Research Article

On Maximal Subsemigroups of Partial Baer-Levi Semigroups

Boorapa Singha ${ }^{1}$ and Jintana Sanwong ${ }^{1,2}$
${ }^{1}$ Department of Mathematics, Chiang Mai University, Chiangmai 50200, Thailand
${ }^{2}$ Material Science Research Center, Faculty of Science, Chiang Mai University, Chiangmai 50200, Thailand

Correspondence should be addressed to Jintana Sanwong, scmti004@chiangmai.ac.th
Received 20 September 2010; Revised 14 January 2011; Accepted 28 February 2011
Academic Editor: Robert Redfield
Copyright © 2011 B. Singha and J. Sanwong. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Suppose that X is an infinite set with $|X| \geq q \geq \aleph_{0}$ and $I(X)$ is the symmetric inverse semigroup defined on X. In 1984, Levi and Wood determined a class of maximal subsemigroups M_{A} (using certain subsets A of X) of the Baer-Levi semigroup $B L(q)=\{\alpha \in I(X)$: dom $\alpha=X$ and $|X \backslash X \alpha|=q\}$. Later, in 1995, Hotzel showed that there are many other classes of maximal subsemigroups of $B L(q)$, but these are far more complicated to describe. It is known that $B L(q)$ is a subsemigroup of the partial Baer-Levi semigroup $P S(q)=\{\alpha \in I(X):|X \backslash X \alpha|=q\}$. In this paper, we characterize all maximal subsemigroups of $P S(q)$ when $|X|>q$, and we extend M_{A} to obtain maximal subsemigroups of $P S(q)$ when $|X|=q$.

1. Introduction

Suppose that X is a nonempty set, and let $P(X)$ denote the semigroup (under composition) of all partial transformations of X (i.e., all mappings $\alpha: A \rightarrow B$, where $A, B \subseteq X$). For any $\alpha \in P(X)$, we let $\operatorname{dom} \alpha$ and ran α (or $X \alpha$) denote the domain and the range of α, respectively. We also write

$$
\begin{equation*}
g(\alpha)=|X \backslash \operatorname{dom} \alpha|, \quad d(\alpha)=|X \backslash \operatorname{ran} \alpha|, \quad r(\alpha)=|\operatorname{ran} \alpha|, \tag{1.1}
\end{equation*}
$$

and refer to these cardinals as the gap, the defect, and the rank of α, respectively. Let $I(X)$ denote the symmetric inverse semigroup on X : that is, the set of all injective mappings in $P(X)$. If $|X|=p \geq q \geq \aleph_{0}$, we write

$$
\begin{equation*}
B L(q)=\{\alpha \in I(X): g(\alpha)=0, d(\alpha)=q\}, P S(q)=\{\alpha \in I(X): d(\alpha)=q\}, \tag{1.2}
\end{equation*}
$$

where $B L(q)$ is the Baer-Levi semigroup of type (p, q) defined on X (see $[1,2$, vol 2 , Section 8.1]). It is wellknown that this semigroup is right simple, right cancellative, and idempotentfree. On the other hand, in [3] the authors showed that $P S(q)$, the partial Baer-Levi semigroup on X, does not have these properties but it is right reductive in the sense that for every $\alpha, \beta \in$ $P S(q)$, if $\alpha \gamma=\beta \gamma$ for all $\gamma \in P S(q)$, then $\alpha=\beta$. Also, they showed that $P S(q)$ satisfies the dual property, that is, it is left reductive (see [1,2, vol 1, p 9]). The authors also characterized Green's relations and ideals of $P S(q)$ and, in [3, Corollary 1], they proved that $P S(q)$ contains an inverse subsemigroup: namely, the set $R(q)$ defined by

$$
\begin{equation*}
R(q)=\{\alpha \in P S(q): g(\alpha)=q\} . \tag{1.3}
\end{equation*}
$$

This set consists, in fact, of all regular elements of $P S(q)$, as shown in [3, Theorem 4]. Recently, in [4], the authors studied some properties of Mitsch's natural partial order defined on a semigroup (see [5, Theorem 3]) and some other partial orders defined on $\operatorname{PS}(q)$. In particular, they described compatibility and the existence of maximal and minimal elements. For any nonempty subset A of X such that $|X \backslash A| \geq q$, let

$$
\begin{equation*}
M_{A}=\{\alpha \in B L(q): A \nsubseteq X \alpha \text { or }(A \alpha \subseteq A \text { or }|X \alpha \backslash A|<q)\} . \tag{1.4}
\end{equation*}
$$

In other words, given $\alpha \in B L(q)$, we have $\alpha \in M_{A}$ if and only if $X \alpha$ does not contain A, or $X \alpha$ contains A and either $A \alpha \subseteq A$ or $|X \alpha \backslash A|<q$. In [6], Levi and Wood showed that M_{A} is a maximal subsemigroup of $B L(q)$. Later, Hotzel [7] showed that there are many other maximal subsemigroups of $B L(q)$.

In this paper, we study maximal subsemigroups of $P S(q)$. In particular, in Section 3 we describe all maximal subsemigroups of $P S(q)$ when $p>q$. We also determine some maximal subsemigroups of a subsemigroup S_{r} of $P S(q)$ defined by

$$
\begin{equation*}
S_{r}=\{\alpha \in P S(q): g(\alpha) \leq r\}, \tag{1.5}
\end{equation*}
$$

where $q \leq r \leq p$. Moreover, we extend M_{A} to determine maximal subsemigroups of $P S(q)$. In Section 4, we determine some maximal subsemigroups of $P S(q)$ when $p=q$.

2. Preliminaries

In this paper, $Y=A \cup B$ means Y is a disjoint union of sets A and B. As usual, \emptyset denotes the empty (one-to-one) mapping which acts as a zero for $P(X)$. For each nonempty $A \subseteq X$, we write $^{\operatorname{id}}{ }_{A}$ for the identity transformation on A : these mappings constitute all the idempotents in $I(X)$ and belong to $P S(q)$ precisely when $|X \backslash A|=q$.

We modify the convention introduced in [1, 2, vol 2, p 241]: namely, if $\alpha \in I(X)$ is non-zero, then we write

$$
\begin{equation*}
\alpha=\binom{a_{i}}{x_{i}} \tag{2.1}
\end{equation*}
$$

and take as understood that the subscript i belongs to some (unmentioned) index set I, that the abbreviation $\left\{x_{i}\right\}$ denotes $\left\{x_{i}: i \in I\right\}$, and that $X \alpha=\operatorname{ran} \alpha=\left\{x_{i}\right\}, a_{i} \alpha=x_{i}$ for each i and $\operatorname{dom} \alpha=\left\{a_{i}\right\}$. To simplify notation, if $A \subseteq X$, we sometimes write $A \alpha$ in place of $(A \cap \operatorname{dom} \alpha) \alpha$.

Let S be a semigroup and $\emptyset \neq A \subseteq S$. Then $\langle A\rangle$ denotes the subsemigroup of S generated by A. Recall that a proper subsemigroup M of S is maximal in S if, whenever $M \subseteq N \subsetneq S$ and N is a subsemigroup of S, then $M=N$. Note that this is equivalent to each one of the following:
(a) $\langle M \cup\{a\}\rangle=S$ for all $a \in S \backslash M$;
(b) for any $a, b \in S \backslash M, a$ can be written as a finite product of elements of $M \cup\{b\}$ (note that a is not expressible as a product of elements of M since $a \notin M$).

Throughout this paper, we will use this fact to show the maximality of subsemigroups of $P S(q)$.

3. Maximal Subsemigroups of $P S(q)$ When $p>q$

The characterisation of maximal subsemigroups of a given semigroup is a natural topic to consider when studying its structure. Sometimes, it is difficult to describe all of them (see [6, 7], e.g.), but for a semigroup with some special properties, we can easily describe some of its maximal subsemigroups.

Lemma 3.1. Let S be a semigroup and suppose that S is a disjoint union of a subsemigroup T and an ideal I of S. Then,
(a) for any maximal subsemigroup M of $T, M \cup I$ is a maximal subsemigroup of S;
(b) for any maximal subsemigroup N of S such that $T \backslash N \neq \emptyset$ and $T \cap N \neq \emptyset$, the set $T \cap N$ is a maximal subsemigroup of T.

Proof. To see that (a) holds, let M be a maximal subsemigroup of T. Since I is an ideal, we have $M \cup I$ is a subsemigroup of S. Clearly, $M \cup I \subsetneq T \cup I=S$. If $a \in S \backslash(M \cup I)$, then $a \in T \backslash M$ and thus $T=\langle M \cup\{a\}\rangle \subseteq\langle M \cup I \cup\{a\}\rangle$. Since $\langle M \cup I \cup\{a\}\rangle$ contains I, we have $S=T \cup I=\langle M \cup I \cup\{a\}\rangle$ and so $M \cup I$ is maximal in S as required.

To prove (b), let N be a maximal subsemigroup of S, where $T \backslash N \neq \emptyset$ and $T \cap N \neq \emptyset$, and let $a \in T \backslash N$. Since N is maximal in S, we have $\langle N \cup\{a\}\rangle=S$. Thus, for each $b \in T \backslash N$, $b=c_{1} c_{2} \cdots c_{n}$ for some natural n and some $c_{i} \in N \cup\{a\}$ for all $i=1,2, \ldots, n$. Since $b \notin N$, we have $c_{i}=a$ for some i. Moreover, since $b \notin I$, we have $c_{j} \in T \cap N$ for all $j \neq i$. It follows that $T \backslash N \subseteq\langle(T \cap N) \cup\{a\}\rangle$, therefore

$$
\begin{equation*}
T=(T \backslash N) \cup(T \cap N) \subseteq\langle(T \cap N) \cup\{a\}\rangle \tag{3.1}
\end{equation*}
$$

that is, $T=\langle(T \cap N) \cup\{a\}\rangle$ and thus $T \cap N$ is maximal in T.
Let u be a cardinal number. The successor of u, denoted by u^{\prime}, is defined as

$$
\begin{equation*}
u^{\prime}=\min \{v: v>u\} . \tag{3.2}
\end{equation*}
$$

Note that u^{\prime} always exists since the cardinals are wellordered, and when u is finite we have $u^{\prime}=u+1$.

From [3, p 95], for $\aleph_{0} \leq k \leq p$,

$$
\begin{equation*}
S_{k}=\{\alpha \in P S(q): g(\alpha) \leq k\} \tag{3.3}
\end{equation*}
$$

is a subsemigroup of $P S(q)$. Also, when $p>q$, the proper ideals of $P S(q)$ are precisely the sets:

$$
\begin{equation*}
T_{s}=\{\alpha \in P S(q): g(\alpha) \geq s\} \tag{3.4}
\end{equation*}
$$

where $q<s \leq p$ (see [3, Theorem 13]). Thus, for any $q \leq r<p$, it is clear that

$$
\begin{equation*}
P S(q)=S_{r} \dot{\cup} T_{r^{\prime}} \tag{3.5}
\end{equation*}
$$

that is, $P S(q)$ can be written as a disjoint union of the semigroup S_{r} and the ideal $T_{r^{\prime}}$. Hence, the next result follows directly from Lemma 3.1(a).

Corollary 3.2. Suppose that $p>r>q \geq \aleph_{0}$. If M is a maximal subsemigroup of S_{r}, then $M \cup T_{r^{\prime}}$ is a maximal subsemigroup of $P S(q)$.

Lemma 3.3. Let $p>q \geq \aleph_{0}$ and suppose that M is a maximal subsemigroup of $P S(q)$. Then,
(a) $S_{r} \cap M \neq \emptyset$ for all $q \leq r<p$;
(b) if there exists $\alpha \notin M$ with $g(\alpha)<p$, then $S_{k} \backslash M \neq \emptyset$ for some $q \leq k<p$.

Proof. To show that (a) holds, we first note that S_{q} is contained in S_{r} for all $q \leq r<p$. If $S_{q} \cap M=\emptyset$, then $M \subseteq T_{q^{\prime}} \subsetneq P S(q)$ and thus $M=T_{q^{\prime}}$ by the maximality of M. But $T_{q^{\prime}} \subsetneq$ $T_{q^{\prime}} \cup B L(q) \subsetneq P S(q)$ where $T_{q^{\prime}} \cup B L(q)$ is a subsemigroup of $P S(q)$ (since $T_{q^{\prime}}$ is an ideal), so we get a contradiction. Therefore, $\emptyset \neq S_{q} \cap M \subseteq S_{r} \cap M$ for all $q \leq r<p$.

To show that (b) holds, suppose there is $\alpha \notin M$ with $g(\alpha)=k<p$. If $k<q$, then $\alpha \in S_{r} \backslash M$ for all $q \leq r \leq p$. Otherwise, if $q \leq k$, then $\alpha \in S_{k} \backslash M$. Hence (b) holds.

For what follows, for any cardinal $r \leq p$, we let

$$
\begin{equation*}
G_{r}=\{\alpha \in P S(q): g(\alpha)=r\} \tag{3.6}
\end{equation*}
$$

Then $G_{0}=B L(q)$ and $G_{q}=R(q)$. Moreover, if $p>q$ and $r>q$, then $G_{r}=S_{r} \cap T_{r}$, and so G_{r} is a subsemigroup of S_{r} (since it is the intersection of two semigroups). Also, G_{r} is bisimple and idempotent-free, when $p>q$ and $r>q$ (see [3, Corollary 3]).

From [3, Theorem 5], if $p \geq q$, then $S_{q}=\alpha \cdot R(q)$ for each $\alpha \in B L(q)$, and by [3, Theorem 6], $S_{q}=B L(q) \cdot \mu \cdot B L(q)$ for each $\mu \in R(q)$ when $p \neq q$.

This motivates the following result.
Lemma 3.4. Suppose that $p \geq r>q \geq \aleph_{0}$. Then $G_{r}=B L(q) \cdot \alpha \cdot B L(q)$ for each $\alpha \in G_{r}$.
Proof. Let $\alpha \in G_{r}$ and $\beta, \gamma \in B L(q)$. Since

$$
\begin{equation*}
X \backslash \operatorname{dom} \alpha=[X \beta \cap(X \backslash \operatorname{dom} \alpha)] \cup[(X \backslash X \beta) \cap(X \backslash \operatorname{dom} \alpha)] \tag{3.7}
\end{equation*}
$$

where $g(\alpha)=|X \backslash \operatorname{dom} \alpha|=r>q$ and the second intersection on the right has cardinal at most q (since $|X \backslash X \beta|=q)$, we have $|X \beta \cap(X \backslash \operatorname{dom} \alpha)|=r$. This means that

$$
\begin{align*}
r & =\left|[X \beta \cap(X \backslash \operatorname{dom} \alpha)] \beta^{-1}\right|=\left|(X \beta \backslash \operatorname{dom} \alpha) \beta^{-1}\right|=|\operatorname{dom} \beta \backslash \operatorname{dom}(\beta \alpha)| \\
& =|X \backslash \operatorname{dom}(\beta \alpha)|=g(\beta \alpha) . \tag{3.8}
\end{align*}
$$

Since dom $\gamma=X$, we have $\operatorname{dom}(\beta \alpha \gamma)=\operatorname{dom}(\beta \alpha)$, and so $g(\beta \alpha \gamma)=g(\beta \alpha)=r$. Hence $\beta \alpha \gamma \in G_{r}$ and therefore $B L(q) \cdot \alpha \cdot B L(q) \subseteq G_{r}$.

For the converse, if $\alpha, \beta \in G_{r}$, then $|X \backslash \operatorname{dom} \alpha|=r=|X \backslash \operatorname{dom} \beta|$. Since $p>q$, every element in $P S(q)$ has rank p, so we write

$$
\begin{equation*}
\alpha=\binom{a_{i}}{x_{i}}, \quad \beta=\binom{b_{i}}{y_{i}} \quad \text { where }|I|=p \tag{3.9}
\end{equation*}
$$

Now write $X \backslash\left\{y_{i}\right\}=A \dot{\cup} B$ and $X \backslash\left\{a_{i}\right\}=C \dot{\cup} D$ where $|A|=|B|=|C|=q$ and $|D|=r$ (note that this is possible since $d(\beta)=q \geq \aleph_{0}$ and $\left.g(\alpha)=r>q \geq \aleph_{0}\right)$. Define

$$
\delta=\left(\begin{array}{cc}
b_{i} & X \backslash\left\{b_{i}\right\} \tag{3.10}\\
a_{i} & D
\end{array}\right), \quad \epsilon=\left(\begin{array}{cc}
x_{i} & X \backslash\left\{x_{i}\right\} \\
y_{i} & A
\end{array}\right)
$$

where $\delta \mid\left(X \backslash\left\{b_{i}\right\}\right)$ and $\epsilon \mid\left(X \backslash\left\{x_{i}\right\}\right)$ are bijections. Then $\delta, \epsilon \in B L(q)$ and $\beta=\delta \alpha \epsilon$, that is, $G_{r} \subseteq B L(q) \cdot \alpha \cdot B L(q)$ and equality follows.

Now we can describe all maximal subsemigroups of $P S(q)$ when $p>q$.
Theorem 3.5. Suppose that $p>q \geq \mathfrak{\aleph}_{0}$. Then M is a maximal subsemigroup of $P S(q)$ if and only if M equals one of the following sets:
(a) $P S(q) \backslash G_{p}=\{\alpha \in P S(q): g(\alpha)<p\}$;
(b) $N \cup T_{r^{\prime}}$, where $q \leq r<p$ and N is a maximal subsemigroup of S_{r}.

Proof. Let $\alpha, \beta \in P S(q)$ be such that $g(\alpha)<p$ and $g(\beta)<p$. Clearly $|X \alpha \backslash \operatorname{dom} \beta| \leq|X \backslash \operatorname{dom} \beta|=$ $g(\beta)<p$. Then

$$
\begin{align*}
|\operatorname{dom} \alpha \backslash \operatorname{dom}(\alpha \beta)| & =\left|[X \alpha \backslash(X \alpha \cap \operatorname{dom} \beta)] \alpha^{-1}\right| \\
& =\left|(X \alpha \backslash \operatorname{dom} \beta) \alpha^{-1}\right| \tag{3.11}\\
& =|X \alpha \backslash \operatorname{dom} \beta|<p
\end{align*}
$$

Hence,

$$
\begin{equation*}
|X \backslash \operatorname{dom}(\alpha \beta)|=|X \backslash \operatorname{dom} \alpha|+|\operatorname{dom} \alpha \backslash \operatorname{dom}(\alpha \beta)|<p, \tag{3.12}
\end{equation*}
$$

and this shows that $P S(q) \backslash G_{p}$ is a subsemigroup of $P S(q)$. To show that $P S(q) \backslash G_{p}$ is maximal in $P S(q)$, we let $\alpha, \beta \in P S(q) \backslash\left(P S(q) \backslash G_{p}\right)=G_{p}$. By Lemma 3.4, $\alpha=\lambda \beta \mu$ for some $\lambda, \mu \in$ $B L(q) \subseteq P S(q) \backslash G_{p}$. Thus, α can be written as a finite product of elements of $\left(P S(q) \backslash G_{p}\right) \cup\{\beta\}$, and hence $P S(q) \backslash G_{p}$ is maximal in $P S(q)$. Also, if $q \leq r<p$ and N is a maximal subsemigroup of S_{r}, then $N \cup T_{r^{\prime}}$ is maximal in $P S(q)$ by Corollary 3.2.

We now suppose that M is a maximal subsemigroup of $P S(q)$ such that $M \neq P S(q) \backslash$ G_{p}. Then there exists $\alpha \notin M$ with $g(\alpha)<p$. Thus, Lemma 3.3 implies that $S_{k} \backslash M \neq \emptyset$ and $S_{k} \cap M \neq \emptyset$ for some k, where $q \leq k<p$. Since $P S(q)=S_{k} \cup T_{k^{\prime}}$, Lemma 3.1(b) implies that $S_{k} \cap M$ is maximal in S_{k}. We also see that

$$
\begin{equation*}
M=\left(S_{k} \cap M\right) \cup\left(T_{k^{\prime}} \cap M\right) \subseteq\left(S_{k} \cap M\right) \cup T_{k^{\prime}} \tag{3.13}
\end{equation*}
$$

where $\left(S_{k} \cap M\right) \cup T_{k^{\prime}}$ is maximal in $P S(q)$ by Corollary 3.2. This means that $M=\left(S_{k} \cap M\right) \cup T_{k^{\prime}}$ by the maximality of M.

By the previous theorem, when $p>q$, most of the maximal subsemigroups of $P S(q)$ are induced by maximal subsemigroups of S_{r} where $q \leq r<p$. Hence we now determine some maximal subsemigroups of S_{r}.

As mentioned in Section 1, for every nonempty subset A of X with $|X \backslash A| \geq q, M_{A}$ is a maximal subsemigroup of $B L(q)$. Here we extend the definition of M_{A} and consider the set \bar{M}_{A} defined as

$$
\begin{equation*}
\bar{M}_{A}=\{\alpha \in P S(q): A \nsubseteq X \alpha \text { or }(A \alpha \subseteq A \subseteq \operatorname{dom} \alpha \text { or }|X \alpha \backslash A|<q)\} \tag{3.14}
\end{equation*}
$$

that is, α in $P S(q)$ belongs to \bar{M}_{A} if and only if
(a) $A \nsubseteq X \alpha$, or
(b) $A \subseteq X \alpha$ and either $A \alpha \subseteq A \subseteq \operatorname{dom} \alpha$, or $|X \alpha \backslash A|<q$.

The next result gives more detail on \bar{M}_{A}.
Lemma 3.6. Suppose that $p \geq q \geq \aleph_{0}$, and let A be a nonempty subset of X such that $|X \backslash A| \geq q$. Then,
(a) for any cardinal k such that $0 \leq k \leq p$, there exist $\alpha, \beta \in P S(q)$ such that $g(\alpha)=k=g(\beta)$ and $\alpha \in \bar{M}_{A}, \beta \notin \bar{M}_{A}$;
(b) for each $\gamma \notin \bar{M}_{A},\left|\operatorname{dom} \gamma \backslash A \gamma^{-1}\right|=|X \backslash A|=|X \gamma \backslash A|$ and $\left|A \gamma^{-1}\right|=|A|$.

Proof. To show that (a) holds, let $|X \backslash A|=r \geq q$, and let k be a cardinal such that $0 \leq k \leq p$. We write $X \backslash A=R \dot{\cup} Q$ where $|R|=r$ and $|Q|=q$. If $r=p$, then $|A \cup R| \geq r=p$; if not, then $|X \backslash A|<p$, and this implies $|A|=p$, and so $|A \cup R|=p$. Fix $a \in A$ and let $B=(A \backslash\{a\}) \cup R$. Then, $|B|=p$ and $|X \backslash B|=|Q \cup\{a\}|=q$. We write $X=K \dot{\cup} L$ where $|K|=k$ and $|L|=p$. Then there exists a bijection $\alpha: L \rightarrow B$ and so $g(\alpha)=k, d(\alpha)=q$. Also, since $A \nsubseteq B=X \alpha$, we have $\alpha \in \bar{M}_{A}$.

To find $\beta \in P S(q) \backslash \bar{M}_{A}$ with $g(\beta)=k$, we consider two cases. First, if $r=p$, we write $X \backslash A=P \dot{\cup} Q \dot{\cup} K$ where $|P|=p,|Q|=q,|K|=k$. Fix $a \in A$ and define

$$
\beta=\left(\begin{array}{l}
P \cup Q \cup\{a\} \tag{3.15}\\
A \backslash\{a\} \\
P \cup K \cup\{a\} \\
A \backslash\{a\}
\end{array}\right)
$$

where $\beta \mid(P \cup Q \cup\{a\})$ and $\beta \mid(A \backslash\{a\})$ are bijections and $a \beta \neq a$. On the other hand, if $r<p$, then $|A|=p$. In this case we write $A=A^{\prime} \dot{\cup} K^{\prime}$ and $X \backslash A=R \dot{\cup} Q$ where $\left|A^{\prime}\right|=p,\left|K^{\prime}\right|=k,|R|=r$ and $|Q|=q$. Fix $a \in A^{\prime}$ and redefine

$$
\beta=\left(\begin{array}{cc}
(X \backslash A) \cup\{a\} & A^{\prime} \backslash\{a\} \tag{3.16}\\
R \cup\{a\} & A \backslash\{a\}
\end{array}\right),
$$

where $\beta \mid((X \backslash A) \cup\{a\})$ and $\beta \mid\left(A^{\prime} \backslash\{a\}\right)$ are bijections and $a \beta \neq a$. In both cases, we have $d(\beta)=q, g(\beta)=k, A \subseteq X \beta, A \beta \nsubseteq A$, and $|X \beta \backslash A| \geq q$, that is $\beta \in P S(q) \backslash \bar{M}_{A}$.

To see that (b) holds, suppose that there is $\gamma \notin \bar{M}_{A}$, then $A \subseteq X \gamma$ and $|X \gamma \backslash A| \geq q$. So $\left|A \gamma^{-1}\right|=|A|$ since γ is injective. Also,

$$
\begin{equation*}
X \backslash A=(X \backslash X \gamma) \dot{\cup}(X \gamma \backslash A) \tag{3.17}
\end{equation*}
$$

where $|X \backslash X \gamma|=q$. Since $|X \backslash A| \geq q$ and by our assumption $|X \gamma \backslash A| \geq q$, we have $|X \backslash A|=$ $|X \gamma \backslash A|=\left|(X \gamma \backslash A) \gamma^{-1}\right|=\left|\operatorname{dom} \gamma \backslash A \gamma^{-1}\right|$ as required.

In [6, Theorem 1], the authors proved that M_{A} is a maximal subsemigroup of $B L(q)$ for every nonempty subset A of X such that $|X \backslash A| \geq q$. Using a similar argument, we show that \bar{M}_{A} is a subsemigroup of $P S(q)$.

Lemma 3.7. Suppose that $p \geq q \geq \aleph_{0}$, and let A be a nonempty subset of X such that $|X \backslash A| \geq q$. Then \bar{M}_{A} is a proper subsemigroup of $\operatorname{PS}(q)$.

Proof. Let $\alpha, \beta \in \bar{M}_{A}$. If $A \nsubseteq X \alpha \beta$, then $\alpha \beta \in \bar{M}_{A}$. Now we suppose that $A \subseteq X \alpha \beta$. Then, $A \subseteq X \beta$ and since $\beta \in \bar{M}_{A}$, we either have $A \beta \subseteq A \subseteq \operatorname{dom} \beta$, or $|X \beta \backslash A|<q$. If $|X \beta \backslash A|<q$, then

$$
\begin{equation*}
|X \alpha \beta \backslash A| \leq|X \beta \backslash A|<q \tag{3.18}
\end{equation*}
$$

and so $\alpha \beta \in \bar{M}_{A}$. Otherwise, we have $A \beta \subseteq A \subseteq X \alpha \beta$ and hence $A \subseteq X \alpha$ since β is injective. Since $\alpha \in \bar{M}_{A}$, we either have $A \alpha \subseteq A \subseteq \operatorname{dom} \alpha$, or $|X \alpha \backslash A|<q$. If the latter occurs, then

$$
\begin{equation*}
|X \alpha \beta \backslash A| \leq|X \alpha \beta \backslash A \beta|=|(X \alpha \backslash A) \beta| \leq|X \alpha \backslash A|<q \tag{3.19}
\end{equation*}
$$

therefore $\alpha \beta \in \bar{M}_{A}$. On the other hand, if $A \alpha \subseteq A \subseteq \operatorname{dom} \alpha$, we have $A \alpha \beta \subseteq A \beta \subseteq A$. Moreover, $A \alpha \subseteq X \alpha \cap \operatorname{dom} \beta$, that is, $A \subseteq(X \alpha \cap \operatorname{dom} \beta) \alpha^{-1}=\operatorname{dom}(\alpha \beta)$. Therefore $\alpha \beta \in \bar{M}_{A}$, and hence
\bar{M}_{A} is a subsemigroup of $P S(q)$. Finally, this subsemigroup is properly contained in $P S(q)$ by Lemma 3.6(a).

Remark 3.8. For any cardinal r such that $q \leq r \leq p, S_{r} \cap \bar{M}_{A}$ is a proper subsemigroup of S_{r} but it is not maximal when $q<r$. To see this, suppose $S_{r} \cap \bar{M}_{A}$ is maximal and choose $\alpha, \beta \notin \bar{M}_{A}$ such that $g(\alpha)=r$ and $g(\beta)=0$ (possible by Lemma 3.6(a)). Then $\alpha, \beta \in S_{r} \backslash \bar{M}_{A}$ where $\operatorname{dom} \beta=X$. Moreover $\left\langle\left(S_{r} \cap \bar{M}_{A}\right) \cup\{\alpha\}\right\rangle=S_{r}$, and so

$$
\begin{equation*}
\beta=\gamma_{1} \gamma_{2} \cdots \gamma_{n} \alpha \lambda_{1} \lambda_{2} \cdots \lambda_{m} \tag{3.20}
\end{equation*}
$$

for some $n, m \in \mathbb{N}_{0}$ and $\gamma_{i}, \lambda_{j} \in\left(S_{r} \cap \bar{M}_{A}\right) \cup\{\alpha\}, i=1, \ldots, n, j=1, \ldots, m$. If $n=0$ or $\gamma_{1}=\alpha$, then $\operatorname{dom} \beta \subseteq \operatorname{dom} \alpha$ and so $g(\alpha)=0$, a contradiction. Thus, $n \neq 0$ and $\gamma_{1} \neq \alpha$. Since $X=\operatorname{dom} \beta \subseteq \operatorname{dom}\left(\gamma_{1} \gamma_{2} \cdots \gamma_{n}\right)$, it follows that $\gamma=\gamma_{1} \gamma_{2} \cdots \gamma_{n} \in B L(q)$. Moreover, $X \gamma \subseteq \operatorname{dom} \alpha$, and this implies,

$$
\begin{equation*}
q \leq r=|X \backslash \operatorname{dom} \alpha| \leq|X \backslash X \gamma|=q, \tag{3.21}
\end{equation*}
$$

and hence $r=q$.
Since M_{A} is maximal in $B L(q)$, a subsemigroup of $P S(q)$, it is natural to think that \bar{M}_{A} is maximal in $P S(q)$. But when $p>q$, by taking $r=p$, the above observation shows that this claim is false since $S_{p}=P S(q)$. Thus, \bar{M}_{A} is not always a maximal subsemigroup of $P S(q)$.

The proof of the next result follows some ideas from [6, Theorem 1].
Theorem 3.9. Suppose that $p \geq r \geq q \geq \aleph_{0}$, and let A be a nonempty subset of X such that $|X \backslash A| \geq$ q. Then $S_{r} \cap \bar{M}_{A}$ is a maximal subsemigroup of S_{r} precisely when $r=q$.

Proof. In Remark 3.8, we have shown that $S_{r} \cap \bar{M}_{A}$ is not maximal in S_{r} when $r>q$. It remains to show $S_{q} \cap \bar{M}_{A}$ is maximal in S_{q}. Let $\alpha, \beta \in S_{q} \backslash \bar{M}_{A}$. Then $g(\alpha), g(\beta) \leq q$ and Lemma 3.6(b) implies that

$$
\begin{gather*}
\left|A \alpha^{-1}\right|=|A|=\left|A \beta^{-1}\right| \tag{3.22}\\
\left|\operatorname{dom} \alpha \backslash A \alpha^{-1}\right|=\left|\operatorname{dom} \beta \backslash A \beta^{-1}\right|=|X \beta \backslash A|=|X \alpha \backslash A|=|X \backslash A|=s \quad(\text { say }) \geq q
\end{gather*}
$$

We also have $A \beta \nsubseteq A$ or $A \nsubseteq \operatorname{dom} \beta$. In the case that $A \beta \nsubseteq A$, we have $A \beta \cap(X \backslash A) \neq \emptyset$. Thus, there exists $y \in A \cap(X \backslash A) \beta^{-1}$, so $y \notin A \beta^{-1}$. Since $\left|\operatorname{dom} \beta \backslash\left(A \beta^{-1} \cup\{y\}\right)\right|=s$, we can write

$$
\begin{equation*}
\operatorname{dom} \beta \backslash\left(A \beta^{-1} \cup\{y\}\right)=\left\{c_{j}\right\} \dot{\cup}\left\{d_{k}\right\} \tag{3.23}
\end{equation*}
$$

where $|J|=s$ and $|K|=q$. Also, since $\alpha, \beta \notin \bar{M}_{A}$, we have $A \subseteq X \alpha$ and $A \subseteq X \beta$. Thus, for convenience, write $A=\left\{a_{i}\right\}$, let $y_{i}, z_{i} \in X$ be such that $y_{i} \alpha=a_{i}=z_{i} \beta$ for each i, and let $\operatorname{dom} \alpha \backslash A \alpha^{-1}=\left\{b_{j}\right\}$. Hence, we can write

$$
\beta=\left(\begin{array}{cccc}
z_{i} & c_{j} & d_{k} & y \tag{3.24}\\
a_{i} & c_{j} \beta & d_{k} \beta & y \beta
\end{array}\right)
$$

Now define $\gamma \in P(X)$ by

$$
r=\left(\begin{array}{ll}
y_{i} & b_{j} \tag{3.25}\\
z_{i} & c_{j}
\end{array}\right)
$$

Then, $d(\gamma)=\left|\left\{d_{k}\right\} \cup\{y\}\right|+g(\beta)=q$, that is, $\gamma \in P S(q)$. Also, since dom $\gamma=\operatorname{dom} \alpha$, we have $g(\gamma)=g(\alpha) \leq q$ and so $\gamma \in S_{q}$. Moreover, since $y \in A$ and $y \notin X \gamma$, we have $A \nsubseteq X \gamma$, that is, $r \in \bar{M}_{A}$. Also, since $d(\alpha)=q$, we can write $X \backslash X \alpha=\left\{m_{k}\right\} \dot{\cup}\left\{n_{k}\right\} \dot{\cup}\{z\}$ and define μ in $P(X)$ by

$$
\mu=\left(\begin{array}{cccc}
a_{i} & c_{j} \beta & d_{k} \beta & y \beta \tag{3.26}\\
a_{i} & b_{j} \alpha & m_{k} & z
\end{array}\right)
$$

Then $d(\mu)=\left|\left\{n_{k}\right\}\right|=q=d(\beta)=g(\mu)$, that is, $\mu \in S_{q}$. Moreover, $\mu \in \bar{M}_{A}$ since $A \mu=A \subseteq$ dom μ. Finally, we can see that $\alpha=\gamma \beta \mu$ where $\gamma, \mu \in S_{q} \cap \bar{M}_{A}$.

On the other hand, if $A \nsubseteq \operatorname{dom} \beta$, then there exists $w \in A \cap(X \backslash \operatorname{dom} \beta)$. In this case, we rewrite $\operatorname{dom} \beta \backslash A \beta^{-1}=\left\{c_{j}\right\} \dot{\cup}\left\{d_{k}\right\}$ and $X \backslash X \alpha=\left\{m_{k}\right\} \dot{\cup}\left\{n_{k}\right\}$ where $|J|=s,|K|=q$. Like before, we write $A=\left\{a_{i}\right\}$ and $\operatorname{dom} \alpha=\left\{y_{i}\right\} \cup\left\{b_{j}\right\}$ where $\left\{b_{j}\right\}=\operatorname{dom} \alpha \backslash A \alpha^{-1}$, then

$$
\beta=\left(\begin{array}{ccc}
z_{i} & c_{j} & d_{k} \tag{3.27}\\
a_{i} & c_{j} \beta & d_{k} \beta
\end{array}\right)
$$

Define $\gamma, \mu \in P(X)$ by

$$
\gamma=\left(\begin{array}{cc}
y_{i} & b_{j} \tag{3.28}\\
z_{i} & c_{j}
\end{array}\right), \quad \mu=\left(\begin{array}{ccc}
a_{i} & c_{j} \beta & d_{k} \beta \\
a_{i} & b_{j} \alpha & m_{k}
\end{array}\right)
$$

Then, $d(\gamma)=\left|\left\{d_{k}\right\}\right|+g(\beta)=q, g(\gamma)=g(\alpha) \leq q, d(\mu)=\left|\left\{n_{k}\right\}\right|=q=d(\beta)=g(\mu)$, and so $\gamma, \mu \in$ S_{q}. Also, $\gamma, \mu \in \bar{M}_{A}$ since $A \nsubseteq X \gamma$ (note that $w \in A \backslash \operatorname{dom} \beta \subseteq A \backslash X \gamma$) and $A \mu=A \subseteq \operatorname{dom} \mu$. Moreover, $\alpha=\gamma \beta \mu$. In other words, we have shown that for every $\alpha, \beta \in S_{q} \backslash \bar{M}_{A}, \alpha$ can be written as a finite product of elements of $\left(S_{q} \cap \bar{M}_{A}\right) \cup\{\beta\}$. Therefore, $S_{q} \cap \bar{M}_{A}$ is maximal in S_{q}.

We now determine some other classes of maximal subsemigroups of S_{r}.

Lemma 3.10. Suppose that $p \geq r \geq q \geq \aleph_{0}$. Let k be a cardinal such that $k=0$ or $q \leq k \leq r$. Then

$$
\begin{equation*}
S_{r} \backslash G_{k}=\{\alpha \in P S(q): k \neq g(\alpha) \leq r\} \tag{3.29}
\end{equation*}
$$

is a proper subsemigroup of S_{r}.
Proof. Since $k \leq r$, we have $S_{r} \backslash G_{k} \subsetneq S_{r}$. If $k=0$, then $S_{r} \backslash G_{0}=S_{r} \backslash B L(q)$, and this is a subsemigroup of S_{r} since, for $\alpha, \beta \in S_{r} \backslash B L(q), \operatorname{dom}(\alpha \beta) \subseteq \operatorname{dom} \alpha \subsetneq X$, and this implies $\alpha \beta \in S_{r} \backslash B L(q)$. Now suppose $q \leq k \leq r$ and let $\alpha, \beta \in S_{r}$ be such that $g(\alpha \beta)=k$. We claim that $g(\alpha)=k$ or $g(\beta)=k$. To see this, assume that $g(\alpha) \neq k$. Since

$$
\begin{equation*}
k=|X \backslash \operatorname{dom}(\alpha \beta)|=|X \backslash \operatorname{dom} \alpha|+|\operatorname{dom} \alpha \backslash \operatorname{dom}(\alpha \beta)| \tag{3.30}
\end{equation*}
$$

we have $|X \backslash \operatorname{dom} \alpha|<k$, thus

$$
\begin{align*}
k & =|\operatorname{dom} \alpha \backslash \operatorname{dom}(\alpha \beta)|=\left|[X \alpha \backslash(X \alpha \cap \operatorname{dom} \beta)] \alpha^{-1}\right| \\
& =\left|(X \alpha \backslash \operatorname{dom} \beta) \alpha^{-1}\right|=|X \alpha \backslash \operatorname{dom} \beta| \tag{3.31}
\end{align*}
$$

Note that

$$
\begin{equation*}
X \backslash \operatorname{dom} \beta=[X \alpha \backslash \operatorname{dom} \beta] \dot{\cup}[(X \backslash X \alpha) \cap(X \backslash \operatorname{dom} \beta)] \tag{3.32}
\end{equation*}
$$

where the intersection on the right has cardinal at most q. Hence, $g(\beta)=|X \backslash \operatorname{dom} \beta|=k$ and we have shown that $S_{r} \backslash G_{k}$ is a subsemigroup of S_{r}.

Remark 3.11. Observe that, if $0<k<q$ then $S_{r} \backslash G_{k}$ is not a semigroup for all $q \leq r \leq p$. To see this, let $\alpha \in B L(q)$ and $\beta=\operatorname{id}_{X \alpha \backslash K}$ for some subset K of $X \alpha$ such that $|K|=k$ (possible since $|X \alpha|=p>k)$, then $\alpha, \beta \in P S(q)$ since $d(\beta)=d(\alpha)+k=q$. Moreover, since $g(\alpha)=0$ and $g(\beta)=q \neq k$, we have $\alpha, \beta \in S_{r} \backslash G_{k}$. But

$$
\begin{equation*}
\operatorname{dom}(\alpha \beta)=(X \alpha \cap \operatorname{dom} \beta) \alpha^{-1}=(X \alpha \backslash K) \alpha^{-1}=X \backslash K \alpha^{-1} \tag{3.33}
\end{equation*}
$$

thus $g(\alpha \beta)=\left|K \alpha^{-1}\right|=k$, that is, $\alpha \beta \in G_{k}$.
Theorem 3.12. Suppose that $p \geq r \geq q \geq \aleph_{0}$. Then the following statements hold:
(a) $S_{r} \backslash G_{0}$ is a maximal subsemigroup of S_{r};
(b) if $p>q$, then for each cardinal k such that $q \leq k \leq r, S_{r} \backslash G_{k}$ is a maximal subsemigroup of S_{r}.

Proof. By Lemma 3.10, $S_{r} \backslash G_{0}$ is a subsemigroup of S_{r}. To see that it is maximal, let $\alpha, \beta \in$ $G_{0}=B L(q) \subseteq S_{q}$. By [3, Theorem 5], $S_{q}=\beta \cdot R(q)$, and this implies that $\alpha=\beta \gamma$ for some $r \in R(q) \subseteq S_{r} \backslash G_{0}$. Hence $S_{r} \backslash G_{0}$ is maximal in S_{r}.

Now suppose that $p>q$ and let $q \leq k \leq r$. Let $\alpha, \beta \in G_{k}$. If $k=q$, then $G_{k}=R(q) \subseteq S_{q}$ and, by [3, Theorem 6], $S_{q}=B L(q) \cdot \beta \cdot B L(q)$. If $k>q$, then $G_{k}=B L(q) \cdot \beta \cdot B L(q)$ (by

Lemma 3.4). Therefore, $\alpha=\gamma \beta \mu$ for some $\gamma, \mu \in B L(q) \subseteq S_{r} \backslash G_{k}$, and so $S_{r} \backslash G_{k}$ is maximal in S_{r}.

Corollary 3.13. Suppose that $p>q \geq \aleph_{0}$ and let A be a nonempty subset of X such that $|X \backslash A| \geq q$. Then the following sets are maximal subsemigroups of $\operatorname{PS}(q)$:
(a) $\bar{M}_{A} \cup T_{q^{\prime}}$;
(b) $N_{k}=\{\alpha \in P S(q): g(\alpha) \neq k\}$ where $k=0$ or $q \leq k \leq p$.

Proof. By Theorem 3.9, $S_{q} \cap \bar{M}_{A}$ is maximal in S_{q}. Then Corollary 3.2 implies that $\left(S_{q} \cap \bar{M}_{A}\right) \cup$ $T_{q^{\prime}}$ is maximal in $\operatorname{PS}(q)$. But

$$
\begin{equation*}
\left(S_{q} \cap \bar{M}_{A}\right) \cup T_{q^{\prime}}=\left(S_{q} \cup T_{q^{\prime}}\right) \cap\left(\bar{M}_{A} \cup T_{q^{\prime}}\right)=P S(q) \cap\left(\bar{M}_{A} \cup T_{q^{\prime}}\right)=\bar{M}_{A} \cup T_{q^{\prime}} \tag{3.34}
\end{equation*}
$$

and so (a) holds. To show that (b) holds, let $r=p$ in Theorem 3.12. Then $S_{p}=P S(q)$ and thus $N_{k}=S_{p} \backslash G_{k}$ is maximal in $P S(q)$.

Theorem 3.14. Suppose that $p>q \geq \aleph_{0}$ and k equals 0 or q. Let A be a nonempty subset of X such that $|X \backslash A| \geq q$. Then the two classes of maximal subsemigroups $S_{q} \cap \bar{M}_{A}$ and $S_{q} \backslash G_{k}$ of S_{q} are always disjoint.

Proof. By Theorems 3.9 and 3.12, $S_{q} \cap \bar{M}_{A}$ and $S_{q} \backslash G_{k}$ are maximal subsemigroups of S_{q}. By Lemma 3.6(a), there exists $\alpha \in \bar{M}_{A}$ with $g(\alpha)=k$. Then $\alpha \in S_{k} \cap \bar{M}_{A} \subseteq S_{q} \cap \bar{M}_{A}$ but $\alpha \notin S_{q} \backslash G_{k}$, that is, $S_{q} \cap \bar{M}_{A} \nsubseteq S_{q} \backslash G_{k}$. Also, $S_{q} \backslash G_{k} \nsubseteq S_{q} \cap \bar{M}_{A}$ by the maximality of $S_{q} \cap \bar{M}_{A}$ and $S_{q} \backslash G_{k}$. Therefore, $S_{q} \cap \bar{M}_{A}$ is not equal to $S_{q} \backslash G_{k}$.

4. Maximal Subsemigroups of $P S(q)$ When $p=q$

We first recall that, when $p=q$, the empty transformation \emptyset belongs to $P S(q)$ since $d(\emptyset)=p=$ q. In this case, the ideals of $P S(q)$ are precisely the sets:

$$
\begin{equation*}
J_{r}=\{\alpha \in P S(q): r(\alpha)<r\} \tag{4.1}
\end{equation*}
$$

where $1 \leq r \leq p^{\prime}$ (see [3, Theorem 14]). Clearly, $J_{p^{\prime}}=P S(q)$ and $J_{p}=\{\alpha \in P S(q)$: $r(\alpha)<p\}$ is the largest proper ideal. In this case, the complement of each J_{r} in $P S(q)$ is not a semigroup. To see this, write $X=A \cup \dot{B} \dot{C}$ where $|A|=p$ and $|B|=r=|C|$. Then $\operatorname{id}_{B}, \operatorname{id}_{C} \in P S(q) \backslash J_{r}$ whereas $\operatorname{id}_{B} . \operatorname{id}_{C}=\emptyset \in J_{r}$. Hence, unlike what was done in Section 3, we cannot use Lemma 3.1 to find maximal subsemigroups of $P S(q)$ when $p=q$. In this section, we determine some maximal subsemigroups of $P S(q)$, for $p=q$, using a different approach. We first describe some properties of each maximal subsemigroup in this case.

Lemma 4.1. Suppose that $p=q \geq \aleph_{0}$ and M is a maximal subsemigroup of $P S(q)$. Then the following statements hold:
(a) M contains all $\alpha \in P S(q)$ with $r(\alpha)<p$,
(b) if $R(q) \subseteq M$, then $M \cap B L(q)=\emptyset$.

Proof. Suppose that there exists $\alpha \notin M$ with $r(\alpha)=k<p$. Then $g(\alpha)=p$, and we write in the usual way

$$
\begin{equation*}
\alpha=\binom{a_{i}}{x_{i}} \tag{4.2}
\end{equation*}
$$

Also, write $X \backslash\left\{a_{i}\right\}=P \dot{\cup} Q$ and $X \backslash\left\{x_{i}\right\}=R \dot{\cup} S$ where $|P|=|Q|=p=|R|=|S|$, and define β, γ in $P(X)$ by

$$
\beta=\left(\begin{array}{ll}
a_{i} & P \tag{4.3}\\
a_{i} & P
\end{array}\right), \quad \gamma=\left(\begin{array}{ll}
a_{i} & Q \\
x_{i} & R
\end{array}\right)
$$

where $\beta \mid P$ and $\gamma \mid Q$ are bijections. Then $\beta, \gamma \in P S(q)$. Also,

$$
\begin{equation*}
\alpha=\beta \cdot \alpha \cdot \operatorname{id}_{X \alpha} \in P S(q) \cdot \alpha \cdot P S(q) \tag{4.4}
\end{equation*}
$$

thus $M \subsetneq M \cup(P S(q) \cdot \alpha \cdot P S(q))$. But $M \cup(P S(q) \cdot \alpha \cdot P S(q))$ is a subsemigroup of $P S(q)$ and this means that $M \cup(P S(q) \cdot \alpha \cdot P S(q))=P S(q)$ by the maximality of M. Since all mappings in $P S(q) \cdot \alpha \cdot P S(q)$ have rank at most k, it follows that M contains all mappings with rank greater than k. Therefore $\beta, \gamma \in M$ and thus $\alpha=\beta \gamma \in M$, a contradiction.

To show that (b) holds, suppose that $R(q) \subseteq M$. If there exists $\alpha \in M \cap B L(q)$, then [3, Theorem 5] implies that $P S(q)=\alpha \cdot R(q) \subseteq M$ (note that $S_{q}=P S(q)$ when $p=q$), so $M=P S(q)$, contrary to the maximality of M. Thus $M \cap B L(q)=\emptyset$.

Remark 4.2. If $p>q$, then every $\alpha \in P S(q)$ has rank p. This contrasts with Lemma 4.1(a). Also, by Corollary 3.13, if $p>q$ and $q<k \leq p, N_{k}$ is a maximal subsemigroup of $P S(q)$ containing $R(q) \cup B L(q)$, this contrasts with Lemma 4.1(b).

As in Section 3, for any cardinal k, we let

$$
\begin{equation*}
N_{k}=\{\alpha \in P S(q): g(\alpha) \neq k\} . \tag{4.5}
\end{equation*}
$$

By Lemma 3.10 and Remark 3.11, if $p=q$, then N_{k} is a subsemigroup of $P S(q)$ exactly when $k=0$ or $k=p$. From Corollary $3.13(b)$, when $p>q, N_{p}$ is a maximal subsemigroup of $P S(q)$. But when $p=q$, Lemma 4.1(a) implies that N_{p} is not maximal since $\emptyset \notin N_{p}$. Moreover, Lemma 4.1(a) implies that every maximal subsemigroup of $P S(q)$ must contain the largest proper ideal

$$
\begin{equation*}
J_{p}=\{\alpha \in P S(q): r(\alpha)<p\} \tag{4.6}
\end{equation*}
$$

Note that J_{p} itself is a subsemigroup of $P S(q)$, but it is not maximal since $J_{p} \subsetneq R(q)$ (in case $p=q, r(\alpha)<p$ implies $g(\alpha)=p)$.

Theorem 4.3. Suppose that $p=q \geq \aleph_{0}$, and let A be a nonempty subset of X such that $|X \backslash A| \geq q$. The following are maximal subsemigroups of $P S(q)$:
(a) \bar{M}_{A};
(b) N_{0};
(c) $N_{p} \cup J_{p}$.

Proof. If $p=q$, then $S_{q}=P S(q)$, and so (a) holds by Theorem 3.9. Also, by taking $r=p$ in Theorem 3.12(a), we see that (b) holds. To show that (c) holds, take $r=p=k$ in Lemma 3.10, we have $N_{p}=S_{p} \backslash G_{p}$ is a subsemigroup of $P S(q)$. Moreover, $N_{p} \cup J_{p}$ is also a subsemigroup of $P S(q)$ since J_{p} is an ideal. To show the maximality of $N_{p} \cup J_{p}$, let $\alpha, \beta \in P S(q) \backslash\left(N_{p} \cup J_{p}\right)$. Then $g(\alpha)=g(\beta)=p=r(\alpha)=r(\beta)$. Write in the usual way

$$
\begin{equation*}
\alpha=\binom{a_{i}}{x_{i}}, \quad \beta=\binom{b_{i}}{y_{i}} \tag{4.7}
\end{equation*}
$$

where $|I|=p$, and let

$$
\begin{equation*}
X \backslash\left\{a_{i}\right\}=A \cup \dot{\cup}, \quad X \backslash\left\{y_{i}\right\}=C \dot{\cup} D, \tag{4.8}
\end{equation*}
$$

where $|A|=|B|=|C|=|D|=p$. Then define $\gamma, \mu \in P(X)$ by

$$
r=\left(\begin{array}{cc}
b_{i} & X \backslash\left\{b_{i}\right\} \tag{4.9}\\
a_{i} & A
\end{array}\right), \quad \mu=\left(\begin{array}{cc}
x_{i} & X \backslash\left\{x_{i}\right\} \\
y_{i} & C
\end{array}\right)
$$

where $\gamma \mid\left(X \backslash\left\{b_{i}\right\}\right)$ and $\mu \mid\left(X \backslash\left\{x_{i}\right\}\right)$ are bijections. Thus $\gamma, \mu \in P S(q)$ since $d(\gamma)=|B|=p=$ $|D|=d(\mu)$. Moreover $\gamma, \mu \in N_{p} \cup J_{p}$ since $g(\gamma)=g(\mu)=0<p$. It is clear that $\beta=\gamma \alpha \mu$ and therefore $N_{p} \cup J_{p}$ is maximal in $P S(q)$.

Remark 4.4. When $p=q$, if M is a maximal subsemigroup containing $R(q)$, then

$$
\begin{equation*}
M \subseteq(P S(q) \backslash B L(q))=N_{0} \tag{4.10}
\end{equation*}
$$

by Lemma $4.1(\mathrm{~b})$. Thus, $M=N_{0}$ by the maximality of M. So we conclude that N_{0} is the only maximal subsemigroup of $P S(q)$ containing $R(q)$.

Remark 4.5. As we showed in Section 3, to see all maximal subsemigroups of $P S(q)$ when $p>q$, it is necessary to describe all maximal subsemigroups of S_{r} where $q \leq r<p$. So we leave this as a direction for future research.

Acknowledgments

The authors wish to thank the referees for the careful review and the valuable comments, which helped to improve the readability of this paper. B. Singha thanks the Office of the Higher Education Commission, Thailand, for its support by a grant. He also thanks the

Graduate School, Chiang Mai University, Chiangmai, Thailand, for its financial support during the preparation of this paper. J. Sanwong thanks the National Research University Project under the Office of the Higher Education Commission, Thailand, for its financial support.

References

[1] A. H. Clifford and G. B. Preston, The Algebraic Theoryof Semigroups, vol. 1 of Mathematical Surveys, American Mathematical Society, Providence, RI, USA, 1961.
[2] A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, vol. 2 of Mathematical Surveys, American Mathematical Society, Providence, RI, USA, 1967.
[3] F. A. Pinto and R. P. Sullivan, "Baer-Levi semigroups of partial transformations," Bulletin of the Australian Mathematical Society, vol. 69, no. 1, pp. 87-106, 2004.
[4] B. Singha, J. Sanwong, and R. P. Sullivan, "Partial orders on partial Baer-Levi semigroups," Bulletin of the Australian Mathematical Society, vol. 81, no. 2, pp. 195-207, 2010.
[5] H. Mitsch, "A natural partial order for semigroups," Proceedings of the American Mathematical Society, vol. 97, no. 3, pp. 384-388, 1986.
[6] I. Levi and G. R. Wood, "On maximal subsemigroups of Baer-Levi semigroups," Semigroup Forum, vol. 30, no. 1, pp. 99-102, 1984.
[7] E. Hotzel, "Maximality properties of some subsemigroups of Baer-Levi semigroups," Semigroup Forum, vol. 51, no. 2, pp. 153-190, 1995.

