1 − αn)
(
yn − p

)∥∥ + αn

∥∥f(p) − p
∥∥

≤ αnα
∥∥xn − p

∥∥ + (1 − αn)H
(
Tnxn, Tnp

)
+ αn

∥∥f(p) − p
∥∥

≤ (1 − (1 − α)αn)
∥∥xn − p

∥∥ + αn

∥∥f(p) − p
∥∥.

(3.4)

Using an induction, we obtain ‖xn −p‖ ≤ max{‖x0 −p‖, (1/(1−α))‖f(p)−p‖}, for all integers
n, thus, {xn} is bounded and so are {Tnxn} and {f(xn)}. This implies that

d(xn+1, Tn(xn)) ≤
∥∥xn+1 − yn

∥∥ = αn

∥∥f(xn) − yn

∥∥ −→ 0 as n −→ ∞. (3.5)

Next, we will show that

lim sup
n→∞

〈f(x) − x, jϕ(xn+1 − x)〉 ≤ 0. (3.6)

Since X is reflexive and {xn} is bounded, we may assume that xnk ⇀ q such that

lim sup
n→∞

〈
f(x) − x, jϕ(xn+1 − x)

〉
= lim sup

k→∞

〈
f(x) − x, jϕ(xnk − x)

〉
. (3.7)

From (3.5) and {xn} satisfying Condition (A′), we obtain that q ∈ F. On the other hand, we
notice that the assumption that the duality mapping Jϕ is weakly continuous implies that X
is smooth; from Lemma 2.1, we have

lim sup
n→∞

〈
f(x) − x, jϕ(xn+1 − x)

〉
= lim sup

k→∞

〈
f(x) − x, jϕ(xnk − x)

〉

= 〈f(x) − x, jϕ
(
q − x

)〉
= 〈Q(x) − x, jϕ

(
q − x

)〉 ≤ 0.

(3.8)

Finally, we will show that xn → x as n → ∞. From iteration (1.6) and Lemma 2.3, we get
that

Φ(‖xn+1 − x‖) ≤ Φ
(∥∥αn

(
f(xn) − f(x)

)
+ (1 − αn)

(
yn − x

)∥∥) + αn

〈
f(x) − x, jϕ(xn+1 − x)

〉
≤ Φ(αnα‖xn − x‖ + (1 − αn)H(Tnxn, Tnx)) + αn

〈
f(x) − x, jϕ(xn+1 − x)

〉
≤ (1 − αn(1 − α))Φ(‖xn − x‖) + αn

〈
f(x) − x, jϕ(xn+1 − x)

〉
.

(3.9)

Lemma 2.2 gives that xn → x as n → ∞. Moreover, x satisfying the variational inequality
follows from the property of Q.
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Let f ≡ u ∈ K in iteration (1.6) be a constant mapping, then x = Qu. In fact, we have
the following corollary.

Corollary 3.2. Let {xn} and Tn be as in Theorem 3.1, f ≡ u ∈ K, then {xn} converges strongly to a
common fixed-point x = Q(u) of a family Tn, n = 0, 1, 2 . . ., as n → ∞. Moreover, x is the unique
solution in F to the variational inequality

〈
u −Q(u), jϕ

(
y −Q(u)

)〉 ≤ 0, ∀y ∈ F. (3.10)

If X = H, then the condition that F is a sunny nonexpansive retract of K in Theorem 3.1 is not
necessary, and one has the following Corollary.

Corollary 3.3. LetH be a Hilbert space with weakly sequentially continuous duality mapping Jϕ for
some gauge ϕ, and let {xn} and Tn be as in Theorem 3.1, then {xn} converges strongly to a common
fixed-point x = PFf(x) of a family of Tn, n = 0, 1, 2 . . ., where PF is the metric projection from K
onto F.

Proof. It is well known thatH is reflexive; by Propositions 2.3 and 2.6(ii) of [7], we get that F
is closed and convex, and hence the projection mapping PF is sunny nonexpansive retraction
mapping, and the result follows from Theorem 3.1.

Corollary 3.4. LetX be a real smooth Banach space, letK be a nonempty compact subset ofX, and let
Tn and {xn} be as in Theorem 3.1, then {xn} converges strongly to a common fixed-point x = Q(f(x))
of a family of Tn, n = 0, 1, 2 . . ., as n → ∞. Moreover, x is the unique solution in F to the variational
inequality

〈
f(x) − x, jϕ

(
y − x

)〉 ≤ 0, ∀y ∈ F. (3.11)

Proof. Following the method of the proof of Theorem 3.1, we get that

d(xn+1, Tn(xn)) ≤
∥∥xn+1 − yn

∥∥ = αn

∥∥f(xn) − yn

∥∥ −→ 0 as n −→ ∞. (3.12)

Next, we will show that

lim sup
n→∞

〈
f(x) − x, jϕ(xn+1 − x)

〉 ≤ 0. (3.13)

SinceK is compact and {xn} is bounded, we can assume that there exists a subsequence {xnk}
of {xn} such that xnk → q ∈ K,

lim sup
n→∞

〈
f(x) − x, jϕ(xn+1 − x)

〉
= lim

k→∞
〈
f(x) − x, jϕ(xnk − x)

〉
. (3.14)
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From (3.12) and {xn} satisfying Condition (A′), we obtain that q ∈ F. On the other hand,
from the fact thatX is smooth, the duality being norm to weak∗ continuous, and the standard
characterization of retraction on F, we obtain that

lim sup
n→∞

〈
f(x) − x, jϕ(xn+1 − x)

〉
= lim

k→∞
〈f(x) − x, jϕ(xnk − x)〉

= 〈f(x) − x, jϕ
(
q − x

)〉
= 〈Q(x) − x, jϕ

(
q − x

)〉 ≤ 0.

(3.15)

Now, following the method of the proof of Theorem 3.1, we get the required result.

Theorem 3.5. LetX be a reflexive Banach space with weakly sequentially continuous duality mapping
Jϕ for some gauge ϕ, let K be a nonempty closed convex subset of X, and let Tn : K → C(K), n =
0, 1, 2 . . ., be a family of multivalued nonexpansive mappings with F /= ∅ which is sunny nonexpansive
retract of K with Q a nonexpansive retraction. H(Tn+1x, Tny) ≤ ‖x − y‖ for arbitrary n ∈ N.
Furthermore, Tn(p) = {p} for any fixed-point p ∈ F. {xn} is defined by (1.8) and αn, βn satisfy the
following conditions:

(i) βn → 0 as n → ∞,

(ii)
∑∞

n=0 βn = ∞,

(iii) 0 < liminfn→∞αn ≤ lim supn→∞αn < 1.

If {xn} satisfies Condition (A′), then {xn} converges strongly to a common fixed-point x = Q(f(x))
of a family of Tn, n = 0, 1, 2 . . ., as n → ∞. Moreover, x is the unique solution in F to the variational
inequality

〈f(x) − x, jϕ
(
y − x

)〉 ≤ 0, ∀y ∈ F. (3.16)

Proof. We first show that the sequence {xn} defined by (1.8) is bounded. In fact, take p ∈ F,
noting that Tn(p) = {p}, we have

∥∥xn+1 − p
∥∥ =
(
1 − αn − βn

)∥∥yn − p
∥∥ + αn

∥∥xn − p
∥∥ + βn

∥∥f(xn) − p
∥∥

=
(
1 − αn − βn

)∥∥yn − Tnp
∥∥ + αn

∥∥xn − p
∥∥ + βn

∥∥f(xn) − p
∥∥

≤ (1 − αn − βn
)
H
(
Tnxn, Tnp

)
+ αn

∥∥xn − p
∥∥ + βn

∥∥f(xn) − p
∥∥

≤ (1 − αn − βn
)∥∥xn − p

∥∥ + αn

∥∥xn − p
∥∥ + βn

∥∥f(xn) − p
∥∥

≤ (1 − βn
)∥∥xn − p

∥∥ + βn
(
α
∥∥xn − p

∥∥ + ∥∥f(p) − p
∥∥)

≤ (1 + (α − 1)βn
)∥∥xn − p

∥∥ + βn(1 − α)

∥∥f(p) − p
∥∥

1 − α
.

(3.17)

It follows from induction that

∥∥xn − p
∥∥ ≤ max

{∥∥x0 − p
∥∥,
∥∥f(p) − p

∥∥
1 − α

}
, (3.18)
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so are {yn} and {f(xn)}. Thus, we have that

lim
n→∞

βn
∥∥f(xn) − yn

∥∥ = 0. (3.19)

Next, we show that

lim
n→∞

d(xn+1, Tn(xn)) = 0. (3.20)

Let λn = βn/(1 − αn) and zn = λnf(xn) + (1 − λn)yn, then

lim
n→∞

λn = 0, xn+1 = αnxn + (1 − αn)zn. (3.21)

Therefore, we have for some appropriate constant M > 0 that the following inequality:

‖zn+1 − zn‖ =
∥∥λn+1f(xn+1) + (1 − λn+1)yn+1 −

(
λnf(xn) + (1 − λn)yn

)∥∥
≤ |λn+1 − λn|

∥∥f(xn+1) − f(xn)
∥∥ + ∥∥yn+1 − yn

∥∥ + λn
∥∥yn

∥∥ + λn+1
∥∥yn+1

∥∥
≤ |λn+1 − λn|

∥∥f(xn+1) − f(xn)
∥∥ +H(Tn+1xn+1, Tnxn) + (λn + λn+1)M

≤ |λn+1 − λn|
∥∥f(xn+1) − f(xn)

∥∥ + ‖xn+1 − xn‖ + (λn + λn+1)M

(3.22)

holds. Thus, lim supn→∞(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ limn→∞(|λn+1 − λn|‖f(xn+1) − f(xn)‖ +
(λn + λn+1)M) = 0. By Lemma 2.4, we obtain

lim
n→∞

‖xn − zn‖ = 0,

∥∥xn − yn

∥∥ ≤ ‖xn − zn‖ +
∥∥zn − yn

∥∥ = ‖xn − zn‖ + λn
∥∥f(xn) − yn

∥∥ −→ 0.
(3.23)

Therefore, we have

d(xn+1, Tn(xn)) ≤
∥∥xn+1 − yn

∥∥ ≤ βn
∥∥f(xn) − yn

∥∥ + αn

∥∥xn − yn

∥∥ −→ 0. (3.24)

Using (3.20) and {xn} satisfying Condition (A′), we can use the same argumentation as
Theorem 3.1 proves that x ∈ F and

lim sup
n→∞

〈
f(x) − x, jϕ(xn+1 − x)

〉 ≤ 0. (3.25)
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Finally, we show that xn → x as n → ∞. In fact, from iteration (1.8) and Lemma 2.3, we have

Φ(‖xn+1 − x‖) = Φ
(∥∥βnf(xn) + αnxn +

(
1 − αn − βn

)
yn − x

∥∥)
= Φ
(∥∥αn(xn − x) +

(
1 − αn − βn

)(
yn − x

)
+ βn

(
f(xn) − f(x)

)
+ βn

(
f(x) − x

)∥∥)
≤ Φ
(‖αn(xn − x)‖ + (1 − αn − βn

)
H(Tnxn, Tnx) + αβn‖xn − x‖)

+ βn
〈
f(x) − x, jϕ(xn+1 − x)

〉
≤ [1 − (1 − α)βn

]
Φ(‖xn − x‖) + βn

〈
f(x) − x, jϕ(xn+1 − x)

〉
.

(3.26)

From (ii) and (3.25), it then follows that

∞∑
n=0

(1 − α)βn = ∞, lim sup
n

〈
f(x) − x, jϕ(xn+1 − x)

〉
1 − α

≤ 0. (3.27)

Apply Lemma 2.2 to conclude that xn → x.
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