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This paper considers bifurcation at the principal eigenvalue of a class of gradient operators which
possess the Palais-Smale condition. The existence of the bifurcation branch and the asymptotic
nature of the bifurcation is verified by using the compactness in the Palais Smale condition and
the order of the nonlinearity in the operator. The main result is applied to estimate the asyptotic
behaviour of solutions to a class of semilinear elliptic equations with a critical Sobolev exponent.

1. Introduction

Let H be a real Hilbert space endowed with norm ‖ · ‖ and inner product (·, ·). Let Φ ∈
C1(H,R) and consider the bifurcation problem

Φ′(w) = μw. (1.1)

If μ∗ is a bifurcation point for (1.1), then for sufficiently small r > 0 there exists a solution wr

to (1.1), with ‖wr‖ = r and μr → μ∗ as r → 0.
Krasnosel’skii [1] has shown that if Φ is weakly continuous and Φ′ completely

continuous with a selfadjoint completely continuous Fréchet derivative T at zero, then
the smallest positive characteristic value μ0 of T forms a bifurcation point for Φ′. A local
bifurcation branch exists in a neighbourhood of (μ, u) = (μ0, 0).

The condition thatΦ beweakly continuous is relaxed in [2]. For a slightly more specific
structure of Φ, authors such as [3, 4] (see [5]) have eliminated the requirement that Φ′ be
completely continuous.

In this paper, it is shown that the compactness inherent in the Palais-Smale condition
is an adequate substitute for the requirement of complete continuity of the perturbation. Our
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technique follows the original path laid in [1] and does not implement Lyapunov-Schmidt
reduction. This allows us to obtain specific estimates for the size of the solution and extend
the the local estimates of Chiappinelli [6]. By adopting an alternative approach to identify
the bifurcation branch, we are able to identify the point at which compactness is required
and weaken it to a local Palais-Smale condition.

Problems such as (1.1) are related to the variational formulation of elliptic partial
differential equations. In the final section, some applications of bifurcation theorems are
presented.

1.1. Existing Results

We say that μ is an eigenvalue (and w an eigenfunction) for the operator A if

A(w) = μw. (1.2)

We call λ = 1/μ a characteristic value for A. Stating that (λ, u) ∈ R ×H is a solution means
that λA(w) = w.

Recall by spectral theory [7] that if A is a linear completely continuous operator, then
the eigenvalues {μj} are countable and form a bounded sequence with 0 as the only possible
accumulation point.

The following is the basic bifurcation result by Krasnosel’skii for gradient mappings.
Later, this theorem is modified and proven.

Theorem 1.1. Assume that Φ : H �→ R is weakly continuous and uniformly differentiable in a
neighbourhood of 0 and assume that A = Φ′ : H �→ H is completely continuous. Then, if A is
differentiable at 0, every eigenvalue μ∗ /= 0 of the derivativeA′(0) is a bifurcation point for (1.2).

More precisely, for any sufficiently small r > 0 there exists μr ∈ R, wr ∈ H with ‖wr‖ = r
such thatA(wr) = μrwr and furthermore μr → μ∗ as r → 0.

Chiappinelli [6] developed Theorem 1.2 which improved Krasnosel’skii’s result for
gradient mappings by a quantitative estimate of local bifurcation properties. Suppose that
A(w) = Tw + R(w) where T = A′(0) and R(w) = o(‖w‖) as ‖w‖ → 0.

Theorem 1.2. Under the same assumptions as Theorem 1.1, suppose that R satisfies R(w) =
O(‖w‖p) for w → 0 with p > 1. Then as r → 0 the eigenvalues μr satisfy

μr = μ∗ +O
(
rp−1

)
. (1.3)

Recent innovations have allowed authors to produce still sharper estimates on the
asymptotic nature of the bifurcation branches. Chiappinelli [8] enhanced expression (1.3),
where μ∗ was confined to an isolated eigenvalue of finite multiplicity:

krp−1 + o
(
rp−1

)
≤ μ − μ∗ ≤ Krp−1 + o

(
rp−1

)
. (1.4)

The method of proof dispensed with the requirement that R(·) be a gradient operator.
Further refinement was achieved in [9], where the coefficients of the asymptotic bounds
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were expressed explicitly in terms of the domain volume and other fundamental constants,
including the Sobolev constant. Those publications further extended the results to apply
for eigenvalues apart from the principal eigenvalue by careful decomposition of the Hilbert
space into subspaces of the eigenfunction and its complement. In [8, 9], applications of the
abstract result are made to semilinear elliptic differential equations, and in each case the
representative examples are confined to equations exhibiting full compactness, that is, an
exponent p in the nonlinearity which is a subcritical Sobolev exponent.

Chabrowski et al. formulated the problem with an (S+) condition to relax the require-
ment of compactness and extended the semilinear problem to a quasilinear formulation. As
stated in [10], although the (S+) and Palais Smale conditions appear similar, there is no direct
relationship between the two. Kandilakis et al. [11] have also explored quasilinear operators
bifurcating from the principal eigenvalue.

In the current paper, we focus on the semilinear problem with a critical Sobolev
exponent. The proof relies upon a positive eigenfunction, and we assume bifurcation only
around the principal eigenvalue. Our method has not performed the detailed asymptotic
analysis to yield an expression in the vein of (1.4), but we believe by a careful analysis that it
would be possible to recover similar bounds.

2. Main Results

In partial differential equations, critical Sobolev exponents sometimes arise which generate
functionals without compactness. With consistent notation, R(u) is no longer compact, and
weak continuity of the functional is lost. In variational methods, the Palais-Smale condition
is often used as a substitute for compactness. Following the arguments of Krasnosel’skii,
we follow a similar philosophy in this paper. Reference is made to [12, Theorem 8.9] where
progress along a different route has produced broadly similar outcomes.

Definition 2.1. LetΦ ∈ C1(H), and suppose {un} is a sequence inH satisfyingΦ(un) → c and
Φ′(un) → 0 inH∗. Then {un} is termed a Palais-Smale sequence at level c. If every Palais-Smale
sequence at level c contains a strongly convergent subsequence, then Φ is said to satisfy the
Palais-Smale condition at level c, (PS)c.

The following theorem improves upon Theorem 1.1 by removing the requirement of
complete continuity of Φ′ and weak continuity of Φ.

Theorem 2.2. Let Φ′ be a linear operator which is the gradient of a C1 functional Φ(u). Let Φ′ have
a Fréchet derivative T at the origin in H , where T is a selfadjoint, completely continuous operator.
Suppose μ0 is the largest eigenvalue (i.e., λ0 = 1/μ0 is the smallest positive characteristic value) of T .
Suppose that for some ξ > 0 the family of functionals

Iλ(u) =
1
2
‖u‖2 − λΦ(u) (2.1)

satisfies the (PS)c-condition for λ0 − ξ < λ < λ0 + ξ and for c ∈ R in a neighbourhood of 0.
Then λ0 is a bifurcation point for Φ′.

The following result expands Chiappinelli’s result [6].
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Theorem 2.3. Assume Φ ∈ C1(H,R) is uniformly differentiable in a neighbourhood of 0. Let
A ≡ Φ′ : H �→ H and suppose A(u) = Tu + R(u) where T = A′(0) is selfadjoint and
completely continuous. Let μ0 = 1/λ0 be the principal eigenvalue of T , (or equivalently, λ0 the
smallest characteristic value). Suppose that for some ξ > 0, the family of functionals Iλ(u) =
(1/2)‖u‖2 − λΦ(u), λ0 − ξ < λ < λ0 + ξ satisfies the (PS)c-condition for −c < c < c. Assuming
that R(u) = O(‖u‖p) as ‖u‖ → 0, with p > 1, it follows that

λr = λ0 +O
(
rp−1

) (
equivalently μr = μ0 +O

(
rp−1

))
as r −→ 0. (2.2)

3. Proof of the Main Results

We firstly recall a result of Lusternik [13] expressed in modern notation, [14, Theorem 8.2]

Theorem 3.1. Let Φ and ψ lie in C1(H,R). Denote Mc = {u ∈ H : ψ(u) = c} and suppose that
∇ψ(u)/= 0 for u ∈ Mc. Let TMc(w) be the tangent manifold toMc atw. Suppose that (Φ′(u0), v) =
0 for some u0 ∈Mc and all v ∈ TMc(u0). Then Φ′(u0) = kψ ′(u0) for some k ∈ R.

The notion of functionals approximating a quadratic is related to the linearisation of
an operator.

Definition 3.2. The functional Φ(u) defined in some neighbourhood of the origin inH is said
to approximate the quadratic (1/2)(Tu, u) if, for any ε > 0 there is a δ > 0 such that, for all
‖u‖ < δ, the following inequality holds:

∣∣∣∣Φ(u) −
1
2
(Tu, u)

∣∣∣∣ ≤ ε‖u‖2. (3.1)

The following lemma is from Krasnosel’skii [1].

Lemma 3.3. Let Φ′ be a linear operator which is the gradient of the functional Φ(u) defined in
some neighbourhood of the origin in H . Let Φ′ have a Fréchet derivate T at zero. Then the quadratic
(1/2)(Tu, u) approximates the functional Φ(u).

An important preliminary result is derived from the Ekeland variational principle
(Lemma 3.4).

Lemma 3.4. Let M be a complete metric space with metric d and let E : M �→ R be lower
semicontinuous and bounded below. Then for any ε and δ > 0 and any u ∈M with E(u) ≤ infME+ε
there is v ∈M strictly minimising

Ev(w) ≡ E(w) +
ε

δ
d(v,w). (3.2)

Moreover, E(v) ≤ E(u), d(u, v) ≤ δ.
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Corollary 3.5. Let V be a Banach space and suppose Sρ ⊂ V is the sphere of radius ρ. Suppose
E ∈ C1(V ) is bounded from below. Then there exists a minimising sequence {vm} for E in Sρ such
that

E(vm) −→ inf
Sρ
E, DE|′Sρ(vm) −→ 0 in V ∗ (3.3)

asm → ∞, where E|Sρ is the restriction of E to Sρ. Note that for v ∈ Sρ,

∥∥∥DE|′Sρ(v)
∥∥∥ = sup

w∈TSρ(v)

|(E′(v), w)|
‖w‖

. (3.4)

Proof. A standard technique in the variational method applies the Ekeland Variational Prin-
ciple to a minimising sequence on a lower semicontinuous functional coercive in a region
where the functional is bounded below. The Ekeland Variational Principle then guarantees a
Palais-Smale sequence, which yields an almost critical point. See for example [15].

Here we apply the same approach, adapted for a restriction to a manifold, rather
than on an open set containing a local minimum. We confine the analysis to directional
derivatives associated with the tangent manifold. The manifold here is the sphere, so the
tangency condition is simple to verify.

Choose an arbitrary sequence {εm}, εm > 0, εm → 0. Define the metric space Sρ with
metric d(u, v) = ‖u − v‖. Form ∈ N, choose um ∈ Sρ such that

E(um) ≤ inf
Sρ
E + ε2m. (3.5)

Let ε = ε2m, δ = εm and determine vm = v according to the Ekeland Variational Principle,
satisfying E(vm) ≤ E(vm +w) + εm‖w‖V for all vm +w ∈ Sρ. Hence

sup
‖w‖V≤δ,

vm+w∈Sρ,w /= 0

E(vm) − E(vm +w)
‖w‖V

≤ εm. (3.6)

We deal only with the restriction of E onto the manifold which confines its domain of
definition to Sρ. Expressing the derivative in a Fréchet sense we have

lim
h→ 0,

vm+h∈Sρ

(
E|Sρ(vm + h) − E|Sρ(vm) − DE|′Sρ(vm), h

)

‖h‖
= 0 (3.7)

which rearranged and using (3.6) gives

lim
h→ 0,

vm+h∈Sρ

(
DE|′Sρ(vm),

h

‖h‖

)
= lim

h→ 0,
vm+h∈Sρ

(
E|Sρ(vm + h) − E|Sρ(vm)

)

‖h‖
≥ −εm. (3.8)



6 International Journal of Mathematics and Mathematical Sciences

Since the limit holds for any path to zero, we can replace hwith −h to yield

lim
h→ 0,

vm+h∈Sρ

∣∣∣∣
(
DE|′Sρ(vm),

h

‖h‖

)∣∣∣∣ ≤ εm. (3.9)

Now, for h ∈ Sρ(vm), let h = T(h)+N(h)where T(h) ∈ TSρ(vm) andN(h) ⊥ TSρ(vm). Owing
to the tangency condition, we have

lim
h→ 0

N(h)
‖h‖

= 0. (3.10)

It follows that

sup
φ∈TSρ(vm),

‖φ‖=1

(
DE|′Sρ(vm), φ

)
< ε′m −→ 0 (3.11)

asm → ∞, yielding

∥∥∥DE|′Sρ(vm)
∥∥∥ −→ 0 (3.12)

proving the result.

Proof of Theorem 2.2. Let H0 be the eigenspace corresponding to μ0 and define H1 as the
orthogonal complement to H0 in H . Let P0 be the projector of H onto H0, and P1 project
H ontoH1. Let ν be the largest positive eigenvalue of T different to μ0, letting ν = 0 if this is
nonexistent.

Since T is completely continuous, we have the standard decomposition for any u ∈ H :

Tu =
∞∑
i=0

μi(u, ei)ei. (3.13)

In particular, this means that (TP1u, u) ≤ ν‖P1u‖2 for all u ∈ H .
From Lemma 3.3, we know thatΦ(u) is approximated to (1/2)(Tu, u). For some small

ε > 0, let δ be a suitably small number from the definition of quadratic approximation.
Denote by ρ ∈ (0, δ) a number such that for all ‖u‖ ≤ ρ,

∣∣∣∣Φ(u) − 1
2
(Tu, u)

∣∣∣∣ ≤ ε1(u, u), (3.14)

∥∥Φ′(u) − Tu
∥∥ ≤ ε2‖u‖, (3.15)
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where ε1 and ε2 are chosen sufficiently small that

ε1 <
μ0 − ν

6
. ε2 < μ0

√
1 − 6ε1

μ0 − ν
.

λ0 − ξ <
(

1
λ0

+ ε2
)−1

, λ0 + ξ >

(
1
λ0

√
1 − 6ε1

μ0 − ν
− ε2

)−1

.

(3.16)

Consequently, for any u ∈H0, ‖u‖ ≤ ρ, we have that

Φ(u) ≥ 1
2
(Tu, u) −

∣∣∣∣Φ(u) − 1
2
(Tu, u)

∣∣∣∣

≥
(μ0
2

− ε1
)
(u, u).

(3.17)

For a normalised eigenfunction of T , ϕ0 ∈ H0, define

cρ ≡ sup
u∈Sρ

Φ(u) ≥ Φ
(
ρϕ0

)
≥
(μ0
2

− ε1
)
ρ2. (3.18)

Since Φ is not weakly continuous, we cannot immediately guarantee that the supremum is
achieved. Instead of relying upon complete continuity, we will invoke the (PS) condition.

Applying Corollary 3.5 to −Φ, there exists a sequence {un} ⊂ Sρ such that Φ(un) → cρ
and ‖Φ|′Sρ(un)‖ → 0 as n → ∞. By definition, for any sequence {vn} satisfying lim‖vn‖ <
C < ∞ and vn ∈ TSρ(un), it follows that (Φ′(un), vn) → 0.

Taking a subsequence if necessary, we have that for all n sufficiently large,

Φ(un) ≥
(μ0
2

− 2ε1
)
ρ2. (3.19)

Letting

αn =
(un, un)

(Φ′(un), un)
=

ρ2

(Φ′(un), un)
, (3.20)

it follows that

(
I ′αn(un), un

)
= 0. (3.21)



8 International Journal of Mathematics and Mathematical Sciences

In the next part of the argument, bounds are placed on limn→∞αn. For all n sufficiently
large (3.19) holds. However by (3.14),

Φ(un) ≤
1
2
(Tun, un) +

∣∣∣∣Φ(un) −
1
2
(Tun, un)

∣∣∣∣

≤
μ0
2
‖P0un‖2 +

ν

2
‖P1un‖2 + ε1ρ2.

(3.22)

Hence,

(μ0
2

− 2ε1
)
ρ2 ≤ ε1ρ2 +

μ0
2
‖P0un‖2 +

ν

2
‖P1un‖2. (3.23)

But ‖un‖2 = ‖P0un‖2 + ‖P1un‖2 so

‖P0un‖2 ≥ ρ2 −
6ε1ρ2

μ0 − ν
, (3.24)

‖P1un‖2 ≤
6ε1ρ2

μ0 − ν
. (3.25)

From (3.24)

‖Tun‖2 ≥ ‖TP0un‖2 = μ20‖P0un‖
2 ≥ μ20ρ

2 −
6ε1μ20ρ

2

μ0 − ν
(3.26)

and by (3.15),

∥∥Φ′(un)
∥∥ ≥ ‖Tun‖ −

∥∥Φ′(un) − Tun
∥∥

≥ μ0ρ
√
1 − 6ε1

μ0 − ν
− ε2‖un‖

= ρ

{
μ0

√
1 − 6ε1

μ0 − ν
− ε2

}
.

(3.27)

Now, for eachn, anyw ∈H may be expressed asw = tnun+vn where tn ∈ R and vn ∈ TSρ(un).
Using the information that (Φ′(un), vn) = o(1) as n → ∞,

∥∥Φ′(un)
∥∥ = sup

w∈S1

∣∣(Φ′(un), w
)∣∣

= sup
{∣∣(Φ′(un), tnun + vn

)∣∣ : tn ∈ R, vn ∈ TSρ(un), ‖tnun + vn‖ = 1
}

= sup
{∣∣(Φ′(un), tnun

)∣∣ : ‖tnun‖ ≤ 1
}
+ o(1)

=
1
ρ

(
Φ′(un), un

)
+ o(1).

(3.28)
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Consequently,

lim
n→∞

(
Φ′(un), un

)
= lim

n→∞
ρ
∥∥Φ′(un)

∥∥ ≥ ρ2
{
μ0

√
1 − 6ε1

μ0 − ν
− ε2

}
> 0. (3.29)

Thus,

lim
n→∞

αn ≤
(
μ0

√
1 − 6ε1

μ0 − ν
− ε2

)−1

. (3.30)

For the other bound,

∥∥Φ′(un)
∥∥ ≤

∥∥Φ′(un) − Tun
∥∥ + ‖Tun‖

≤ ε2‖un‖ +
∥∥∥∥∥

∞∑
i=0

μi(un, ei)ei

∥∥∥∥∥

≤
(
ε2 + μ0

)
ρ.

(3.31)

Thus,

lim
n→∞

(
Φ′(un), un

)
= lim

n→∞
ρ
∥∥Φ′(un)

∥∥ ≤ ρ2
(
ε2 + μ0

)
. (3.32)

In combination with (3.30),

[
μ0 + ε2

]−1 ≤ lim
n→∞

αn ≡ α0 ≤
[
μ0

√
1 − 6ε1

μ0 − ν
− ε2

]−1

. (3.33)

As ε → 0, ρ can be chosen small so that ε1 and ε2 → 0.
We now consider the sequence {un} acting on the functional Iα0(u). Again decompos-

ing any w ∈ H as w = tnun + vn, we have that

∥∥I ′α0(un)
∥∥ = sup

‖w‖=1

∣∣(I ′α0(un), w
)∣∣

= sup
{∣∣(un, tnun + vn) − α0

(
Φ′(un), tnun + vn

)∣∣ : tnun + vn ∈ S1
}
.

(3.34)
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Now, un ⊥ vn, so (un, vn) = 0. Also, un is a maximising sequence forΦ on Sρ, so (Φ′(un), vn) =
o(1) as n → ∞, leaving us with

∥∥I ′α0(un)
∥∥ = sup

{∣∣(un, tnun) − α0
(
Φ′(un), tnun

)∣∣ : ‖tnun‖ ≤ 1
}
+ o(1)

= sup
{
tn
∣∣(un, un) − α0

(
Φ′(un), un

)∣∣ : ‖tnun‖ ≤ 1
}
+ o(1)

= sup
{
tn
∣∣(un, un) − α0

(
Φ′(un), un

)∣∣ : tn ≤ 1
ρ

}
+ o(1)

=
1
ρ

∣∣(un, un) − α0
(
Φ′(un), un

)∣∣ + o(1).

(3.35)

But ‖un‖2 − αn(Φ′(un), un) = 0 so

∥∥I ′α0(un)
∥∥ =

1
ρ

∣∣∣‖un‖2 − α0
(
Φ′(un), un

)∣∣∣ + o(1)

=
1
ρ

∣∣∣‖un‖2 − αn
(
Φ′(un), un

)∣∣∣ + o(1) −→ 0.

(3.36)

We also have that

Iα0(un) =
1
2
ρ2 − α0Φ(un). (3.37)

For sufficiently small ρ > 0 we can ensure that limn→∞Iα0(un) is arbitrarily small.
Hence (3.36) and (3.37) imply that un is a (PS)c-sequence for Iα0 , where c vanishes as ρ tends
to 0. Since Iα0 satisfies the (PS)c-condition for c in some neighbourhood of zero, we have that
un is strongly convergent to u0 ∈ Sρ, where u0 must be a maximiser for (3.18).

The Lusternik Theorem 3.1 completes the proof by showing that u0 must be an
eigenfunction of Φ′ and α0 a characteristic value for Φ′:

Φ′(u0) = μu0, (3.38)

where 1/α0 ≡ μ ∈ R.

Proof of Theorem 2.3. Let k > 0, r0 > 0, p > 1 be such that

‖R(u)‖ ≤ k‖u‖p for ‖u‖ < r0. (3.39)

Now

Φ(u) =
1
2
(Tu, u) +

∫1

0
(R(tu), u)dt. (3.40)
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From (3.39), and since p > 1,

1
2
(Tu, u) − k

2
rp+1 ≤ Φ(u) ≤ 1

2
(Tu, u) +

k

2
rp+1 (3.41)

for any u : ‖u‖ ≤ r < r0. We claim that cr as defined in (3.18) satisfies the following estimate:

∣∣∣∣cr −
1
2
μ0r

2
∣∣∣∣ ≤

k

2
rp−1 for r < r0. (3.42)

For one half of the estimate, use the normalised eigenfunction ϕ1 and note that

cr = sup
Sr

Φ(u) > Φ
(
rϕ1

)
≥ 1
2
μ0r

2 − k

2
rp+1. (3.43)

For the other half, by the Rayleigh characterisation of the principal eigenvalue,

μ0 = sup
0/=u∈H

(Tu, u)
(u, u)

(3.44)

giving that (Tu, u) ≤ μ0(u, u). Inserting this into (3.41) yields

Φ(u) ≤ 1
2
μ0r

2 +
k

2
rp+1 (3.45)

and the claim follows.
We now use the expression Φ(ur) = cr to estimate μr , the eigenvalue corresponding

with ur ∈ Sr . We have μrr2 = (Aur, ur), so

μr − μ0 =
1
r2
[
(A(ur), ur) − μ0(ur, ur)

]

=
1
r2
(
A(ur) − Tur + Tur − μ0ur, ur

) (3.46)

and using (3.39),

∣∣μr − μ0
∣∣ ≤ 1

r2
‖A(ur) − Tur‖‖ur‖ +

2
r2

∣∣∣∣
(Tur , ur)

2
−
μ0

2
r2
∣∣∣∣

≤ 1
r2
krp+1 +

2
r2

∣∣∣∣
(Tur , ur)

2
−Φ(ur) + cr −

μ0
2
r2
∣∣∣∣.

(3.47)

Combining this with (3.41) and (3.42) provides the inequality:

∣∣μr − μ0
∣∣ ≤ krp−1 + 2krp−1 = 3krp−1 for r < r0 (3.48)

giving the conclusion.



12 International Journal of Mathematics and Mathematical Sciences

4. Applications

Chiappinelli [6] was able to show that each eigenvalue of −Δ on a bounded domain Ω ⊂ RN

forms a bifurcation point for the problem

−Δu = λ
(
u + f(x, u)

)
for x ∈ Ω; u(x) = 0 for x ∈ ∂Ω, (4.1)

where f : Ω ×R �→ R is a subcritical Carathéodory function. We extend this result to a family
of problems with critical nonlinearities.

Brézis and Nirenberg [16] tackled the problem

−Δu = λu + |u|2
∗−2u on Ω; u(x) = 0 for x ∈ ∂Ω, (4.2)

where Ω ⊂ RN is a smooth bounded domain and solutions are sought in the Sobolev space

W1,2
0 (Ω), endowedwith norm ‖u‖ = (

∫
Ω |∇u|2)1/2. Another problemwhichmay be considered

is

−Δu = λ
(
u + |u|2

∗−2u
)

on Ω; u(x) = 0 for x ∈ ∂Ω. (4.3)

Solutions to (4.2) and (4.3) correspond to critical points of the functional

Iλ(u) =
1
2
‖u‖2 − λ

2

∫
u2 − 1

2∗

∫
|u|2

∗
,

Ĩλ(u) =
1
2
‖u‖2 − λ

(
1
2

∫
u2 − 1

2∗

∫
|u|2

∗
)
,

(4.4)

respectively.
The following lemma has been derived in [16].

Lemma 4.1. For any λ ∈ R, Iλ satisfies the (PS)c-condition for c < c∗ = (1/N)SN/2.

Following the same proof, one may derive the following.

Lemma 4.2. For λ > 0, Ĩλ satisfies the (PS)c condition for c < c∗
λ
= (1/N)SN/2/λ(N−2)/2.

Let λ0 be the principal characteristic value of the linear problem −Δu = λu, u ∈
W1,2

0 (Ω). Define the operator T by (Tu, v) =
∫
Ω uv dx. By the Sobolev embedding theorem,

T is a completely continuous operator. Define the operator R by (R(u), v) =
∫
|u|2

∗−2uv. The
problem (4.3) now becomes u = λ(Tu + R(u)).

Theorem 4.3. For sufficiently small r > 0, there exists a solution (λr, ur) to (4.3) with ‖ur‖ = r.
One has λr → λ0 as r → 0 and

λr = λ0 +O
(
r2

∗−2
)

as r −→ 0. (4.5)

An identical result holds for problem (4.2).
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Proof. Clearly u is a weak solution to (4.3) if

A(u) ≡ Tu + R(u) = μu, (4.6)

where μ = 1/λ. IfΦ(u) = (1/2)
∫
u2 + (1/2∗)

∫
|u|2

∗
, thenA(u) = Φ′(u). Lemma 4.2 verifies that

Ĩλ satisfies the (PS)c condition in the neighbourhood specified in Theorem 2.2. Theorem 2.3
then gives the first result.

Select any sufficiently small R > 0. Owing to the asymptotic nature of λr , it is possible
to solve λ1/(2

∗−2)
r r = R for r. With such a solution r > 0, there exists ur with ‖∇ur‖ = r and

λr ∈ R such that (λr, ur) solves (4.3). Now letting vR = λ
1/(2∗−2)
r ur , and λR = λr it follows that

(λR, vR) forms a solution to (4.2). Analysing the asymptotic properties of the bifurcation,

lim
R→ 0

λR − λ0
R2∗−2 = lim

r→ 0

λr − λ0(
rλ

1/(2∗−2)
r

) 2∗−2

=
1
λ0

lim
r→ 0

λr − λ0
r2∗−2

= C

(4.7)

for some constant C providing the second result.
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